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Abstract. According to the pictures of a sub-meter resolution optical satellite which were acquired 
on orbit, there is a phenomenon of jitter in the process of taking pictures. As the main attitude 
control component of the satellite, the flywheel will produce the disturbance in its normal work, 
which has great influence on the high resolution optical satellite. This paper has respectively 
researched the flywheel components’ disturbance mechanism from four parts, including uneven 
rotator, rotator friction, bearing disturbance, foundation loose, and builds the mathematical model 
of disturbance to analyze the characteristics of disturbance. We have simulated and tested the 
flywheel components’ disturbance. The disturbance force of flywheel components is 2 N 
magnitude and the torque of disturbance is 1.5 N·m magnitude in time domain. The flywheel's 
infrastructure should be more inflexible especially around 90-100 Hz. For this target high 
resolution optical satellite, there should be effective damping measures around 48.6 Hz, 190.4 Hz 
and 285.4 Hz to decrease the flywheel disturbance to guarantee the high precision of the satellite. 
The result would offer guidance for system optimization design and vibration isolation 
compensation of the later type of improved satellite or other same type of satellites.  
Keywords: high resolution, optical satellite, disturbance, flywheel, mechanism, micro vibration. 

1. Introduction 

With the rapid development of space remote sensing technology, the high-quality and 
high-resolution imaging of spacecraft systems have been paid much attention by countries around 
the world. The development of space optical remote sensor has entered the era of sub-meter 
development. The United States launched the commercial remote sensing satellites GeoEye-1, 
which ground resolution is 0.41 meters in 2008. India launched the Remote Sensing Satellite-2 
with a ground resolution of 0.8 meters in 2006. The Pleiades-1 satellite with a ground resolution 
of 0.5 meters had been launched in France in 2011 [1]. China launched GF-2 whose resolution is 
less than one meter in 2014. 

The resolution of optical satellite is constantly improved, while the pointing precision of space 
optical camera is higher. The micro vibration which caused by the moving parts on the satellite in 
orbit is becoming more sensitive for space optical camera. These vibrations would not cause 
damage to the structure of the satellite, but it will affect the pointing accuracy and stability of high 
resolution satellite [2-4]. 

Flywheels commonly used as attitude control execution units in modern high stability and high 
precision spacecraft [4-6]. Due to the rotor dynamic, static unbalance, driving motor error, bearing 
defects and other factors, the flywheel components will produce complex harmonic disturbance 
and noise in its normal spinning, which makes the flywheel become one of the main disturbance 
sources [7-9]. The vibration isolation design for flywheel components is an effective method to 
achieve the requirement of the precision of spacecraft. The Chandra X-ray Observatory using a 
six degree of freedom vibration isolation platform for each flywheel to separate isolation, and the 
platform will also be applied in the JWST [5, 8]. The disturbance caused by flywheel or Control 
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Moment Gyroscope (CMG) is measured in Ref. [5], and the main disturbance of typical micro 
vibration source are summarized. Ref. [10] adopts the integrated model method to get the image 
displacement of the optical system, and puts forward the evaluation index of dynamic optical 
system imaging. The disturbance of flywheel rotor has been well discussed in Ref. [13]. However, 
there is no systematic reports on the disturbance mechanism of the flywheel components up to 
now [4, 6, 9, 11, 14]. 

There is a phenomenon of fuzzy in pictures which acquired by a sub-meter resolution optical 
satellite in orbit. The research shows that the disturbance of the flywheel is one of the important 
factors which causes the jitter [2-4, 6, 12, 13, 14]. To reveal the vibration mechanism of the 
flywheel disturbance on the satellite, in this paper, we researched the flywheel disturbance 
characteristics, and tested flywheel components’ disturbance on the ground. We obtained the force 
&torque of flywheel components’ disturbance by test in its normal working. And the 
six-directional disturbance force / torque waterfall plots and the resonant frequency of the flywheel 
are obtained via signal processing. The flywheel components’ disturbance mechanism, which 
studied in this paper, will provide some guidance for the satellite design, particularly in the satellite 
control system, structure system, the micro vibration suppression performance and constraint 
conditions.  

