Vibration analysis of adding contaminants particles and carbon nanotubes to lithium grease of ball bearing

A. Nabhan1

1Production Engineering and Mechanical Design Department, Faculty of Engineering, Minia University, Minia, Egypt

1Corresponding author

Vibroengineering PROCEDIA, Vol. 8, 2016, p. 28-32.
Received 13 July 2016; accepted 18 July 2016; published 7 October 2016

Copyright © 2016 JVE International Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Creative Commons License

This paper examines vibration behavior of ball bearings dispersed by solid as a function of contamination of lubricant. Experimental tests were performed using SKF 6004 deep groove ball bearing, dispersed with different contaminants particles. Silica sand with different particle sizes, copper (Cu micro particles), poly methyl methacrylate (PMMA), low-density polyethylene (LDPE), and polyamide (PA), all at five concentration levels were used to disperse the lubricant. The contaminants concentration as well as the carbon nanotubes (CNTs) concentration is varied as 1, 2, 3, 4, and 5 wt. %. It was found that as the contaminants particles size and concentration increased, the corresponding acceleration values also increased up to certain limit. Furthermore, the vibration amplitudes decrease due to the increase of the copper concentration. The vibration amplitude was improved due to increase of concentration of carbon nanotubes CNTs.

Keywords: ball bearing, vibration, carbon nanotubes, contaminants.


  1. Roylance B. J., Hunt T. M. Wear Debris Analysis. Coxmoor Publishing Company, Oxford, UK, 1999. [CrossRef]
  2. Braron T. Engineering Condition Mointoring. Addison Wesley Longman, 1996. [CrossRef]
  3. Miettinen Juha, Andersson Peter Acoustic emission of rolling bearings lubricated with contaminated grease. Tribology International, Vol. 33, 2000, p. 777-787. [CrossRef]
  4. Serrato Ricardo, Maru Marcia, Padovese Linilson Effect of lubricant oil viscosity and contamination on the Mechanical signature of roller bearing. 12th International Conference on Sound and Vibration, Vol. 87, 2005, p. 514-567. [CrossRef]
  5. Serrato R., Maru M. M., Padovese L. R. Effect of lubricant viscosity grade on mechanical vibration of roller bearings. Tribology International, Vol. 40, 2007, p. 1270-1275. [CrossRef]
  6. Maru M. M., Castillo R. S., Padovese L. R. Study of solid contamination in ball Bearings through vibration and wear analyses. Tribology International, Vol. 40, 2006, p. 433-44. [CrossRef]
  7. Maru Marcia Marie, Castillo Ricardo Serrato, Padovese Linilson Rodrigues Effect of the presence of solid contamination and the resulting wear on the mechanical signature of ball bearings. 18th International Congress of Mechanical Engineering, Ouro Preto, MG, 2005. [CrossRef]
  8. Mahajan Onkar L., Utpat Abhay A. Study of effect of solid contaminants in the lubricant on ball bearings vibration. International Journal of Instrumentation, Control and Automation, Vol. 1, 2012. [CrossRef]
  9. More Yogesharao Y., Deshmukh A. P. Study of effect of solid contaminants in grease on performance of ball bearing by vibrational analysis. International Journal of Innovations in Engineering Research and Technology, Vol. 2, Issue 5, 2015. [CrossRef]
  10. Godase Sachin P., Nehe S. S., Anatharama B. Analysis of effect of solid contaminants in lubrication on vibration response of ball bearing. International Engineering Research Journal, Vol. 1, Issue 7, 2015, p. 545-549. [CrossRef]
  11. Radice S., Mischler S. Effect of electrochemical and mechanical parameters on the lubrication behaviour of Al2O3 nanoparticles in aqueous suspensions. Wear, Vol. 261, 2006, p. 1032-1041. [CrossRef]
  12. Shi G., Zhang M. Q., Rong M. Z., Bernd W., Klaus F. Sliding wear behavior of epoxy containing nano Al2O3 particles with different pretreatments. Wear, Vol. 256, 2004, p. 1072-1081. [CrossRef]
  13. Li X. H., Cao Z., Zhang Z. J., Dang H. X. Surface-modification in situ of nano SiO2 and its structure and tribological properties. Applied Surface Science, Vol. 252, 2006, p. 7856-7861. [CrossRef]
  14. Peng D. X., Kang Y., Hwang R. M., Shyr S. S., Chang Y. P. Tribological properties of diamond and SiO2 nanoparticles added in paraffin. Tribology International, Vol. 42, 2009, p. 911-917. [CrossRef]
  15. Ma S. Y., Zheng S. H., Ding H. Y., Li W. Anti-wear and reduce-friction ability of ZrO2/SiO2 self-lubricating composites. Advanced Materials Research, Vols. 79-82, 2009, p. 1863-1866. [CrossRef]
  16. Li W., Zheng S. H., Ma S. Y., Ding H. Y., Jiao D., Cao B. Q. Study of surface modification of ZrO2/SiO2 nano composites with aluminum zirconium coupling agent. Asian Journal of Chemistry, Vol. 23, 2011, p. 705-708. [CrossRef]
  17. Gu C. X., Li Q. Z., Gu Z. M., Zhu G. Y. Study on application of CeO2 and CaCO3 nanoparticles in lubricating oils. Journal of Rare Earth, Vol. 26, 2008, p. 163-167. [CrossRef]
  18. Mangam V., Bhattacharya S., Das K., Das S. Friction and wear behavior of Cu-CeO2 nano composite coatings synthesized by pulsed electrode position. Surface and Coatings Technology, Vol. 205, 2010, p. 801-805. [CrossRef]
  19. Jiao Da, et al. The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Applied Surface Science, Vol. 257, 2011, p. 5720-5725. [CrossRef]
  20. Prakash E., Kumar Siva, Kumar Muthu Experimental studies on vibration characteristics on ball bearing operated with copper oxide nano particle mixed lubricant. International Journal of Engineering and Technology, Vol. 5, 2013, p. 4127-4130. [CrossRef]