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Abstract. A method based on multiscale base-scale entropy (MBSE) and random forests (RF) for 
roller bearings faults diagnosis is presented in this study. Firstly, the roller bearings vibration 
signals were decomposed into base-scale entropy (BSE), sample entropy (SE) and permutation 
entropy (PE) values by using MBSE, multiscale sample entropy (MSE) and multiscale 
permutation entropy (MPE) under different scales. Then the computation time of the 
MBSE/MSE/MPE methods were compared. Secondly, the entropy values of BSE, SE, and PE 
under different scales were regarded as the input of RF and SVM optimized by particle swarm ion 
(PSO) and genetic algorithm (GA) algorithms for fulfilling the fault identification, and the 
classification accuracy was utilized to verify the effect of the MBSE/MSE/MPE methods by using 
RF/PSO/GA-SVM models. Finally, the experiment result shows that the computational efficiency 
and classification accuracy of MBSE method are superior to MSE and MPE with RF and SVM. 
Keywords: roller bearings, fault diagnosis, multiscale base-scale entropy, random forests. 

1. Introduction 

In the mechanical system, a basic but important component is roller bearings, whose working 
performance has great effects on operational efficiency and safety. Two key parts of the roller 
bearing fault diagnosis, are characteristic information extraction and fault identification.  

For the information extraction, the roller bearings vibration signals are essential. It should be 
noted that the fault diagnosis is challenging in the mechanical society as the vibration signals are 
unstable.  

Owing to the roller bearings vibration signals are nonlinear, many nonlinear signal analysis 
methods including fractal dimension, approximate entropy (AE) and sample entropy (SE) have 
been proposed, and applied in different domains, such as physiological, mechanical equipment 
vibration signal processing, and chaotic sequence [1-4]. Pincus et. al presented a model named 
AE to analysis time series signals [5, 6], but the AE model exists some problems, such as the AE 
model is sensitive to the length of the data. Therefore, the value of AE is smaller than the expected 
value when the length of the data is very short. To overcome this disadvantage, an improved 
method based on AE, called SE, was proposed in [7], AE has been successfully used in fault 
diagnosis [8]. It is different from AE and SE, Bandt et al. presented PE, a parameter of average 
entropy, to describe the complexity of a time series [9]. Because the permutation entropy makes 
use of the order of the values and it is robust under a non-linear distortion of the signal. 
Additionally, it is also computationally efficient. The PE method has been successfully applied in 
rotary machines fault diagnosis [10]. Compared with SE, the computational efficiency of PE is 
superior to the SE, because SE requires to calculate the entropy value using increase the dimension ݉ to ݉ + 1 for sequence reconstruction, but PE takes only once for sequence reconstruction. 
However, before PE entropy value calculation, the time sequence should be sorted, the 
computational efficiency of the SE and PE methods are both not good. Therefore, a method, named 
base-scale entropy (BSE) was presented. In [11], the authors demonstrated that the computational 
efficiency of the BSE is good, and applied in physiological signal processing and gear fault 
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diagnosis successfully [12, 13]. 
It should be noted that SE and PE can only reflect the irregularity of time series on a single 

scale. A method called multiscale entropy (ME) is proposed to measure time sequence irregularity 
[14, 15], in which the degree of self-similarity and irregularity of time series can be reflected in 
different scales. For example, the outer race fault and the inner race fault vibration signals can be 
identified respectively according to the characteristics of the spectrum when roller bearings 
running at a particular frequency. The frequencies of vibration signals have deviations when the 
roller bearings failure occurs, and the corresponding complexity also has differences. Therefore, 
ME can be regarded as a characteristic index for fault diagnosis [16]. Based on the multiscale 
sample entropy (MSE), the feature of the vibration signals can be extracted under various 
conditions, then the eigenvector is regarded as the input of adaptive neuro-fuzzy inference system 
(ANFIS) for roller bearings fault recognition [17]. In [18], a method called multiscale permutation 
entropy (MPE) is applied in feature extraction, and then extracted features are given input to the 
adaptive neuro fuzzy classifier (ANFC) for an automated fault diagnosis procedure.  

As the rapid development of computer engineering techniques, many fault recognition 
methods including support vector machine (SVM) [19, 20] and random forests (RF) [21] models, 
are utilized in fault diagnosis. Furthermore, an existed difficulty is the selection proper SVM 
parameters in order to obtain the optimal performance of SVM. These parameters that should be 
optimized include the penalty parameter C and the kernel function parameter g for the radial basis 
kernel function (RBF). The SVM with particle swarm optimization (PSO) [22-25] and Genetic 
Algorithm (GA) [26]. However, RF is one of recently emerged ensemble learning methods, since 
firstly introduced by Leo Breiman [21]. The RF method runs efficiently on large datasets, and it 
estimates missing data accurately and even retains accuracy when a large portion of the data is 
missing. Hence, the RF model is chosen as the classifier in this study. 