2. Flywheel component structure 

By adjusting the rotational speed of the rotor, the flywheel can exchange angular momentum 
with the satellite to realize the attitude control of the satellite [15]. The flywheel will provide the 
necessary control moment, and produce the disturbance which will affect the camera imaging. 
Flywheel structure shown in Fig. 1, the flywheel is composed of a rotor, a bearing, a shell and a 
motor. The rotor mass concentrated in the outer edge of the wheel to provide the flywheel control 
force. The main function of the cover is to provide a certain degree of vacuum and keep it clean, 
and it also maintains the momentum wheels to prevent the motor from being contaminated with 
space magnetic particles. The motor is a direct current motor, and the bearing is rolling bearing or 
magnetic bearings. The flywheel component is shown in Fig. 2. The flywheel is connected with 
the bracket with the help of four screws. 

The flywheel component has a complex structure, which makes it has a complex vibration 
mechanism, various vibration, vibration coupling factors [16]. Therefore, it is necessary to analyze 
the disturbance mechanism of the flywheel and study the vibration characteristics. On the basis of 
this, the flywheel disturbance test should be studied. 

Fig. 1. Flywheel structure diagram 
 

Fig. 2. Flywheel component structure.  
Scale bar: 1:1 
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3. Flywheel components’ vibration characteristics 

3.1. Rotor disturbance 

All unbalance of the flywheel can be attributed to the mass eccentricity of the rotor [17, 18]. 
The model is shown in Fig. 3. 

 
Fig. 3. Flywheel rotor mass eccentric model 

Considering damping effect, rotor eccentricity mass concentration is ܥ , the differential 
equation of motion of the axis ܱ indicates as Eq. (1): 

൜݉ݔሷ + ሶݔܿ + ݔ݇ = ሷݕ݉,(ݐݓ)ଶcosݓ݁݉ + ሶݕܿ + ݕ݇ = ,(ݐݓ)ଶsinݓ݁݉  (1)

where, ݉ is rotor mass, ݁ is eccentricity, ܹ is rotor angular velocity, ݇ is rotor support stiffness, ܿ – support structure damping coefficient. 
The characteristic solution of Eq. (1) is: ൜ݔ = ݐݓ)cosܣ − ݕ,(߮ = ݐݓ)sinܣ − ߮),  (2)

where: 

ܣ = ቀ ௡ቁଶݓݓ ݁ට[1 − ቀ ௡ቁଶ]ଶݓݓ + ቀ2ߦ ௡ቁଶ, (3)ݓݓ

௡ݓ = ඨ ݇݉ ߦ    , = ௡. (4)ݓ2݉ܿ

From Eq. (2), the vibration directions of ܺ  and ܻ  are harmonic vibration with the same 
amplitude, the phase difference is 90°, which shows that their axis orbit is a circular. However, 
the fact is that the isotropic bending stiffness of the rotor shaft is different, especially the support 
stiffness. The response of the rotor to the balance mass is different in the ܺ and ܻ directions, and 
the phase difference is not 90°, so its axis orbit is an ellipse. 

According to the above analysis, the main vibration characteristics of rotor mass unbalance are 
as follows: 

1) The steady vibration of the rotor is a forced vibration with the same frequency under the 
rotational speed. Vibration amplitude changes with the speed according to the vibration theory of 
the coaxial curve change law and reaches maximum value at the critical speed. Therefore, the 
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outstanding performance of the flywheel rotor unbalance is a large amplitude of harmonic 
vibration. 

2) The axis orbit of the rotor is a circle or an ellipse. 
3) If the flywheel phase is stable, its speed would be stable. 
4) In the first order critical speed, the amplitude of the rotor is very sensitive to the change of 

the rotational speed. When the rotation speed is decreased, the amplitude is decreased obviously. 
Due to the actual flywheel rotor system will subject to some nonlinear factors, the vibration 

system is not a complete linear system. So, in the vibration spectrum of typical flywheel  
imbalance, it often appears smaller harmonic, in addition to the rotational speed frequency 
component has an absolute advantage in the total amplitude. 

