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Fig. 1. Rotor experiment rig of aero-engine  

and sensor installed position diagram 
 

 
Fig. 2. Installed horizontal right of turbine casing 

displacement sensor and acceleration  
sensor local amplification 

 

 
Fig. 3. Sensor installed position  

diagram-acceleration sensor installed  
on vertical lower and horizontal left 

 
Fig. 4. Turbine casing rubbing experiment: 

1 – rubbing spark, 2 – adjusting rubbing  
screw against rubbing ring 

 
Fig. 5. Sensors installed positions and rubbing position diagram: 1, 2, 4, 5 – vertical upper,  

horizontal right, vertical lower and horizontal left acceleration measurement point,  
3 – horizontal right displacement measurement point 

3. Displacement signal compared and analyzed between acceleration signal changed 
obtained and real measure obtained 

In order to verify the correctness of method of acceleration signal which is changed to 
displacement signal and velocity signal, in rubbing experiment of May 23th, 2014, the acceleration 
sensor and displacement sensor are installed near position on horizontal right of turbine casing at 
the same time (show on Fig. 1, Fig. 2 and Fig. 5), and vibration acceleration signal and 
displacement signal are collected at the same time. The integral and polynomial least square fitting 
method is introduced to complete change from acceleration signal to velocity signal and 



2036. AERO-ENGINE ROTOR-STATOR RUBBING POSITION IDENTIFICATION BASED ON CASING VELOCITY SIGNAL.  
MINGYUE YU, ZHIGANG FENG, JIAJING HUANG, LINLIN ZHU 

2126 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUN 2016, VOL. 18, ISSUE 4. ISSN 1392-8716  

displacement signal. Displacement signal that acceleration signal changed obtained is need 
process are as follows: (1) acceleration signal is changed to velocity signal through integral 
method; (2) the polynomial least square fitting method is used to eliminate trend terms of velocity 
signal; (3) eliminated trend terms velocity signal is changed to displacement signal by integral 
method; (4) Finally, polynomial least square fitting method is used to eliminate trend terms of 
displacement signal. It can be found that polynomial-fitting orders selected between order 5 to 9 
is more ideal to eliminate trend terms through multiple comparison and analysis for experimental 
data, and order 9 is selected as an example to analyze as it is more consistent in amplitude with 
real-measure obtained displacement signal (show on Fig. 7) in this paper. Time-domain and 
frequency-domain of displacement signal are analyzed and compared between acceleration signal 
changed obtained and real-measure obtained. The results are shown in Figs. 6-10. Fig. 6 and Fig. 7 
respectively represent time-domain signal and its local amplification of displacement signal. 
Abscissa represents time in seconds, and ordinate represents displacement amplitude in millimeter 
in Figs. 6-7. Figs. 8-10 respectively represents frequency-domain signal and its local amplification 
of displacement signal. “○” represents displacement signal obtained through acceleration signal 
with the sensor installed on the horizontal right of turbine casing, and “–” represents real-time 
displacement signal by the displacement sensor which is installed on horizontal right of turbine 
casing in Figs. 8-10. Abscissa represents frequency and unit is Hz, and ordinate represents 
displacement amplitude and unit is millimeter in Figs. 8-10. 

 
Fig. 6. Time domain signal 

 
Fig. 7. Time domain signal local amplification  

 

 
Fig. 8. Frequency spectrum Fig. 9. Frequency spectrum local amplification 

By analyzing the time-domain and frequency-domain of displacement signal from Figs. 6-10, 
we can find that there are some differences between displacement signal obtained through integral 
and polynomial least square fitting method and real-collected method. Main manifestation is that 
acceleration-signal-transform-obtained displacement signal amplitude is smaller and smoother 
than real-measure-collected one. While analyzing the reason, the real-measured displacement 
point is not fully in accordance with acceleration signal measurement point, which leads to the 
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inconsistent amplitude, and noise signal is reduced during the process of integral and polynomial 
least square fitting, which leads to the smoother signal. For all that, the trend and amplitude of 
displacement signal is approaching what are represented in Figs. 6-7. By analyzing Figs. 8-10, we 
can also observe that displacement signal frequency spectrum is similar between 
acceleration-signal-transformed and real-measured. This has verified that integral and polynomial 
least square fitting method could implement and transform from acceleration signal to velocity 
signal and displacement signal for the rotor experiment rig of aero-engine. 

