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measuring system upon Eq. (7), we obtain: ܥ௠2(ܥ଴ + (௅ܥ = 1.00002263. (8)

To perform the force-frequency test, the crystal is introduced to the loading fixture (see Fig. 4).  

 
Fig. 4. The loading fixture of quartz resonator 

The compressive force is applied by the loading weights on the top side of the resonator via a 
movable rod having a wedge-shaped tip while another rod supported the sample on its bottom side. 
The weight of the rod was included in the total weight. The frequency of the crystal is measured 
before and after the loading, and the frequency shift is calculated. In our experiment, the maximum 
loading is 180 gr. This loading leads to the parallel resonance frequency shift of about 20 Hz in 
the crystal. By substituting the calculated value of ܥ௠ ଴ܥ)2 + ⁄(௅ܥ  from Eq. (8) into Eq. (7), the 
series resonance frequency shift for this experiment is obtained as: 

Δ ௦݂ = Δ ௣݂ ൬1 + ଴ܥ)௠2ܥ + ௅)൰ିଵܥ = 20.001 Hz. (9)

As can be seen, the difference between series and parallel resonance frequency shifts is very 
small and is negligible in most of applications. For example, in quartz resonator pressure sensors, 
the series resonance frequency shift as high as 3000 ppm has been reported. [15] For this case, by 
applying Eq. (9), the parallel resonance frequency shift of about 3000.8 ppm will be measured, 
which is steel very close to the series resonance frequency shift.  

4. Finite element modeling of the force-frequency effect  

Along the experimental study, a finite element code is developed to investigate the 
force-frequency effect in AT-Cut quartz, using multi-physics software COMSOL 4.3. 

The analysis of the force-frequency effects in piezoelectric resonators belongs to the general 
theory of incremental elastic deformations superimposed on initial finite deformations. In this 
theory, the crystal is assumed to be in three states [2]. At the beginning, the crystal is in a natural 
state, and experience no displacement, strain, or stress. At initial state, the body is subjected to 
mechanical deformations due the application of diametric forces. At final state, the body is 
subjected to a small-amplitude vibration in addition to the mechanical deformations being 
imposed on the initial state. Following this procedure, our model includes two sub-models, the 
initial model and the incremental model. These two sub-models link three distinct sequential states 
of the quartz resonator. By employing the Lagrangian formulation, the displacements of all three 
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states are referred to a single reference frame corresponding to the natural state of the resonator. 
The initial model solves for the displacement, strain, and stress due to the external loading of 

the resonator. This model does not, however, contain the frequency response due to 
piezoelectrically driven vibrations, so no piezoelectric factor is included in the initial model [17]. 
The initial stresses, strains, and displacements, which can be derived by the stationary study of 
quartz in the initial model, are considered as the incremental model inputs. 

 The incremental model solves for the incremental response of the resonator, including only 
the displacement, strain, and stress of piezoelectric vibrations. The final state of the resonator is 
then defined as the superposition of the initial and incremental response of the resonator. Also, 
the incremental model uses an eigen-frequency solver, to obtain the resonant frequencies [3]. The 
simulation process is laid out in Fig. 5. 

 
Fig. 5. The algorithm for FE modelling of force-frequency effect 

Since the quartz crystals have anisotropic characteristics, and the force-frequency effect arise 
from non-linear elastic behavior of quartz, the governing equations are non-linear and they cannot 
be implemented using the default feature of the FEA software [18, 19]. Therefore, the whole 
governing equations and boundary conditions are converted to weak-form expressions and 
launched into the finite element software. The necessary material constants of AT-Cut quartz, 
including second order elastic constants, and the third order elastic constants, piezoelectric 
constants and dielectric coefficients used in the model are based on the published values by Patel 
[1]. All anisotropic material characteristics are introduced to the FEM software. 

