Mathematical modeling of hydroelastic walls oscillations of the channel on Winkler foundation under vibrations

Lev I. Mogilevich1 , Victor S. Popov2 , Anna A. Popova3 , Aleftina V. Christoforova4

1, 2, 3Yuri Gagarin State Technical University of Saratov, Saratov, Russia

4Saratov State University, Saratov, Russia

2Corresponding author

Vibroengineering PROCEDIA, Vol. 8, 2016, p. 294-299.
Received 29 May 2016; accepted 24 August 2016; published 7 October 2016

Copyright © 2016 JVE International Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Creative Commons License
Abstract.

The bending oscillations of a narrow slit channel walls with highly viscous liquid inside and put on a vibrating Winkler foundation are investigated. The channel walls bending oscillations laws are discovered on the basis of hydroelasticity problem solution, as well as pressure in the liquid ones. The deflections amplitudes distribution and liquid pressure along the channel functions are constructed. The obtained results allow investigating dynamic processes, conditioned by constructions elastic elements and viscous liquid interaction in lubrication system, damping and various devices and units.

Keywords: hydroelastic oscillations, viscous liquid, plate, vibrations, Winkler foundation.

Acknowledgements

The research is made under the financial support of the Russian Foundation for Basic Research (RFFI) Grant 15-01-01604-a.

References

  1. Gorshkov A. G., Morozov V. I., Ponomarev A. T., Shklyarchuk F. N. Aerouprugost konstruktsii (Aerogidroelasticity of designs), Fizmathlit, Moscow, 2000, (in Russian). [CrossRef]
  2. Haddara M. R., Cao S. A study of the dynamic response of submerged rectangular flat plates. Marine Structures, Vol. 9, Issue 10, 1996, p. 913-933. [CrossRef]
  3. Avramov K. V., Strel’nikova E. A. Chaotic oscillations of plates interacting on both sides with a fluid flow. International Applied Mechanics, Vol. 50, Issue 3, 2014, p. 303-309. [CrossRef]
  4. Amabili M. Vibrations of circular plates resting on a sloshing liquid: solution of the fully coupled problem. Journal of Sound and Vibration, Vol. 245, Issue 2, 2001, p. 261-283. [CrossRef]
  5. Askari E., Jeong K.-H., Amabili M. Hydroelastic vibration of circular plates immersed in a liquid-filled container with free surface. Journal of Sound and Vibration, Vol. 332, Issue 12, 2013, p. 3064-3085. [CrossRef]
  6. Indeitsev D. A., Polypanov I. S., Sokolov S. K. Calculation of cavitation life-time of ship engine liner. Problemy Mashinostraeniya i Nadezhnos’ti Mashin, Vol. 4, 1994, p. 59-64. [CrossRef]
  7. Akcabay D. T., Young Y. L. Hydroelastic response and energy harvesting potential of flexible piezoelectric beams in viscous flow. Physics of Fluids, Vol. 24, Issue 5, 2012. [CrossRef]
  8. Faria Cassio T., Inman Daniel J. Modeling energy transport in a cantilevered Euler-Bernoulli beam actively vibrating in Newtonian fluid. Mechanical Systems and Signal Processing, Vol. 45, 2014, p. 317-329. [CrossRef]
  9. Önsay T. Effects of layer thickness on the vibration response of a plate-fluid layer system. Journal of Sound and Vibration, Vol. 163, 1993, p. 231-259. [CrossRef]
  10. Mogilevich L. I., Popov V. S., Popova A. A. Dynamics of interaction of elastic elements of a vibrating machine with the compressed liquid layer lying between them. Journal of Machinery Manufacture and Reliability, Vol. 39, Issue 4, 2010, p. 322-331. [CrossRef]
  11. Mogilevich L. I., Popov V. S. Investigation of the interaction between a viscous incompressible fluid layer and walls of a channel formed by coaxial vibrating discs. Fluid Dynamics, Vol. 46, Issue 3, 2011, p. 375-388. [CrossRef]
  12. Ageev R. V., Mogilevich L. I., Popov V. S. Vibrations of the walls of a slot channel with a viscous fluid formed by three-layer and solid disks. Journal of Machinery Manufacture and Reliability, Vol. 43, Issue 1, 2014, p. 1-8. [CrossRef]
  13. Ageev R. V., Kuznetsova E. L., Kulikov N. I., Mogilevich L. I., Popov V. S. Mathematical model of movement of a pulsing layer of viscous liquid in the channel with an elastic wall. PNRPU Mechanics Bulletin, Vol. 3, 2014, p. 17-35. [CrossRef]
  14. Mogilevich L. I. Dynamics of interaction between a squeezed layer of a viscous incompressible fluid and an elastic three-layer plate. Mechanics of Solids, Vol. 43, Issue 5, 2008, p. 785-792. [CrossRef]
  15. Grushenkova E. D., Mogilevich L. I., Popov V. S., Rabinsky L. N., Kuznetsova E. L. Mathematical model of three-layer plate interaction with viscous incompressible liquid layer under foundation vibration. Applied Mathematical Sciences, Vol. 9, Issue 2015, 112, p. 5551-5559. [CrossRef]
  16. Alekseev V. V., Indeitsev D. A., Mochalova Yu A. Resonant oscillations of an elastic membrane on the bottom of a tank containing a heavy liquid. Technical Physics, The Russian Journal of Applied Physics, Vol. 44, Issue 8, 1999, p. 903-907. [CrossRef]
  17. Panovko Y. G., Gubanova I. I. Stability and Oscillations of Elastic Systems. Consultants Bureau Enterprises, Inc., New York, N. Y., 1965. [CrossRef]
  18. Loitsyanskii L. G. Mechanics of Liquids and Gases. Pergamon Press, Oxford, 1966. [CrossRef]