 
Fig. 10. Frequency spectrum local amplification 2 

4. Rubbing characteristics extracted and position identification based on casing velocity signal 

4.1. Rubbing characteristics are analyzed on different rubbing positions based on casing 
vibration signal 

The rubbing characteristic is extracted and analyzed based on casing vibration acceleration 
signal and velocity signal which is obtained through integral and polynomial least square fitting 
method. Frequency characteristics are analyzed from 0 Hz to 200 Hz (including 0 Hz and 200 Hz), 
considering that aero-engine real-time monitoring frequency common is in low frequency. We 
still take the experimental data of May 23th, 2014 as an example to analyze (every selected sensor 
samples number is 100 in the condition of difference rubbing position), and concrete implement 
process are listed as following: 

1) Data collected: vibration acceleration signal is collected and samples from installed on 
turbine casing difference position sensors in the conditions of different position rubbing 
experiment.  

2) Signal transformation: acceleration signal is changed to velocity signal by using integral 
and polynomial least square fitting method, and the polynomial fitting orders is 9. 

3) Low-frequency rubbing characteristic is extracted: The FFT transformation is operated 
between acceleration signal and velocity signal, and low-frequency mean-square values of 
acceleration signal and energy characteristic of velocity signal from 0 Hz to 200 Hz are extracted. 

4) Rubbing characteristics normalized: low frequency rubbing characteristics extracted 
include mean-square value characteristics of acceleration signal and energy characteristics of 
velocity signal which are respectively divided by the sum of four-position sensors of low 
frequency mean-square value characteristics and energy characteristics, in order to implement 
normalized rubbing characteristic. The results shown in Figs. 11-14. “△”, “※ ”, “○”, “□” 
respectively represent low frequency normalized rubbing characteristic vectors including 
mean-square value characteristics of acceleration signal and energy characteristics of velocity 
signal, according to acceleration sensors installed on vertical upper, horizontal right, vertical lower 
and horizontal left of turbine casing in the stations of 4-difference-positions rubbing experiment 
in Figs. 11-14. Fig. 11 and Fig. 12 respectively represents rubbing position on vertical upper and 
horizontal right of turbine casing, Fig. 13 and Fig. 14 respectively represents rubbing position on 
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vertical lower and horizontal left of turbine casing. Abscissa represents serial number of samples, 
and ordinate represents normalized low-frequency rubbing characteristic vector of every samples 
in Figs. 11-14. Figs. 11(a)-14(a) shows normalized mean-square value characteristics of 
acceleration signal, and Figs. 11(b)-14(b) represents normalized energy characteristics of velocity 
signal. 

 
a) Accelerate signal normalized mean-square value 

 
b) Velocity signal normalized energy value  

Fig. 11. Rubbing positions on turbine case vertical upper 

 
a) Accelerate signal normalized mean-square value 

 
b) Velocity signal normalized energy value  

Fig. 12. Rubbing positions on turbine case horizontal right 

Velocity signal low-frequency normalized energy characteristics are compared with the 
characteristics of acceleration signal low-frequency normalized mean-square value between 
Figs. 11(a)-14(a) and Figs. 11(b)-14(b). The main characteristics are listed as following: 

(1) Same rubbing position: normalized characteristic vector central tendency of velocity signal 
is better than acceleration signal to be installed on same position sensor, while difference is bigger 
of velocity signal among sensors which are installed on different positions. Randomly taking 
rubbing position in vertical upper of turbine casing as an example to analyze: 

1) Sensors installed on the same position Normalized low-frequency mean-square value of 
acceleration signal is shown in Fig. 11(a), the characteristic vector discrete is larger when it is 
installed on the same position sensor, for example, normalized characteristic vector of acceleration 
signal collected by acceleration sensor that is installed on vertical upper of turbine casing (denoted 
by “△” in Fig. 11(a)), the characteristics value is distributed between 0.1 and 0.4, and the 
discretion is bigger. Based on acceleration signal that is changed to velocity signal from sensors 
that are installed on same position Fig. 11(b), central tendency of the normalized low-frequency 
energy characteristic vector is better, and the characteristics discretion is near 0.2 (denoted by “△” 
in Fig. 11(b), and central tendency is excellent. 

2) Sensors installed on different positions normalized characteristic vector of acceleration 
signal is collected by acceleration sensor that is installed on vertical upper and horizontal left of 
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turbine casing (respectively denoted by “△” and “□” in Fig. 11(a)), the characteristics value is 
respectively distributed between 0.1-0.4 and 0.2-0.4, which leads to part overlapping of 
characteristic vector between each other among sensors of different installed positions and it is 
disadvantageous for rubbing position identification. Normalized characteristic vector of velocity 
signal transformational is obtained by acceleration sensor which is installed on vertical upper and 
horizontal left of turbine casing (respectively denoted by “△” and “□” in Fig. 11(b)), the 
distribution of the characteristics value is close to 0.2 and 0.3 respectively, which has less part 
overlapping of the characteristic vector between each other among installed on different positions 
sensors, and it is favorable for rubbing position identification. 

 
a) Accelerate signal normalized mean-square value 

 
b) Velocity signal normalized energy value  

Fig. 13. Rubbing positions on turbine case vertical below 

 
a) Accelerate signal normalized mean-square value 

 
b) Velocity signal normalized energy value  

Fig. 14. Rubbing positions on turbine case horizontal left 

Characteristic vector of acceleration signal and velocity signal in other positions of casing 
possesses the same characteristics in the condition of the same rubbing position. 