4.1. Modelling the initial stress and strain distributions 

In our previous paper [3], we showed that considering the anisotropic properties of quartz is 
vital for accurate modelling of force-frequency effect. However, the piezoelectricity may be 
neglected. Thus, the body was considered to be anisotropic and the initial displacements, strains, 
and stresses include the effects of external tractions, and do not include any piezoelectric effect 
[17]. Following Lee and Wang [19], and BeerWinkle [17], we used the standard nonlinear 
Lagrangian formulation from the theory of elasticity, to solve for the initial stress and strains. 
These equations are: 

௜௝ܧ = 12 ൫ ௝ܷ,௜ + ௜ܷ,௝ + ܷ௞,௜ܷ௞,௝൯,
௜ܶ௝ = ௞௟ܧ ௜௝௞௟ܥ + 12 ௠௡, ൫ܧ௞௟ܧ ௜௝௞௟௠௡ܥ ௜ܶ௝ + ௝ܶ௞ ௜ܷ,௞൯,௝ = 0  in ܸ,௜ܲ = ௝ܰ൫ ௜ܶ௝ + ௝ܶ௞ ௜ܷ,௞൯  on ܵ,

(10)
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where ܧ௜௝ is the initial Lagrangian strain, ௜ܶ௝ is the second Piola-Kirchhoff stress tensor, ௥ܷ,௦ is 
the initial displacement gradient, ௜ܲ  is the surface traction in the boundary surfaces, ܥ௜௝௞௟  and ܥ௜௝௞௟௠௡  are the second- and third-order stiffness coefficients, and ௝ܰ is surface normal vector.  

These equations were introduced to the FEM software and solved for the rectangular AT-Cut 
quartz disc with diameter of 8 mm, thickness of 0.43 mm, which is subjected to a pair of 0.9 N 
and 1.8 N loads in Z crystallographic direction. The final FE model has 2158 Lagrangian quadratic 
elements with 164,548 degrees of freedom, as shown in Fig. 6. Since the thickness shear mode is 
important, in the investigation of force-frequency effect, a swept mesh is utilized to control the 
mesh number in thickness direction.  

By defining two opposed forces on the center point of the upper and lower edges of the 
resonator, the initial stress and strain distribution is obtained on the crystal. For example, the initial 
stress contours ( ଵܶଵ), for the 0.9 N loading state is shown in Fig. 7. 

 
Fig. 6. Meshed geometry of the resonator 

 

 
Fig. 7. The initial stress contours ( ଵܶଵ)  

on the rectangular disk 

4.2. Solving for Eigen values 

After determination of the initial fields, the governing equations for the incremental fields are 
solved. The final state is then governed by the superposition of the incremental displacement onto 
initial displacement. It should be noted that in this Lagrangian model, the external tractions having 
been resolved in the initial state, and the incremental displacement, strain and stress take only the 
effect of piezoelectric vibrations [17]. These high frequency vibrations are small deformations 
superposed linearly on initial finite deformation. Thus, the incremental equations can be made 
linear during their derivations. These equations have been derived by Wang et al, using variational 
principals of elasticity [20]. The incremental strains, ߟ௜௝ are: 

௜௝ߟ = 12 ൫ݑ௝,௜ + ௜,௝ݑ + ܷ௞,௝ݑ௞,௜ + ܷ௞,௜ݑ௞,௝൯, (11)

where ݑ௜,௝are the incremental displacement gradients.  
The incremental stress tensor, ݐ௜௝, and the incremental electric displacement ܦ௜ are: ݐ௜௝ = ൫ܥ௜௝௞௟ + ௞௟ߟ௠௡൯ܧ௜௝௞௟௠௡ܥ − ݁௞௜௝ݓ௞,ܦ௜ = ݁௜௞௟ߟ௞௟ + .௝ݓ௜௝ߝ (12)

In above equations, ݁௞௜௝, ݓ௞, and ߝ௜௝ are the piezoelectric coupling matrix, electric field, and 
dielectric permittivity coefficient, respectively. 