As mentioned above, combining multiscale base-scale entropy (MBSE) and RF, a method 
based on MBSE and RF was presented in this paper. Firstly, the MBSE/MSE/MPE methods were 
used to compute the BSE, SE, and PE entropy values for roller bearing’s vibration signals, and 
then the comparison of the computation time of the MBSE/MSE/MPE methods were analyzed. 
Secondly, the values of BSE, SE, and PE under different scales were regarded as the input of 
RF/SVM models for fulfilling the fault identification, and the classification accuracy was used to 
verify the effect of the MBSE/MSE/MPE methods with RF/SVM models. Finally, the experiment 
result shows that the classification accuracy and computational efficiency of MBSE-RF are better 
than MPE/MSE-RF/SVM and MBSE-SVM models. 

The rest of this paper is organized as follows: The theoretical framework of MBSE and RF are 
shown in Section 2, The experimental data sources, procedures of the proposed method and 
parameter selection for different methods are described in Section 3. Experimental results and 
analysis are given in Section 4 followed by conclusions in Section 5. 

2. Theoretical framework of MBSE and RF 

2.1. Basic principle of MBSE 

The basic principle of MBSE comes from BSE using the reconstruction and multi-scale 
calculation operations. The detailed theoretical framework of BSE is given in [11, 12].  

(1) BSE: The procedures of BSE calculation are given as follows:  
Step 1: For a given time series ݑ with ܰ points ሼݑ|ݑଵ, ,⋅⋅⋅,ଶݑ ,௜ݑ 1 ≤ ݅ ≤ ܰሽ. Firstly, the time 

series ሼ ௜ܺ௠| ଵܺ௠, ܺଶ௠,⋅⋅⋅ ௜ܺ௠, 1 ≤ ݅ ≤ ܰ − ݉ + 1ሽ should be constructed in the following formula: 

௜ܺ௠ = ሼݑሺ݅ሻ, ሺ݅ݑ + 1ሻ,⋅⋅⋅, ሺ݅ݑ + ݉ − 1ሻሽ, (1)

where ௜ܺ௠  contain ݅ + ݉ − 1  consecutive ݑ  values, thence there are ܰ − ݉ + 1  vectors with  ݉-dimension in ௜ܺ௠. 
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Step 2. The root mean square of each two adjacent samples ௜ܺ௠ and ௝ܺ௠ with ݉-dimensional 
are used to calculate the BS value: 

ሺ݅ሻܵܤ = ඨ∑ ൫ݑሺ݅ + ݆ሻ − ሺ݅ݑ + ݆ − 1ሻ൯ଶ௠ିଵ௝ ݉ − 1 . (2)

Step 3: Transforming each ݉ -dimensional vector ௜ܺ௠  into the symbol vector set  ௜ܵ൫ܺሺ݅ሻ൯ = ሼݏሺ݅ሻ,⋅⋅⋅, ሺ݅ݏ + ݉ − 1ሻሽ, ݏ ∈ ,ሺ1ܣ 2, 3, 4ሻ. The standard of the symbol vector set is 
according to the following formula: 

௜ܵ൫ܺሺ݅ሻ൯ = ۔ە
ݑ :1ۓ < ௜ା௞ݑ ≤ ݑ + ܽ ∗ ௜ା௞ݑ :2,ܵܤ > ݑ + ܽ ∗ ݑ :3,ܵܤ − ܽ ∗ ܵܤ < ௜ା௞ݑ ≤ ௜ା௞ݑ :4,ݑ ≤ ݑ − ܽ ∗ ,ܵܤ  (3)

where ݑ represent mean value of the ݅th vector ௜ܺ௠ here a is a constant value. The symbol set 
sequences ሼ1,2,3,4ሽ are employed to calculate the distributed probability ܲሺߨሻ for each vector ௜ܺ௠. 

Step 4: Owing to the different composite states ߨ in vector ௜ܵ൫ܺሺ݅ሻ൯ and the number of symbol 
is 4. So, the number of composite states is 4௠. It should be noted that each state denotes a mode. 
The detailed calculation of ܲሺߨሻ as follows: 

ܲሺߨሻ = ∑ሼݐ|ሺݑଵ, ,⋅⋅⋅,ଶݑ ሽܰߨ ݁݌ݕݐݏ௧ା௠ିଵሻℎܽݑ − ݉ + 1 , (4)

where 1 ≤ ݐ ≤ ܰ − ݉ + 1. 
Step 5: The BSE value is calculated by: ܧܵܤሺ݉ሻ = − ෍ ܲሺߨሻ logଶ௉ሺగሻ. (5)

(2) MBSE: The basic principle of MBSE comes from BSE using the multiscale operation, 
because the BSE compute the entropy only for single scale. ME uses the multiscale values to 
reflect the irregularity and self-similarity trend of the data, MBSE is combine the ME and BSE. 
Therefore, the calculation process of MBSE as follows: 

For the aforementioned time series ሼ ௜ܺ௠| ଵܺ௠, ܺଶ௠,⋅⋅⋅ ௜ܺ௠, 1 ≤ ݅ ≤ ܰ − ݉ + 1ሽ. The procedures 
of the coarse-grained operation is calculated by: 

ఛݕ = 1߬ ෍ ௜ܺ௠௝ఛ௜ୀሺ௝ିଵሻఛାଵ ,    1 ≤ ݆ ≤ ܰ߬, (6)

where ߬ denotes the scale factor. It should be noted that the coarse-grained time series is the 
original time series when ߬ = 1. Hence a coarse-grained vector series ݕఛ  are the results of the 
original time series ௜ܺ௠ through coarse-grained operation. After the coarse-grained operation, the 
length and number of the ݕఛ are ߬ and ܰ ߬⁄ , respectively. 