(2) Different rubbing positions: diversity of normalized characteristic vector is bigger of 
velocity signal when sensor is installed on same position in the condition of different rubbing 
positions. Randomly take rubbing position in vertical upper (Fig. 11) and horizontal right (Fig. 12) 
of turbine casing as examples to analyze: 

1) Low-frequency normalized characteristic vector of acceleration signal. Signal characteristic 
vector that is collected while it is installed on vertical upper of acceleration sensor is distributed 
between 0.1 and 0.4 (denoted by “△” in Fig. 11(a)) in the condition of rubbing position that is on 
vertical upper of turbine casing, and signal characteristic vector that is collected when it is installed 
on vertical upper of acceleration sensor is distributed between 0.2 and 0.4 (denoted by “△” in 
Fig. 12(a)) in the condition of rubbing position that is on horizontal right of turbine casing. We 
can find that the rubbing characteristic has many overlapping for the same installed position sensor 
in the condition of different rubbing positions, and this feature is disadvantageous for the 
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identification of rubbing position. Signal collected through acceleration sensor which is installed 
on another position has the same characteristics. For example, rubbing position on vertical upper 
of turbine casing, signal characteristic vector that is collected when it is installed on horizontal left 
of acceleration sensor is distributed between 0.2 and 0.4 (denoted by “□” in Fig. 11(a)), and 
rubbing position on horizontal right of turbine casing, signal characteristic vector that is collected 
when it is installed on horizontal left of acceleration sensor is distributed close to 0.2 (denoted by 
“□” in Fig. 12(a)), it is also exit overlapping.  

2) Low-frequency normalized characteristic vector of velocity signal. Signal characteristics of 
velocity signal, according to acceleration signal that is obtained when it is installed on vertical 
upper of acceleration sensor, is distributed close to 0.2 (express on “△” in Fig. 11(b)) in the 
condition of rubbing position that is on vertical upper of turbine casing, while signal characteristics 
of velocity signal, according to acceleration signal that is obtained when it is installed on vertical 
upper of acceleration sensor is distributed close to 0.3 (denoted by “△” Fig. 12(b)) in the condition 
of rubbing position that is on horizontal right of turbine casing. Namely, the diversity of velocity 
signal low-frequency normalized energy characteristic is bigger for the sensor that is installed on 
the same position when rubbing position is different. This feature is favorable for the identification 
of rubbing position. The characteristics of velocity signal obtained based on acceleration sensor 
which is installed on another position has the same characteristics. For example, rubbing position 
on vertical upper of turbine casing (Fig. 11(b)), velocity signal characteristics, according to 
acceleration sensor that is installed on horizontal left, collected and changed is distributed close 
to 0.3 (denoted by “□” in Fig. 11(b)), and rubbing position on horizontal right of turbine casing 
(Fig. 12(b)), velocity signal characteristics, according to acceleration sensor that is installed on 
horizontal left, is distributed close to 0.2 (denoted by “□” in Fig. 12(b)). That is, when rubbing 
position is different, the diversity of velocity signal low-frequency normalized energy 
characteristics is larger for the sensor that is installed on the same position. 

Based on above analysis, we can predict that, low-frequency normalized energy characteristics 
of velocity signal is more ideal than acceleration signal low frequency normalized mean-square 
value characteristics to identify rotor-stator rubbing position. In order to verify accuracy and 
effectiveness of the analysis, the method of rotor-stator rubbing position identification is studied 
based on acceleration signal and velocity signal. Simultaneously, in order to analyze dependence 
and sensitivity of extracted characteristic value to different classification algorithm, the nearest 
neighbor classification algorithm and SVM is used to identify different rubbing positions. 