3.2. Flywheel rotor rub impact 

During the normal operation of the flywheel, if the amplitude of the rotor was larger than the 
gap between the rotor and the stator, the continuous or intermittent collisions would occur. The 
actual impact of rotor friction process is relatively complex, so we simplified the process of 
rubbing without considering the friction thermal effect and plastic deformation of rotor for 
convenience of study. Assuming that collision is plastic deformation of stator in a short time, and 
the friction of rotor and stator obeys the Coulomb’s law, then the friction force and normal force 
is proportional at the contact surface. 

As shown in Fig. 4, when the average gap between the rotor and the stator is ߜ, the normal 
collision impact force ܨே and tangential friction force ்ܨ can be expressed as: ܨே = (݁ − ்ܨ,௖݇(ߜ = ݁)    ,ேܨ݂ ≥ (5) ,(ߜ

where, ݂  is Friction coefficient, ݇௖  is stator radial stiffness, ݁ = ඥݔଶ + ଶݕ  is rotor radial 
displacement. 

TF
NF

 
Fig. 4. Rub schematic 

In ݕ݋ݔ coordinates, rubbing force is expressed as: 

ቊܨ௙௫(ݔ, (ݕ = ߛேcosܨ− + ,ݔ)௙௬ܨ,ߛsin்ܨ (ݕ = ߛேsinܨ− − (6) .ߛcos்ܨ

Due to sinߛ = ݕ ݁⁄ , cosߛ = ݔ ݁⁄ , Eq. (6) expressed as Eq. (7): 

൤ܨ௙௫ܨ௙௬൨ = − (݁ − ௖݁݇(ߜ ൤1 −݂݂ 1 ൨ ቂݕݔቃ. (7)
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Rubbing Rotor System of differential equations can be expressed as Eq. (8): 

ቊ݉ݔሷ + ሶݔܿ + ݔ݇ = ݐݓ)ଶcosݓ݁݉ + ߮଴) + ሷݕ݉,௙௫ܨ + ሶݕܿ + ݕ݇ = ݐݓ)ଶsinݓ݁݉ + ߮଴) + ௙௬ܨ − ݉݃. (8)

Put Eq. (7) into Eq. (8), we get: 

൞݉ݔሷ + ሶݔܿ + ݔ݇ + (݁ − ௖݁݇(ߜ ݔ − ݂(݁ − ௖݁݇(ߜ ݕ = ݐݓ)ଶcosݓ݁݉ + ߮଴),݉ݕሷ + ሶݕܿ + ݕ݇ + ݂(݁ − ௖݁݇(ߜ ݔ + (݁ − ௖݁݇(ߜ ݕ = ݐݓ)ଶsinݓ݁݉ + ߮଴) − ݉݃. (9)

By the Eq. (9), we can known that the system is linear before the occurrence of rubbing, and 
the measured vibration is the same frequency component. An additional nonlinear stiffness (݁ − ௖݇(ߜ ݁⁄  is generated in the system after the rub occurred, which is much larger than ݇. It also 
can be seen that the system has a number of different cross rigidities, which will often appear 
unstable motion that resulting in damage or the ultimate destruction due to the role of nonlinear 
damping. 

Eq. (9) is a nonlinear equation. It is difficult to obtain analytical expression of the solution 
under normal circumstances. When the local friction occurs, the rotor has a nonlinear vibration, 
which is rich in the spectrum. It not only has a rotating frequency, but also have high harmonic 
and fractional harmonic components [19, 20]. 

3.3. Bearing disturbance  

A typical rolling bearing is shown in Fig. 5, and Fig. 6 is its internal movement principle. In 
Fig. 6(a), the outer ring is fixed and the inner ring rotates along with the shaft. In Fig. 6(b), the 
inner ring is fixed and the outer ring rotates along with the shaft. 

 
Fig. 5. Typical rolling bearing 

In Fig. 5 and Fig. 6, ܦ is the bearing diameter, ݀ is the diameter of the rolling, and ߙ is the 
contact angle. If there exist defects or damage in the rolling surface, when the rolling roll in the 
surface, it would produce an alternative excitation force. The exciting force is shown as a variety 
of harmonics of the flywheel speed. That is: ݉(ݐ) ∝ Ωଶ sin(2ߨℎ௜Ωݐ) ,    ݅ = 1,2, … , ݊, (10)

where, ℎ௜  is the ݅ th harmonic number (not necessarily an integer), ݊  is the total number of 
harmonics. 

