Experimental study of ultrasonic relaxation of residual stresses in the elastic plates

Albert Korolev1 , Andrei Balaev2 , Timur Baltaev3 , Boris Iznairov4

1, 2, 3, 4Yuri Gagarin State Technical University of Saratov, Saratov, Russia

2Corresponding author

Vibroengineering PROCEDIA, Vol. 8, 2016, p. 125-129.
Received 31 July 2016; accepted 3 September 2016; published 7 October 2016

Copyright © 2016 JVE International Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Creative Commons License

The article describes a method of ultrasonic relaxation of residual stresses in elastic circular plates used in the sensors of gas and liquid overpressure control. The method is based on the use of the energy of ultrasonic vibrations imparted to an elastic plate, which causes gradual accumulation and subsequent relaxation of residual stresses and strains. In order to test the adequacy of the mathematical description of the ultrasonic relaxation mechanism, and to establish the dependencies of residual strain on technological factors, an experiment has been carried out. An ultrasonic setup was developed to perform the experimental part. As a result of the experiment an empirical power-law dependence of residual strain on the amplitude of the ultrasonic vibrations, the duration of machining and the static load was obtained. This dependency is shown on the corresponding graphs. The graphs demonstrate the behavior of the residual strains at different technological modes of ultrasonic processing.

Keywords: ultrasonic processing, residual stresses, stress relaxation, elastic strain, residual strain.


This work was executed at financial support of the Ministry of Education and Science of the Russian Federation, Agreement No. 9.896.2014/K.


  1. Biront V., Sushchikh V., Yuzhakova E., Fofanova A., Baidina T. Relaxation of residual stresses in ultrasonic treatment. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, Vol. 6, 1989, p. 57-60. [Search CrossRef]
  2. Reshetnikova O., Iznairov B., Vasin A., Noskov A., Korolev A., Neigebauer K. Solid lubrication of the raceways in bearings with ultrasonic stress relaxation. Russian Engineering Research, Vol. 35, Issue 10, 2015, p. 769-770. [Search CrossRef]
  3. Majid Farajian-Sohi, Thomas Nitschke-Pagel, Klaus D. Residual stress relaxation of quasi-statically and cyclically-loaded steel welds. Welding in the World, Vol. 54, Issue 1, 2010, p. 49-60. [Search CrossRef]
  4. Epp J., Surm H., Kovac J., Hirsch T., Hoffmann F. Interdependence of distortion and residual stress relaxation of cold-rolled bearing rings during heating. Metallurgical and Materials Transactions A, Vol. 42, Issue 5, 2011, p. 1205-1214. [Search CrossRef]
  5. Radchenko V., Kocherov E., Saushkin M., Smyslov V. Experimental and theoretical studies of the influence of a tensile load on the relaxation of residual stresses in a hardened cylindrical specimen under creep conditions. Journal of Applied Mechanics and Technical Physics, Vol. 56, Issue 2, 2015, p. 313-320. [Search CrossRef]
  6. Baltayev T., Korolev A., Balaev A., Savran S., Yakovishin A. Comparative analysis of ultrasonic and thermal methods of residual tension relaxation. Science, Technologies in Modern World: Materials of 2nd International Scientifically-Practical Conference, Ufa, 2015, p. 47-50, (in Russian). [Search CrossRef]
  7. Baltayev T., Korolev A., Korolev A., Balayev A., Savran S. Stabilization technology residual stresses in the elastic sensitive elements of pressure devices through the application of ultrasonic energy. Assembling in Mechanical Engineering and Instrument-Making, Vol. 12, 2015, p. 39-41. [Search CrossRef]