4.2. A rotor-stator rubbing position identification method based on casing velocity signal 

We also take the experimental data from 23th May 2014 as an example to analyze, and the 
aero-engine rotor rig and rubbing experiment is described in section 2 in the paper. Every sensor 
selected as samples numbers is 100 in the station of two rubbing experiments and different rubbing 
position (two experiments, including 3200 group data, formatted 800 characteristic vectors, its 
samples numbers is 800). The casing vibration acceleration signal is collected and changed to 
velocity signal through integral and polynomial least square fitting method. Then, FFT 
transformation is implemented for acceleration signal and velocity signal. Low frequency 
normalized energy characteristics of velocity signal and normalized mean-square value 
characteristics of acceleration signal are extracted; finally, the normalized characteristic parameter 
including energy and mean-square value is input into nearest neighbor classifier and SVM in order 
to identify the different rubbing positions and compare dependence and sensitivity of extracted 
characteristics with different classification algorithm. 

The Euclidean distance is used to measure the distance between samples for nearest neighbor 
classification algorithm, and the Gaussian nuclear function is selected for SVM nuclear function, 
and ݇ cross validation method that is widely used is selected to optimize parameter of radical basis 
function nuclear function. 

The concrete implementation processes of rubbing position identification based on nearest 
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neighbor classification algorithm and SVM are listed as following: 
1) Rubbing characteristic vector of normalized mean-square value and energy is class-marked; 
2) Class-marked characteristic vectors, including mean-square value and energy, are 

respectively mixed and Bisection randomly approximately, and one part is standard sample, 
another is testing sample. The testing samples are input to nearest neighbor classifier to identify 
the different rubbing positions, and Euclidean distance is used to measure the distance between 
samples according to input standard samples. The samples are divided by 10 times consecutively 
and randomly, taking recognition rate mean-value of 10 times testing as mean recognition rate. 
The result is shown in Table 1 and Table 2. Table 1 is testing recognition rate according to 
acceleration signal low-frequency mean-square value characteristics based on nearest neighbor 
classification algorithm, and Table 2 is testing recognition rate according to velocity signal 
low-frequency energy characteristics based on nearest neighbor classification algorithm. 

3) Class-marked characteristic vectors, including mean-square value and energy, are 
respectively mixed and trisected approximately, and one part is training samples, one is testing 
samples, and another part is unknown samples. The training samples and testing samples are input 
to support vector machine to identify the different rubbing positions, and 10 cross validation 
method is selected to optimize parameter of Gaussian nuclear function according to input training 
samples. The testing is completed for training samples, testing samples and unknown samples 
according to optimized parameter. The test is conducted 10 times consecutively and randomly, 
taking recognition rate mean-value of 10 times testing as mean recognition rate, the result is shown 
in Table 3 and Table 4. Table 3 is 10 times testing recognition rate according to acceleration signal 
low-frequency mean-square value characteristics based on SVM, and table 4 is 10 times testing 
recognition rate according to velocity signal low-frequency energy characteristics based on SVM. 

From Tables 1-4, the following conclusion can be drawn:  
Mean recognition rate of velocity signal of testing samples is above 93 % by nearest neighbor 

classification algorithm and above 98 % for training samples, testing samples and unknown 
samples based on SVM, while the mean recognition rate of acceleration signal respective is only 
about 81 % and 86 % based on nearest neighbor classification algorithm and SVM. That is, the 
velocity signal energy characteristics are obviously better than acceleration signal mean-square 
value characteristics to the result of rubbing position identification, and the mean recognition rate 
is improved by more than 10 %. Meanwhile, we can find that the SVM recognition ratio is higher 
than nearest neighbor classification algorithm, while analyzing the reason, 10-cross validation 
method is selected to optimize parameter of Gaussian nuclear function according to input train 
based on support vector machine, which leads to higher recognition ratio. In fact, the recognition 
rate is contiguous. Namely, extracted characteristic is insensitive to different classification 
algorithms, and embodied good consistency to same rubbing position and good diversity to 
different rubbing position. 

Table 1. 10 times testing recognition rate based on nearest neighbor  
classification algorithm for acceleration signal  

Experiment number Train samples numbers Unknown samples numbers Unknown samples  
recognition rate (%) 

1 387 413 82.1 
2 388 412 82.3 
3 386 414 79.9 
4 379 421 83.1 
5 401 399 81.8 
6 398 402 82.3 
7 392 408 79.6 
8 404 396 82.5 
9 394 406 80.1 

10 402 398 82.3 
Mean recognition rate – – 81.6 
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Table 2. 10 times testing recognition rate based on nearest neighbor  
classification algorithm for velocity signal 

Experiment number Train samples numbers Unknown samples numbers Unknown samples  
recognition rate (%) 

1 387 413 93.6 
2 388 412 93.6 
3 386 414 92.9 
4 379 421 92.2 
5 401 399 93.6 
6 398 402 93.3 
7 392 408 92.3 
8 404 396 94.3 
9 394 406 93.4 