The relationship between the number of harmonic wave and the structural parameters of the 
bearings is shown in Table 1. 
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a) 

 
b) 

Fig. 6. Bearing internal components  

Table 1. The relationship between the harmonic wave number and the structural parameters 
Structure state No axial force Axial force 

Outer ring fixed and the inner ring 
rotating along with the shaft ℎ௜ = 12 ൬1 − ௠൰ ℎ௜ܦ݀ = 12 ൬1 − ௠ܦ݀ cos  ൰ߙ

Inner ring fixed and the outer ring 
rotating along with the shaft ℎ௜ = 12 ൬1 + ௠൰ ℎ௜ܦ݀ = 12 ൬1 + ௠ܦ݀ cos  ൰ߙ

Defects in the outer ring ℎ௜ = 12 ൬1 − ௠൰ܦ݀ ܼ ℎ௜ = 12 ൬1 − ௠ܦ݀ cos ൰ߙ ܼ 

Defects in the inner ring ℎ௜ = 12 ൬1 + ௠൰ܦ݀ ܼ ℎ௜ = 12 ൬1 + ௠ܦ݀ cos ൰ߙ  ௢ is the outer ring racewayܦ ,௜ is the inner ring raceway diameterܦ ,௜ is the number of rolling elementsܦ ܼ
diameter, and ܦ௠ is the raceway diameter. 

3.4. Flywheel component foundation loose 

When the flywheel is mounted on the satellite structure deck which has some flexibility, the 
boundary conditions will be certain changes. The small change of the boundary condition will 
lead to the change of the modal of the flywheel structure. The main disturbance source of the 
flywheel will generate a response on the elastic system, which is mainly characterized by the 
loosening of the non-rotating parts, and then form a disturbance to the outside. 

The schematic diagram of the flywheel component structure system is shown in Fig. 7. The 
origin of the coordinate system is in the center of the flywheel, and the three-axis direction is 
unchanged relative to the initial position of the flywheel. Flywheel system movement can be 
regarded as an ideal balance of rotation of the flywheel on a shaft. Flywheel mass offset from the 
geometric center of the location and distance shows the effect of static imbalance and dynamic 
imbalance. Using a linear spring and damper represents the bearing flexibility and the influence 
of damping. The mass of the loose part of the flywheel in the working process is ܯ, and its 
corresponding stiffness and damping are ݇௙ and ௙ܿ. 

To express the static unbalance, the flywheel can be considered as two parts. The first is the 
point mass ݉௦, which is the strict axis symmetric part and its inertia product is zero. The distance 
between the flywheel and the rotating shaft is ݎ௦. The second is the two point mass ݉ௗ, which is 2ℎ along with the direction of the rotary shaft. Their connection and the rotation axis are coplanar, 
and their distance of the rotating shaft are ݎௗ. ݇ and ܿ are bearing support stiffness and damping 
respectively. The +ܼ to the end of the rotor radial displacement is ݔଵ, ݕଵ. The radial displacement 
of the rotor is ݔଶ, ݕଶ. The –ܼ to the end of the rotor radial displacement is ݔଷ, ݕଷ. Ignoring the 
loose part of the micro swing, its vertical displacement is ݕସ. The system differential equations is 
Eq. (11): 
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ሶଵݔ)ܿ − (ሶଶݔ + ଵݔ)݇ − (ଶݔ = ௫ܲభ(ݔଵ, ,ଵݕ ,ሶଵݔ ሶଵݕ)ܿ,(ሶଵݕ − (ሶଶݕ + ଵݕ)݇ − (ଶݕ = ௬ܲభ(ݔଵ, ,ଵݕ ,ሶଵݔ ሶଵ),(݉௦ݕ + 2݉ௗ)2 ሷଶݔ + ሶଶݔ)ܿ − (ሶଵݔ + ሶଶݔ)ܿ − (ሶଷݔ + ଶݔ)݇ − (ଵݔ + ଶݔ)݇ − =      (ଷݔ (݉௦ + 2݉ௗ)2 ௦݉),ݐݓଶcosݓݑ + 2݉ௗ)2 ሷଶݕ + ሶଶݕ)ܿ − (ሶଵݕ + ሶଶݕ)ܿ − (ሶଷݕ + ଶݕ)݇ − (ଵݕ + ଶݕ)݇ − =      (ଷݕ (݉௦ + 2݉ௗ)2 ݐݓଶsinݓݑ − (݉௦ + 2݉ௗ)2 ሶଷݔ)ܿ,݃ − (ሶଶݔ + ଷݔ)݇ − (ଶݔ = ௫ܲయ(ݔଷ, ଷݕ − ,ସݕ ,ሶଷݔ ሶଷݕ − ሶଷݕ)ܿ,(ሶସݕ − (ሶଶݕ + ଷݕ)݇ − (ଶݕ = ௬ܲయ(ݔଷ, ଷݕ − ,ସݕ ,ሶଷݔ ሶଷݕ − ሷݕܯ,(ሶସݕ + ௙ܿݕሶସ + ݇௙ݕସ = − ௬ܲయ(ݔଷ, ଷݕ − ,ସݕ ,ሶଷݔ ሶଷݕ − (ሶସݕ − .݃ܯ