As mentioned above, those operations including Step 1 to Step 7 is MBSE calculation. 

2.2. Basic principle of decision tree and RF models 

2.2.1. Decision tree (DT) 

DT is one of the commonly tools for classification and prediction tasks, it is based on attribute 
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space, by using the iterative procedure of binary partition providing a highly interpretable method. 
For a given data set ሺ ௜ܺ, ௜ܻሻ with ܰ samples, here ݅ = 1,2,⋅⋅⋅, ܰ, for each sample ௜ܺ  has ܯ 

input attributes, such as ௜ܺ = ൫ݔଵ, ,⋅⋅⋅,,ଶݔ  is an ܮ ெ൯, ܻ is the classification label of the ௜ܺ. Theݔ
identifier indicate the corresponding class ܮ, therefore, ௜ܻ =  means that the sample ௜ܺ belongs ܮ
to the class ܮ . The procedure of selecting attributes and partition was described in detail in 
reference [27]. 

For the overall data, an attribute ݆ and the partition points are selected, hence the pair of 
semiplanes ܴଵ and ܴଶ is defined as follows: ܴଵሺ݆, ܵሻ = ൛ܺห ௝ܺ ≤ ܵൟ,   ܴଶሺ݆, ܵሻ = ൛ܺห ௝ܺ > ܵൟ. (7)

We regard the parameter ̂݌  ௞௅ = ሺ1 ⁄௞ܯ ሻ ∑ ௜ݔ ∈ ܴ௞ܫሺ ௜ܻ =  ሻ as the proportion of observationsܮ
of class ܮ in the region ܴ௞, regarding the overall ܯ௞ observations into this region: argmax ̂݌  ௞௅ ௅ , (8)

where ̂݌  ௞௅ = ሺ1 ⁄௞ܯ ሻ ∑ ௜ݔ ∈ ܴ௞ܫሺ ௜ܻ =  is membership indicator of the attribute vector ܫ ሻ, hereܮ
to that region. ̂݌  ௞௅  is a homogeneity measure of the child nodes, also called the impurity function. 
Other impurity functions are defined by them is classification error, the Gini index and the  
cross-entropy or deviance. The iterative procedure splits the attribute space into ݎ disjoints regions ܴ௞, as far as the stop criterion is reached. The class ܮ is assigned to node ݇ of the tree, which 
represents the region ܴ௞, that is, ܮሺ݇ሻ = argmaݔ௅̂݌  ௞௅ . This procedure searches throughout all 
possible values of all attributes among the samples. 

The binary tree method is used in DT, the mother mode in DT represents the original partition 
on the domain of the selected attribute, then the corresponding child nodes represents the original 
partition on the domain of the selected attribute. The leaf nodes represent the sample classification. 
In order to obtain the semiplanes ܴଵ and ܴଶ in DT, the partition rules for selecting the ሺ݆, ܵሻ is 
described in reference [27]. 

Aiming at solving the problem of high variance, therefore, the bagging tool is used to solve 
this problem. The bagged classifier is composed of a set of decision trees which are built from the 
random subsets of available data samples, hence the predicted class is proposed from this set of 
classifiers. Here ܮ and ௕݂௔௚ሺݔ௜ሻ represents the class and the classifier proposing the class ܮ for the 
input sample ݔ௜, the overall sample classification depends on the largest number of “votes” that 
are proposed for each classifier ௕݂௔௚ሺݔ௜ሻ, it is defined as: ܮ௕௔௚ሺݔ௜ሻ =ෝ argmax መ݂௕௔௚ሺݔ௜ሻ௅ , (9)

where ܮ௕௔௚ሺݔ௜ሻ is the predicted class, መ݂௕௔௚ is the vector ݌௅ሺݔ௜ሻ, in which represents the partition 
of the estimators proposing the class ܮ. 

2.2.2. Random forest (DT) 

Random forests (RF) is one of recently emerged ensemble learning methods. A random forest 
is a classifier consisting of a collection of tree-structured classifiers ௕ܶ , ܾ = 1, … ,  The RF .ܤ
classifies anew object from an input vector by examining the input vector on each decision tree 
(DT) in the forest. 

The process to decrease the variance, by reducing the correlation between the trees, is 
accomplished through the random selection of the input variables and the random selection with 
replacement of samples from the data set of size ܰ. The selected variables and samples are used 
to grow every tree in the forest (bootstrap sample). This random selection has shown that around 
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2/3 of the data are chosen, then, the training set ௕ܰ for each classifier is, in general, ௕ܰ ⊂ ܰ. The 
RF algorithm for the classification problem is summarized in reference [21]. 