The incremental equation of motion is: 
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ሷݑ଴ߩ ௜ = ௜௝ݐ) + ௝௞ݐ ௜ܷ,௞ + ௝ܶ௞ݑ௜,௞),௝ in V. (13)

Also, the incremental surface traction equilibrium equation and Gauss’s low for an insulator 
material like quartz, are: ݌௜ = ௝݊൫ݐ௜௝ + ௝௞ݐ ௜ܷ,௞ + ௝ܶ௞ݑ௜,௞൯ on S,ܦ௜,௜ = 0  in  V. (14)

The resonance behavior of quartz is considered to be harmonic. Therefore, the motion equation 
will take the form of: ݑ௜ = ത௜݁ି௜ఠ௧ݑ଴߱ଶߩ− ,ത௜݁ି௜ఠ௧ݑ = ൫ݐ௜௝ + ௝௞ݐ ௜ܷ,௞ + ௝ܶ௞ݑ௜,௞൯,௝ in ܸ, (15)

where, ߱ is the resonance frequency, and ݑത௜ is the wave amplitude. As can be seen, the initial 
displacement gradients and stresses are appeared in the second equation of Eq. (15). Thus, the 
initial state must be completely solved before the final state.  

The aforementioned rectangular AT-cut quartz resonator is taken into account. Upon the 
experiments, a variable electric field with frequency of ߱ and amplitude voltage of 1 Volt is 
applied to the electrodes in COMSOL multi-physics environment. According to this electric 
boundary condition, the polarization direction and electric displacement vector is along the 
thickness of the resonator. By defining the piezoelectric coupling tensor ݁௞௜௝ , and dielectric 
permittivity tensor ߝ௜௝, from [1], and given the known values of initial stresses and displacement 
gradients from the initial model, the Eq. (11) to (15) are solved, and the eigen frequencies and 
eigen modes of the vibration are obtained. For example, the resonance spectrum of the plate under 
the 0.9 N compressive load and the thickness shear vibration mode are demonstrated in Fig. 8. 

 
Fig. 8. The resonance spectrum for the quartz resonator 

By setting the initial fields to zero, the resonance of the disc before the loading, and the 
frequency shift due to the loading are obtained. Table 1 shows the fractional frequency shift, i.e. Δ݂ ଴݂⁄ , obtained by FEM solution for the tow loading states, in comparison with experimental 
results. As can be seen from Table 1, the error between the fractional frequency shift obtained by 
FEM and the experiments is less than 1 ppm.  

Table 1. Fractional frequency shift obtained by experiments and finite element model 
Load Measured fractional frequency shift [ppm] Simulated fractional frequency shift [ppm] 
0.9 N –2.794 ppm –2.5 ppm 
1.8N –5.6 ppm –5 ppm 
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5. Conclusions 

Force-frequency effect is one of the main reasons of frequency instability in quartz crystal 
resonators. Due to the modern requirement for high frequency stability in telecommunication 
applications, introducing appropriate methods for experimental quantification of force-frequency 
effect is of importance. In this article, a simple method for measurement of forcefrequency 
characteristics of piezoelectric resonators was introduced. For characterizing the measurement 
system, the series resonance frequency of the crystal was measured with a standard crystal 
impedance meter. Then, the parallel resonance frequency was measured with the proposed 
technique. It was shown that the frequency shift of the parallel resonance frequency is very close 
to that of the series resonance frequency. Thus, we can employ the parallel resonance frequency 
for measuring the force-frequency effect. Measurements were made on a square quartz crystal 
which was subjected to compressive loads via a loading fixture. This test was simulated by a 
nonlinear finite element model, and the fractional frequency shifts were calculated for two loading 
states. The Finite element results were compared with the experimental results, which were in 
close agreement.  

The proposed measurement method is easier and more economic than the current measurement 
methods which are based on measuring the series resonance frequency of crystals. The results can 
assist the sensor industry, in easier measurement of the sensitivity of crystals to environmental 
effects like accelerations which may cause frequency instability due to force-frequency effect. 
Also, the numerical model can be used for design of crystal plate, the electrode, and the holder 
position, to achieve more frequency stability by reduction of force-frequency effect.  

The measurement method may be used in sensitivity measurement and calibration of quartz 
resonator pressure sensors and load cells. Where, the numerical model can be applied for design 
and optimization of sensors to achieve higher sensitivities and smaller sizes. 
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