 (11)

 
Fig. 7. Schematic diagram of the flywheel component structure system 

In Eq. (11), ܿ refers to Rotary shaft itself damping, ݇ refers to Stiffness coefficient, ݑ refers to 
unbalanced amount, ௫ܲభ , ௬ܲభ , ௫ܲయ , ௬ܲయ  – refer to Support structure film force. ݇௙ , ௙ܿ  refer to 
Damping and stiffness coefficients of the ground support structure. When the foundation is loose, 
it can be expressed as: 

ቐ ௙ܿ = ௙ܿଵ,    ݕସ < 0,௙ܿ = ௙ܿଶ,    0 ≤ ସݕ ≤ ௙ܿ,ߜ = ௙ܿଷ,    ݕସ > ,ߜ      ቐ݇௙ = ݇௙ଵ,    ݕସ < 0,݇௙ = ݇௙ଶ,    0 ≤ ସݕ ≤ ௙݇,ߜ = ݇௙ଷ,     ݕସ > .ߜ  (12)

By the Eqs. (11) and (12), it can be known that the flywheel rotor is a nonlinear vibration 
system with piecewise linear stiffness and damping in the working process, and the characteristics 
of the flywheel rotor are very complex. 

In fact, all disturbances are coupled together to output disturbance force and torque. The 
following is the establishment of the disturbance model of flywheel components to analyze 
vibration of transfer law. 

4. Flywheel component disturbance model 

From the analysis above, the flywheel vibration can be decomposed into radial vibration force 
and vibration torque. To analyze the vibration transfer law, the dynamic model of the flywheel 
component is established: 
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(ݐ)݂ = ௫݂(ݐ)݅ + ௬݂(ݐ)݆,݃(ݐ) = ݃௫(ݐ)݅ + ݃௬(ݐ)݆. (13)

Flywheel component coordinate system is ݖݕݔ݋, reference coordinate system is ܱܻܼܺ, the 
origins of the two coordinate systems are located in the center of the rotor and the root of the shaft 
respectively, and the initial positional relation is shown in Fig. 8. The inertia product of the body 
coordinate system is: ܬ = diagሼܫௗ ௗܫ ௣ሽ. (14)ܫ

In Fig. 8, ܫௗ is Equatorial moment of inertia, ܫ௣ is Polar moment of inertia. 

 
Fig. 8. Flywheel component coordinate system  

According to the theories of gyro mechanics and analysis mechanics, the flywheel radial 
kinetic equation is along with radial translation and rotate around [21]. They are represented as: 