The entire algorithm includes two important phases: the growth period of each DT and the 
voting period. 

(1) Growth of trees: If the number of cases in the training set is ܰ , sample ܰ  cases as 
random-but with replacement from the original data. This sample will be the training set for 
growing the DT. At each node, ݉ݕݎݐ variables are randomly selected out of the ܯ input variables  
ݕݎݐ݉) ≪  is used to split the node. The value of ݉ is held ݕݎݐ݉ and the best split on these (ܯ
constant during the forest growing. Each DT is grown to the largest extent possible. No pruning 
is applied. 

(2) Voting: In random forest algorithm, the predication of new test data is done by majority 
vote. New test data runs down all ݊ trees in the ensemble, and the classification of each data point 
is recorded for each tree, then using majority vote, the final classification given to each data point 
is the class that receives the most votes across all ݊ trees. A user-defined threshold can loosen this 
condition. As long as the number of the votes for a certain class A is above the threshold, it can 
be classified as class A. Once the RF is obtained, the decision for classifying a new sample ௜ܺ is 
according to the following equation: ܮ෠௥௙஻ ሺ ௜ܺሻ = ෠ሺܮ൛݁ݐ݋ݒݕݐ݅ݎ݋݆ܽ݉ ௜ܺሻൟଵ஻, (10)

where ܮ෠ሺ ௜ܺሻ is the class that is assigned by the tree ௕ܶ. 

3. Experimental data sources, procedures of the proposed method and parameter selection 

3.1. Experimental data sources 

In this section, we introduce the experimental data, the roller bearings fault datasets come from 
the Case Western Reserve University [8]. The detailed description of the dataset is given in [17], 
the datasets were collected by accelerometer which was fixed on Drive End (DE) and Fan End 
(FE) of a motor. The sampling frequency is 12000 Hz. The collected signals are divided into four 
types of faults with various diameters: normal (NR), ball fault (BF), inner race fault (IRF), and 
outer race fault (ORF). The fault diameter contains 0.1778 mm, 0.3556 mm, and 0.5334 mm. In 
order to distinguish the degree of fault, we divided the fault into four categories: normal, slight, 
moderate, and server. The length of each sample is 2048, the total number of the sample is 600, 
12 different types of failures were used in this paper. The detailed description of the experimental 
data is given in Table 1. 

Table 1. The roller bearings experimental data under different conditions 
Fault category Fault diameters (mm) Motor speed (rpm) Number of samples The fault severity 

NR1 0 1750 50 Normal 
IRF1 0.1778 1750 50 Slight 
BF1 0.1778 1750 50 Slight 

ORF1 0.1778 1750 50 Slight 
NR2 0 1730 50 Normal 
IRF2 0.3556 1730 50 Moderate 
BF2 0.3556 1730 50 Moderate 

ORF2 0.3556 1730 50 Moderate 
NR3 0 1797 50 Normal 
IRF3 0.5334 1797 50 Server 
BF3 0.5334 1797 50 Server 

ORF3 0.5334 1797 50 Server 
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3.2. Procedures of the proposed method 

In this Section, the procedures of the proposed method can be described as follows. 
Step 1: Preprocessing vibration signals under different scales factor by using 

MBSE/MSE/MPE models. The different parameters of SE/PE/BSE according to the Section 3.3 
to compute the different entropy values. 

Step 2: Selecting the different parameters in PSO/GA-SVM and RF models according to the 
Section 3.3.  

Step 3: Calculating the MBSE, MPE, and MSE entropy values. All these values are regarded 
as samples which are divided into two subsets, the training and testing samples. Meanwhile, 
comparing the elapsed time by using MBSE, MSE and MPE respectively. 

Step 4: The eigenvectors MSE1-MSE20/MPE1-MP220/MBSE1-MBSE20 are regarded as 
input of the trained PSO/GA-SVM and RF models and then the different vibration signals can be 
identified by the output of the RF/SVM classifiers. 

Step 5: The classification accuracy is used to compare the different models. The flowchart to 
of parameter selection for different methods are given in Fig. 1 

 
Fig. 1. The flowchart to of parameter selection for different methods 

3.3. Parameter selection for different methods 

(1) BSE: The authors suggested set the embedded dimension ݉ in Eq. (4) as 3 to 7. Because 
the length of the data meeting the condition ܰ ≥ 4௠, the larger the ݉ value, the harder the ܰ 
meeting the condition. Set the m value exceed 7 will result in losing some important information 
of the original data. The parameter ܽ in Eq. (3) is often fixed as 0.1-0.4. Additionally, the larger 
the value ܽ, the more detailed reconstruction of the dynamic process. We set ݉ as 4 and 5 and 
fixed ܽ as 0.2 and 0.3 in this paper [11]. 