10 402 398 93.6 
Mean recognition rate – – 93.3 

Table 3. 10 times testing recognition rate based on SVM for acceleration signal 

Experiment 
number 

Train 
samples 
numbers 

Testing 
sample

numbers

Unknown 
samples 
numbers 

Gamma Regularization 
parameter C 

Train 
samples 

recognition 
rate (%) 

Testing 
samples 

recognition
rate (%) 

Unknown 
samples 

recognition 
rate (%) 

1 257 275 268 256 4 84.62 84.11 84.20 
2 266 260 274 64 4 88.10 85.92 89.47 
3 259 263 278 256 16 86.33 86.05 86.47 
4 269 259 272 64 16 89.26 84.87 88.81 
5 273 264 263 64 4 85.31 89.47 87.31 
6 264 275 261 256 1 89.55 83.58 86.47 
7 245 283 272 256 4 85.93 84.68 85.25 
8 267 251 282 256 256 88.98 83.69 87.22 
9 252 279 269 256 1 87.88 88.89 87.97 

10 268 270 262 256 256 84.06 88.46 85.82 
Mean 

recognition 
rate 

– – – – – 87.00 85.97 86.90 

Table 4. 10 times testing recognition rate based on SVM for velocity signal 

Experiment 
number 

Train 
samples 
numbers 

Testing 
sample 

numbers

Unknown 
samples 
numbers 

Gamma Regularization 
parameter C 

Train 
samples 

recognition 
rate (%) 

Testing 
samples 

recognition
rate (%) 

Unknown 
samples 

recognition 
rate (%) 

1 249 280 271 256 1 100 97.48 99.25 
2 235 276 289 256 4 99.26 100 99.25 
3 262 273 265 64 16 99.3 100 98.51 
4 252 260 288 256 1 100 98.53 99.25 
5 258 269 273 256 0.25 100 97.33 98.24 
6 260 277 263 64 16 100 100 98.51 
7 263 283 254 256 4 100 97.6 99.25 
8 267 259 274 256 1 99.27 98.47 99.25 
9 261 280 259 256 4 99.29 99.21 99.25 

10 258 265 277 64 16 99.28 99.22 98.50 
Mean 

recognition 
rate 

– – – – – 99.64 98.79 98.93 
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5. Conclusions 

Velocity is a perfect parameter to reflect vibration for most equipment, and its effective value 
is a standard to the measuring of vibration faults diagnosis across the globe. Based on this, the 
method of identifying a rotor-stator rubbing position on the basis of casing velocity signal is 
proposed. The rotor experiment rig of aero-engine is used to simulate rubbing faults in the 
condition of 4-different-positions rubbing experiment of turbine casing and the casing vibration 
acceleration signal is collected and changed to velocity signal through integral and polynomial 
least square fitting method. The FFT transformation and low frequency normalized energy 
characteristics of velocity signal and normalized mean-square value characteristics of acceleration 
signal are extracted and analyzed. Finally, normalized characteristics parameters, including energy 
and mean-square values, are input to nearest neighbor classifier and support vector machine to 
identify the different rubbing positions and analyzed sensitivity of extracted characteristics to 
different classification algorithms, the identification results are compared and analyzed at the same 
time. The results show following features of low-frequency energy characteristics of velocity 
signal: 

1) Same rubbing position: central tendency is better for normalized characteristic vector from 
sensor which is installed on the same position, while difference is larger for sensors that are 
installed on different positions of velocity signal. 

2) Different rubbing positions: diversity is bigger for normalized characteristic vector from 
sensor which is installed on same position of velocity signal. 

3) The mean recognition rate of velocity signal is above 93 % based on nearest neighbor 
classifier and above 98 % for training samples, testing samples and unknown samples based on 
SVM, and the identification result is obviously better than acceleration signal mean-square value 
characteristics to rubbing position identification result. 

4) 10-cross validation method is selected to optimize parameter of Gaussian nuclear function 
according to input train based on support vector machine, which leads to higher recognition ratio 
than nearest neighbor classifier. In fact, the recognition rate is contiguous. Namely, extracted 
characteristic is insensitive to different classification algorithms. 

The method should require further study in terms of the following aspects: 
1) Real velocity signal comparison: Limited by experiment conditions, the comparison is only 

conducted among displacement signal. 
2) The proposed research method in this paper should be inspected in the actual project. The 

proposed method was inspected just by simulated data of the aero-engine rotor experiment rig. As 
the real aero-engine structure is far more complex than rotor experiment rig, as well as a great deal 
of external noises and the existence of vibrations in real flight, actual project inspection is required 
to determine the efficiency of extracting casing characteristics. 
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