ቊ݉ݒሷ௢௫ + ሶ௢௫ݒ௩௫ܥ + ௢௫ݒ௙௥௫ܭ − ௢௫ݒ௙ఏ௬ܭ = ௫݂(ݐ),݉ݒሷ௢௬ + ሶ௢௬ݒ௩௬ܥ + ௢௬ݒ௙௥௬ܭ − ௢௬ݒ௙ఏ௬ܭ = ௬݂(ݐ), (15)ቊܫௗߠሷ௢௫ − ሶ௢௬ߠ௣Ωܫ + ሶ௢௫ߠఏ௫ܥ + ௢௫ߠ௠ఏ௫ܭ + ௢௬ߠ௠௩௬ܭ = ݃௫(ݐ),ܫௗߠሷ௢௬ + ሶ௢௫ߠ௣Ωܫ + ሶ௢௬ߠఏ௬ܥ + ௢௬ߠ௠ఏ௬ܭ − ௢௫ߠ௠௩௫ܭ = ݃௬(ݐ). (16)

In above formula, ܭ௙௥௫ and ܭ௙௥௬ are the force of the rotor center in ݔ and ݕ direction which 
has the per unit displacement. ܭ௙ఏ௫ and ܭ௙ఏ௬ are the force of the rotor center in ݕ and ݔ direction 
which has a unit rotation. ܭ௠ఏ௫ and ܭ௠ఏ௬ are the torque of the rotor center around ݔ݋ and ݕ݋ axis 
which has a unit rotation. ܭ௠௩௫ and ܭ௠௩௬ are the torque of the rotor center in ݔ݋ and ݕ݋ direction 
which has the per unit displacement.ܥ௩௫ݒሶ௢௫, ܥ௩௬ݒሶ௢௬ and ܥఏ௫ߠሶ௢௫, ܥఏ௬ߠሶ௢௬ are the corresponding 
damping force and torque. 

According to the relationship of the two coordinate systems, the vibration force and torque on 
the rotor base can be obtained: 

൦ܨ௦௧௑ܨ௦௧௒ܩ௦௧௑ܩ௦௧௒ ൪ = ൦ −1 0 0 00 −1 0 00 ܽ + ܾ −1 0−(ܽ + ܾ) 0 0 −1൪ • ێێۏ
ሶ௢௫ݒ௩௫ܥۍێ + ௢௫ݒ௙௥௫ܭ − ሶ௢௬ݒ௩௬ܥ௢௫ݒ௙ఏ௬ܭ + ௢௬ݒ௙௥௬ܭ − ሶ௢௫ߠఏ௫ܥ௢௬ݒ௙ఏ௬ܭ + ௢௫ߠ௠ఏ௫ܭ + ሶ௢௬ߠఏ௬ܥ௢௬ߠ௠௩௬ܭ + ௢௬ߠ௠ఏ௬ܭ − ۑۑے௢௫ߠ௠௩௫ܭ

(17) .ېۑ

In Eqs. (16)-(18), after Laplace transform, the function relation between the vibration 
excitation at the mass center, the radial disturbance force and torque of the flywheel component is 
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obtained: ܨ௦௧(ݏ) = ுܶ(ݏ)ܨ௙௚(ݏ), (18)

where, ுܶ(ݏ) is Vibration transfer function. 

5. Simulations and experiments 

In Section 4, the flywheel micro vibration transfer function is derived. To explore the key 
factors that affect the quality of the pictures taking in space and then guide the satellite structure 
optimization design and vibration isolation compensation of the later type of improved satellite or 
other same type of satellites. Simulations and experiments are carried out under the flywheel stable 
working spinning speed 2800 rev/min, and the results are also discussed. 

5.1. Simulations 

For the target satellite, the flywheel’s parameters are shown in Table 2. These parameters are 
got from manufacturer except flywheel rotary inertia, flywheel rotor’s rotary inertia in horizontal 
and stiffness coefficient. The flywheel rotary inertia and flywheel rotor’s rotary inertia in 
horizontal are obtained by computing under supposing flywheel is a disc configuration. Stiffness 
coefficient is computed under single-degree-of-freedom-system. 

 
Fig. 9. Disturbance characters in simulation results 

For flywheel working spinning speed 2800 rev/min, the simulation force and torque 
disturbance characters within 300 Hz according to the parameters in Table 2 are shown in Fig. 9. 
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There is a harmonic at 48.6 Hz, and a series of peaks around the 190.4 Hz and 285.4 Hz. 