(2) Some parameters including embedded dimension ݉ and the time delay ݐ should be preset 
before PE calculation. The time delay parameter ݐ has little effect on PE calculation, it is often set 
as 1. The most of the important parameter is dimension ݉. In general, the more the value ݉, the 
easier to homogenize vibration signals, the smaller the value ݉, the more difficult to detect the 
vibration signals exactly [9]. Therefore, the embedded dimension ݉ is selected as 3, 4, 5, and 6. 
The time delay parameter ݐ = 1 in this paper. 
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(3) SE: There are two parameters, such as parameter embedding dimension ݉, similarity 
tolerance ݎ, need to set before the SE calculation. In general, the function of the embedding 
dimension ݉ is the same as the PE, but in SE, this parameter needs to meeting the condition  ܰ = 10௠-30௠, here ܰ is the length of the data. Therefore, we use ݉ = 2 in this paper [7, 17]. 
The similarity tolerance ݎ is used to determine the gradient and range of the data. Too small value 
will lead to salient influence from noise. Meanwhile, too a large value will result in lose some 
useful information from noise. Experimentally, ݎ is often set as the ݎ multiplied by the standard 
deviation (SD) of the original data [3, 17]. We use ݎ = 0.15SD, 0.2SD, and 0.25SD in this paper. 

(4) The length of each sample ܰ is selected as 2048 in this paper, the scale factor ߬ in MBSE, 
MPE and MSE methods is often fixed as 20 [17, 18]. 

(5) RF: Two parameters should be set before the RF model training, such as ݉ݕݎݐ is selected 
according to the ܯ input variables. After extracting MBSE/MSE/MPE as feature vectors and the 
scale factor ߬ is fixed as 20, so the number of input variables ܯ = ߬ = 20, and the parameter is 
often meet the condition ݉ݕݎݐ ≤ ݕݎݐ݉ the ,[21] ܯ√ = 4 and the number of the DT are fixed as 
4 and 500 in this paper.  

(6) PSO: The basic principle of the PSO and SVM was given in detail in [19]. The size of 
particles ݊ is chosen as 20. The maximum iteration number ݔܽ݉ݐ = 200 and the termination 
tolerance ߝ =  1݁ -3. The velocity ௜ܸௗ  and position ௜ܺௗ  are restricted to the [0.01, 1000] and 
[0.1,100], positive constant ܿଵ and ܿଶ are fixed as 1.5 and 1.7, ݎଵ and ݎଶ are random numbers in 
the range of [0,1]. The kernel function is selected as radial basis function  
(RBF) in SVM model. The fitness function is used to evaluate the quality of each particle which 
must be designed before searching for the optimal values of the SVM parameters.  

(7) GA: The basic principle of the GA was described in detail in [26]. The size of population ݊ is set as 20 and maximum iteration number ݔܽ݉ݐ = 200, termination tolerance ߝ = 1e-3. The 
crossover and the mutation probability are set as 0.7 and 0.035 respectively. The penalty parameter ܥ and kernel function parameter ݃ are regarded as optimization options in PSO/GA models. 

(8) The fitness function is based on the classification accuracy of a SVM classifiers, which can 
be set as follows: fitness function = 1– sum error / (sum right + sum error), here sum error and 
sum right indicate the number of true and false classifications respectively 

4. Experimental results and analysis 

4.1. Simulation analysis of experimental data 

In this section, we select the all signals in Table 1 with a sample for an example, thence the 
time domain of original signals under different condition are given in Fig. 2. 

 
a) 

 
b) 

Fig. 2. The time domain waveforms of vibration signals under different working conditions 
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As shown in Fig. 2, it is difficult to distinguish the all signals, take NR1 and BF signals for an 
example. Owing to the NR signals without regularity, thence the NR signals are very complicated, 
and BF signals also is. However, IRF and ORF signals have a certain degree of regularity, but it 
is not easy to distinguish at a glance. Most of the various signals have same vibration amplitude, 
such as BF1-BF3 and ORF1-ORF3. Therefore, the MBSE, MPE, and MPE models are used to 
calculate the entropy values and observe its complex trends in Fig. 2 under different scales. The 
results of MBSE, MSE, and MPE are shown in Fig. 3. 

4.2. The comparison of MSE/MPE/CMPE computational efficiency 

Then computing the total and average elapsed time for MBSE, MPE and MSE methods with 
600 samples, therefore, the corresponding results of MBSE (݉ = 4, ܽ = 0.3), MPE (݉ = 4) and 
MSE (ݎ = 0.2SD) methods are given in Table 2. 

Table 2. The total and average elapsed time for MBSE, MPE and MSE methods with 600 samples 
Computation time MBSE MPE MSE 

The total elapsed time (s) 56.762665 115.203234 109.218942 
The average elapsed time (s) 0.09460444 0.19200539 0.18203157 

It can be seen from Table 2, the smallest total and average elapsed time are 56.762665 and 
0.09460444, this indicates that the computational efficiency of MBSE is better than MPE and 
MSE models. The corresponding reasons are given as follows: 

(1) For a given signal ௜ܺ , the length of the ௜ܺ  is ܰ . In the reconstruction process, ሺܰ − ݉ + 1ሻ݉-dimensional vector ௜ܺ௠ need to be reconstructed. Compared with SE, in which 
requires increase the ݉ to ݉ + 1 for signal reconstruction, thence is has twice reconstruction 
operation. But BSE and PE need once reconstruction operation. 

(2) In BS value calculation procedure, the number of addition, subtraction, multiplication, and 
division operations are ሺ݉ − 1ሻሺܰ − ݉ + 1ሻ, ሺ݉ − 1ሻሺܰ − ݉ + 1ሻ, ሺ݉ − 1ሻሺܰ − ݉ + 1ሻ, and ሺܰ − ݉ + 1ሻ according to the Eq. (2). Before ௜ܵ൫ܺሺ݅ሻ൯ calculation, the mean value of each ௜ܺ௠ is 
calculated, thence the number of addition and division operations are ሺ݉ − 1ሻሺܰ − ݉ + 1ሻ , ሺܰ − ݉ + 1ሻ . When computing the ௜ܵ൫ܺሺ݅ሻ൯  in the following step, the corresponding cycle 
number of addition, subtraction, multiplication and comparison (“>”, “<” and “=”) operations, are ሺܰ − ݉ + 1ሻ, ሺܰ − ݉ + 1ሻ, ሺܰ − ݉ + 1ሻ, 6ሺܰ − ݉ + 1ሻ. For each ݉-dimensional vector ௜ܺ௠, 
the probability ܲሺߨሻ  is counted. The number of comparison and division operations under 
different state ߨ are 4௠ሺܰ − ݉ + 1ሻ and ሺܰ − ݉ + 1ሻ. Lastly, for BSE entropy calculation, the 
number of addition, multiplication and logarithm operations are ሺܰ − ݉ + 1ሻ , ሺܰ − ݉ + 1ሻ, ሺܰ − ݉ + 1ሻ. 

(3) Each adjacent data points are sorted before PE calculation, thence the number of 
comparison operation is ݉ሺ݉ − 1ሻሺܰ − ݉ + 1ሻ . For each ݉ -dimensional vector ௜ܺ௠ . The 
composite states ߨ should be counted in vector ௜ܵ൫ܺሺ݅ሻ൯ [9, 10]. To find the states ߨ. In each  ݉-dimensional vector ௜ܺ௠, the comparison and division operations are needed to count, owing to 
the ݉!  kinds of states ߨ  are included in all vectors ௜ܺ௠ , thence the number of operations is ሺ݉!ሻ௠ሺܰ − ݉ + 1ሻand (N-m+1). Lastly, in order to calculate the PE entropy value, several types 
of operation, such as addition, multiplication and logarithm, are used to compute the PE value. 
The corresponding operation number are ሺܰ − ݉ + 1ሻ, ሺܰ − ݉ + 1ሻ, ሺܰ − ݉ + 1ሻ. 

(4) The detailed calculation process of SE is given in [7, 8, 17]. Using the distance ݀ൣ ௜ܺ௠, ௝ܺ௠൧ = max௞∈ሾଵ…ேିଵሿሺ|ݔሺ݅ + ݇ሻ − ሺ݆ݔ + ݇ሻ|ሻ to calculate any two sample points ௜ܺ௠ and ௝ܺ௠. 
Hence the number of subtraction operation is ݉ሺܰ − ݉ሻሺܰ − ݉ + 1ሻ. In order to count up the 
number of ܣ௜ , in which is meet the conditions ݀ൣ ௜ܺ௠, ௝ܺ௠൧ ≤ ݎ  [7]. In this step, comparison 
operation (< and =) with ሺܰ − ݉ሻሺܰ − ݉ + 1ሻ cycles are needed. Several kinds of operations, 
such as addition, multiplication and division, are used to calculate the ܥ௠ሺݎሻ [7]. Additionally, 
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the same operations in ܥ௠ሺݎሻ , are considered to compute the ܥ௠ାଵሺ࢘ሻ  by increase the ݉  
to ݉ + 1. 

 
a) MSE, ݎ = 0.2SD 

 
b) MSE, ݎ = 0.2SD 

 
c) MSE, ݎ = 0.2SD 

 
d) MPE, ݉ = 4 

 
e) MPE, ݉ = 4 

 
f) MPE, ݉ = 4 

 
g) MBSE, ݉ = 4, ܽ = 0.3 

 
h) MBSE, ݉ = 4, ܽ = 0.3 

 
i) MBSE, ݉ = 4, ܽ = 0.3 

Fig. 3. The MBSE/MSE/MPE values (MBSE1-MBSE20/MSE1-MSE20/MPE1-MPE20)  
under different conditions 
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The total cycle number of BSE, PE, and SE using different operations are given in Table 3. 
As shown in Table 3, the total cycle number of BSE is ሺ4௠ + 4݉ + 11ሻሺܰ − ݉ + 1ሻ, which 

is smaller than the PE/SE methods. Therefore, the computational efficiency of BSE is faster than 
PE/SE methods. In order to calculate the ME values combining BSE, PE, and SE, this operation 
will lead to increase the computation time gap in MBSE/MPE/MSE methods when calculating 
BSE, PE and SE values under each scale, the computational efficiency of MBSE method is 
superior than MPE and MSE methods. 