Table 2. Flywheel’s parameters in a high resolution satellite 
Parameters Value 

Max rotate speed ≤ 4000 rev/min 
Working rotate speed ± 2800 rev/min 
Flywheel mass 2.25 kg 
Flywheel rotor mass 1.02 kg 
Flywheel rotary inertia  0.0097 kgm2 
Flywheel rotor rotary inertia in horizontal 0.00205 kgm2 
Flywheel rotor rotary inertia along vertical 0.00408 kgm2 
Static imbalance < 0.189 gcm 
Dynamic imbalance < 0.123 gcm 
Natural frequency 200 Hz; 100 Hz; 100 Hz 
Stiffness coefficient 2.85e6 N/m; 2.85e6 N/m; 5.6e5 N/m 

5.2. Flywheel test 

The flywheel component was installed on the test bench which located on the air bearing 
platform, and the disturbance test was carried out in the ultra-clean environment laboratory. The 
test site is shown in Fig. 2. The flywheel disturbing force and disturbance torque characteristics 
along the direction of ܺ, ܻ and ܼ respectively tested by using the model HR-FP3402 force plate 
with six component quartz. The sensor sampling frequency is 5 KHz. The testing process includes 
speeding up the flywheel from 0 rpm (Rev Per Minute) to the specified speed, deceleration to 
0 rpm after holding 15 s, and the single test time lasts 100 s. 

The typical response curves of flywheel disturbance in time domain are shown in Fig. 10. In 
time domain disturbance force is within 2 N magnitude, and the disturbing torque is with 1.5 N·m 
magnitude. 

 
Fig. 10. Typical response curve of flywheel test in time domain 

When the satellite is in the position of the push broom imaging, it keeps the attitude steady, 
and the working speed of the flywheel is constant. So, it is necessary to analyze the disturbance 
response characteristics when the flywheel is in its stable speed. To compare the simulation results, 
the flywheel test date at stable working spinning speed 2800 rev/min are extracted. Signal 
processing [22, 23] of the disturbance data, the force and torque disturbance characters within 
300 Hz in frequency domain are shown in Fig. 11. 

According to Fig. 11, there is another series of peaks around 90-100 Hz except the harmonics 
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around 48.6 Hz, 190.4 Hz and 285.4 Hz. It is the flywheel structural modal amplification that 
caused by flywheel disturbance when flywheel spinning. It also means that the flywheel’s 
infrastructure should be more inflexible especially around 90-100 Hz.  

As for the harmonics around 48.6 Hz, 190.4 Hz and 285.4 Hz that both exist in simulation 
results and test results, which will be effect the quality of the high-resolution satellite if without 
effective damping measures in orbit. 

 
Fig. 11. Disturbance characters in test results after signal processing 

Tan Luyang planned the test procedure which provide experimental contribution to this paper. 
Kong Lin analyzed the test data and offered guidance during the paper revision process. Wang 
Dong and Yang Hongbo both are my PhD. Supervises that they provided guidance on writing this 
paper. What’s more, logical organization of the paper is also improved during the guidance. 

6. Conclusions 

1) Due to the flywheel rotor affected by nonlinear factors during the working process, some 
small high order harmonics occur at the outside of the rotating speed frequency. 

2) The rotor has a nonlinear vibration in the process of local collision friction, and there are 
some high harmonics in spectrogram in addition to its own rotating frequency. 

3) The rotor working process is a nonlinear vibration system with piecewise linear stiffness 
and damping when the support base is loose. 

4) If the bearing is damaged, it will bring a new harmonic wave, leading to an increasing 
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harmonic wave number. The harmonic component is not the same, even if the same model of the 
different products. 

5) The disturbance force of flywheel components is 2 N magnitude and the torque of 
disturbance is 1.5 N·m magnitude in time domain. The flywheel’s infrastructure should be more 
inflexible especially around 90-100 Hz. For this target high resolution optical satellite, there 
should be effective damping measures around 48.6 Hz, 190.4 Hz and 285.4 Hz to decrease the 
flywheel disturbance to guarantee the high precision of the satellite. 

6) The larger the flywheel vibration disturbance force and torque are, the more concentrated 
the harmonic is. The satellite structure should be further optimized for follow-up satellite or 
similar satellite design, vibration isolation design of flywheel and isolation design for optical load. 
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