Table 3. The total number of addition, subtraction, multiplication, division,  
and comparison operations of BSE/PE/SE models 

Operation BSE PE SE 
+ 2݉(ܰ − ݉ + 1) (ܰ − ݉ + 1) 2(ܰ − ݉ + 1) 
– ݉(ܰ − ݉ + 1) – 2݉(ܰ − ݉)(ܰ − ݉ + 1) 
* (݉ + 1)(ܰ − ݉ + 1) (ܰ − ݉ + 1) 2(ܰ − ݉ + 1) 
/ 3(ܰ − ݉ + 1) (ܰ − ݉ + 1) 2(ܰ − ݉ + 1) + 3 

log (ܰ − ݉ + 1) (ܰ − ݉ + 1) 1 

>, <, = 6ሺܰ − ݉ + 1ሻ+ 4௠ሺܰ − ݉ + 1ሻ 
݉ሺ݉ − 1ሻሺܰ − ݉ + 1ሻ+ ሺ݉!ሻ௠ሺܰ − ݉ + 1ሻ 2(ܰ − ݉)(ܰ − ݉ + 1) 

Total ሺ4௠ + 4݉ + 11ሻ ሺܰ − ݉ + 1ሻ 
ሾሺ݉!ሻ௠ + ݉ଶ − ݉ + 4ሿ ሺܰ − ݉ + 1ሻ 

ሾ2ሺ݉ + 1ሻ + ሺܰ − ݉ሻ + 4ሿ ሺܰ − ݉ + 1ሻ + 4 

4.3. Fault identification 

After extracting MBSE/MSE/MPE as feature vectors, this data is divided in to training and 
testing samples for automated roller bearings fault diagnosis. For each working condition (50 
samples) in Table 1. In this paper, 20, 30, 40 samples were selected as training samples for 
MBSE/MSE/MPE-RF/SVM models respective. The corresponding total number of training 
samples is 240, 360 and 480, and the rest 40, 30, 20 samples are selected as testing data for verify 
the accuracy of MBSE/MSE/MPE-RF models respectively. The corresponding number of training 
samples is 480, 360 and 240. Fig. 4 shows the desired output and the output of the trained 
MBSE/MSE/MPE-RF/SVM models. The results of classification accuracy and average accuracy 
of the MBSE/MSE/MPE-RF/SVM models are given in Table 4 and Table 5. (As limited space, 
here some fault classification figures are given in Fig. 5). 

Table 4. The results of the classification accuracy by using MBSE/MSE/MPE-RF/SVM models 

Mode 
Accuracy (%) Average  

accuracy (%) 
Total average  
accuracy (%) Total testing samples No. 

240 360 480 
MBSE-RF (݉ = 4, ܽ = 0.2) 99.58 99.16 98.75 99.16 

97.17 MBSE-RF (݉ = 4, ܽ = 0.3) 97.08 96.66 96.45 96.73 
MBSE-RF (݉ = 5, ܽ = 0.2) 97.5 96.11 95.62 96.41 
MBSE-RF (݉ = 5, ܽ = 0.3) 97.08 96.11 96.04 96.41 

MPE-RF (݉ = 3) 96.25 96.66 94.58 95.83 

96.88 MPE-RF (݉ = 4) 97.91 98.33 97.91 98.05 
MPE-RF (݉ = 5) 97.08 97.22 97.08 97.12 
MPE-RF (݉ = 6) 96.66 95.83 97.08 96.52 

MSE-RF (ݎ = 0.15SD) 92.5 86.66 85.62 88.26 
90.78 MSE-RF (ݎ = 0.2SD) 91.38 88.05 85 88.14 

MSE-RF (ݎ = 0.25SD) 96.66 94.58 96.66 95.96 

(1) It can be seen from Table 4 and Table 5 that the highest classification accuracy is up to 
99.58 % when ݉ = 4, ܽ = 0.2 by using MBSE-RF models. 

(2) As shown in Table 4 and Table 5, the classification accuracy and average accuracy of RF 
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model is higher than PSO/GA-SVM under different conditions. For example, 99.16 % is the 
highest average accuracy in Table 4 when ݉ = 4 and ܽ = 0.2 by using MBSE-RF model. 

 
a) MBSE-RF (݉ = 4, ܽ = 0.2) 

 
b) MPE-RF (݉ = 4) 

 
c) MSE-RF (ݎ = 0.2SD) 

 
d) MBSE-PSO-SVM (݉ = 4, ܽ = 0.2) 

 
e) MPE-PSO-SVM (݉ = 4) 

 
f) MSE-PSO-SVM (ݎ = 0.2SD) 

 
g) MBSE-GA-SVM (݉ = 4, ܽ = 0.2) 

 
h) MPE-GA-SVM (݉ = 4) 

 
i) MSE-GA-SVM (ݎ = 0.2SD) 

Fig. 4. The results of fault classification between the actual and predict samples by using 
MBSE/MPE/MSE-RF/SVM models 

(3) The classification accuracy and average accuracy of MBSE model is higher than 
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MPE/MSE models under different conditions. The total average accuracy of  
MBSE/MPE/MSE-RF models are 97.17 %, 96.88 % and 90.78 % in Table 4. 

(4) The classification accuracy rate of MBSE-RF model is higher than other combination 
models in Table 4 and Table 5 under different conditions. 

Table 5. The results of the classification accuracy, best parameters ܥ and ݃  
in SVM method by using PSO/GA algorithm 

Mode Total testing samples No. ܥ ݃ Accuracy (%) Average accuracy (%) 

MBSE-PSO-SVM 
(݉ = 4, ܽ = 0.2) 

480 2.061 0.50312 97.29 
98.53 360 20.4869 0.01 99.16 

240 9.4481 0.01 99.16 

MBSE-GA–SVM 
(݉ = 4, ܽ = 0.2) 

480 1.1994 0.93031 97.29 
98.63 360 5.5428 0.065517 99.44 

240 0.69799 0.21315 99.16 

MBSE-PSO-SVM 
(݉ = 4, ܽ = 0.3) 

480 5.8669 0.3033 94.16 
94.58 360 33.0493 0.01 95.83 

240 70.2888 0.01 93.75 

MBSE-GA-SVM 
(݉ = 4, ܽ = 0.3) 

480 1.452 0.67978 94.58 
94.44 360 3.8419 0.37317 95 

240 8.0527 0.12655 93.75 

MPE-PSO-SVM 
(݉ = 4) 

480 9.977 0.01 95 
96.1 360 47.8189 0.01 96.66 

240 99.4301 0.01 96.66 

MPE-GA-SVM 
(݉ = 4) 

480 0.62113 0.07782 92.91 
95.41 360 3.3255 0.29516 96.66 

240 39.639 0.026608 96.66 

MPE-PSO-SVM 
(݉ = 5) 

480 49.399 0.01 96.45 
96.54 360 33.5382 0.01 96.11 

240 36.4671 0.01 97.08 

MPE-GA-SVM 
(݉ = 5) 

480 2.5636 0.15507 96.25 
96.48 360 11.9094 0.030136 96.11 

240 17.3603 0.022221 97.08 

MSE-PSO-SVM 
ݎ) = 0.15SD) 

480 49.3805 0.01 82.91 
79.62 360 6.4725 0.24228 82.22 

240 69.3077 0.018417 73.75 

MSE-GA-SVM  
ݎ) = 0.15SD) 

480 19.1173 0.90437 80.20 
78.53 360 91.9038 0.016022 83.33 

240 11.4022 0.2595 72.08 

MSE-PSO-SVM 
ݎ) = 0.2SD) 

480 93.0926 0.01 86.87 
88.44 360 1.0539 2.2622 87.22 

240 56.0894 0.088247 91.25 

MSE-GA-SVM 
ݎ) = 0.2SD) 

480 5.0664 0.23108 87.5 
89.02 360 2.0968 2.6838 88.33 

240 86.532 0.08173 91.25 

MSE-PSO-SVM 
ݎ) = 0.25SD) 

480 1.2716 0.45852 86.04 
89.18 360 34.5672 0.38453 89.44 

240 94.1285 0.26872 92.08 

MSE-GA-SVM 
ݎ) = 0.25SD) 

480 37.2209 0.039768 83.33 
78.95 360 87.0361 0.21181 81.45 

240 11.0704 0.35067 72.08 

5. Conclusions 

Combing with the MBSE, SVM and PSO methods, a method based on MBSE and RF model 
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is presented in this paper. The MSE/MPE/MBSE methods are used to decompose the vibration 
signals into ME values, then MBSE/MPE/MSE eigenvectors under different scale factor are used 
as the input of RF/SVM models to fulfill the roller bearings fault recognition. The computation 
time of MBSE method is faster than MPE and MSE methods, the corresponding reasons are given 
as follows. 

1) The MBSE uses the all adjacent points once for BS calculation using the root mean square 
in m-dimensional vector ௜ܺ௠. Before PE entropy calculation, all adjacent two data points are used 
to count up the number of probability ܲሺߨሻ in each ݉-dimensional vector ௜ܺ௠. 

2) The BSE method requires reconstruct operations only once, but SE needs twice. 
3) The time gap in MBSE/MPE/MSE methods was increased when calculating BSE, PE and 

SE values under each scale, thence the MBSE method is better than MPE and MSE. 
Lastly, the experiment results show that the proposed method (MBSE-RF) is able to 

distinguish different faults and the classification accuracy is the highest in the different models 
(MBSE-PSO/GA-SVM, MSE/MPE-RF, MSE/MPE-PSO/GA-SVM). 
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