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simulation. In addition, the effects of system coefficients on bifurcation are investigated to provide 
theoretical foundation to improve the proposed brake. 

The highlights of this paper are as follows: 
1) With aid from the cooperating brake manufacturer, a dual-cylinder dual-pad brake model 

suitable for trucks and passenger cars is proposed. The proposed brake can minimize the vibration 
amplitude of brakes. 

2) On the basis of the proposed brake, system oscillation differential equations are expressed, 
and multiple limit cycles in system are determined. 

3) A new theoretical foundation is provided to lessen the vibration of the proposed brake. 

2. Dynamic model of dual-cylinder dual-pad brake system 

2.1. System mechanical model and mathematical equations 

The structure of the dual-cylinder dual-pad brake is schematically depicted in Fig. 1. The disc 
brake is fixed on the rim and rotates accordingly. The disc brake is regarded as a plate revolving 
around point . The two brake pads are fixed on the steering knuckle through brake calipers. The 
brake pads are elastically connected with each other. The forward direction coordinate ݕݔ is 
shown in Fig. 1(a), and the side direction coordinate ݖݕ is shown in Fig. 1(b). ݒ is the tangential 
speed of contact point between disc and pad. 

 
a) 

 
b) 

Fig. 1. Dual-cylinder dual-pad brake 

 
Fig. 2. Mechanical model of dual-cylinder dual-pad brake system 

Only the tangential motion of discs and pads is studied in this paper. The brake system in 
Figs. 1(a) and (b) is simplified into a 2DOF mechanical model illustrated in Fig. 2. The disc brake 
is regarded as a belt moving with a constant speed ݒ, and the brake pads are represented by two 
blocks with ݉ଵ and ݉ଶ mass. Under the effect of constantly actuating speed ݒ, the two blocks 
reciprocate from left to right on the belt. The two blocks are connected with the rigid wall by linear 
spring with varying stiffness ݇ଵ, ݇ଶ and viscous damper ܿଵ, ܿଶ. The pressing forces between the 
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two mass blocks and the belt are ܨேଵ and ܨேଶ. The two blocks are connected with each other by 
linear spring ݇. The entire system is simplified as a double mass-belt motion. 

The differential equations of ݔ direction motion of the system based on Newton’s Second Law 
are expressed as follows: ൜݉ଵݔଵᇱᇱ + ݇(ݔଵ − (ଶݔ + ܿ(ݔଵᇱ − ଶᇱݔ ) + ݇ଵݔଵ + ܿଵݔଵᇱ = ଶᇱᇱݔଵ,݉ଶܨ + ݇(ݔଶ − (ଵݔ + ܿ(ݔଶᇱ − ଵᇱݔ ) + ݇ଶݔଶ + ܿଶݔଶᇱ = ,ଶܨ (1)

where ܨ is the dry friction between mass blocks and the belt; ܨ = ݅ ே andܨݑ = 1, 2 represent the 
mass block ݉ଵ and ݉ଶ; ݑ is the friction coefficient; ܨே is the pressing force between mass blocks 
and the belt; ( )ᇱ = ݀( ) ⁄ݐ݀ , ( )ᇱᇱ = ݀ଶ( ) ⁄ଶݐ݀  .is the time ݐ ;

The stiffness in the aforementioned studies is assumed to be linear; however, the stiffness 
shows nonlinear effect on system dynamics. This paper focuses on the vibration of the brake pads 
in the ݔ direction, with the nonlinear stiffness ݇ changing with varying displacement on the ݔ 
direction. The model [12, 13] of variable stiffness ݇ is expressed as follows: ݇ = ݇ଵ + ݇ଶݔ + ݇ଷݔଶ, (2)

where ݇ଵ is the linear stiffness coefficient, ݇ଶ is the square stiffness coefficient, and ݇ଷ is the 
cube stiffness coefficient.  

2.2. Selection of brake dry friction model 

Dry friction damping force is caused by the absence of lubrication on the interface of two 
mutually contacting objects, which impedes their relative motion. A sign function is usually used 
to describe this type of dry friction. The value of dry friction is proportional to the normal pressure 
between the two contacting objects with its direction opposite to the direction of motion. However, 
this function describes the physical property of kinetic friction without considering the hysteretic 
nature of dry friction when the relative velocity is zero. Friction hysteresis is a significant 
nonlinear behavior mainly displayed as the multi-value and unsmooth nature of friction. This 
property can generate bifurcation, chaos, and other types of complicated dynamic behavior in the 
system. Three types of typical hysteresis friction models are currently applied in the brake system. 

2.2.1. Bilinear hysteresis model 

On the basis of ideal dry friction model, Iwan [14, 15] proposed the bilinear hysteresis model 
in 1961. The formula is expressed as follows: ܨ = ܨ + ܨ = ݇ݔ௬ + ݇ݔ௬. (3)

Hysteresis curve can be divided into two parts: hysteresis and elasticity. Fig. 3 indicates the 
existence of a transitional state when two mutually contacting surfaces change from elastic 
deformation to slip deformation. The bilinear hysteresis model is only an approximation of the 
transitional state. The expression of this model is simple and clear, with few physical quantities to 
identify. The physical meanings are all explicit. However, this model processes the whole state 
into two linear stiffness matrixes and neglects the influence of the higher order nonlinear stiff 
system. Moreover, this model cannot describe complicated conditions with the existence of 
damping. 

2.2.2. Mcmillan hysteresis model 

In 1997, Mcmillan [16] proposed a new hysteresis dry friction model (Fig. 4). The model 
divides dry friction into two parts: state dry friction ܨଵ and kinetic dry friction ܨଶ. Both are related 
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with relative speed and acceleration on the interface. The mathematical model is expressed as 
follows: 

ଵܨ = ேܨߤ− ൬2ߨ൰ arctan ൬ ,ᇱᇱ|߬൰ݔ|ߤݒ (4)

ଶܨ = ۔ۖەۖ
−ۓ ݒ߬|ᇱᇱݔ| − ᇱᇱݔ ߤ߬ ,ேܨ sgn(ݔᇱᇱ)ݒ > 0 ∪ sgn(ݔᇱᇱ) > |ᇱᇱݔ|2 ߤ߬ ,

sgn(ݔ′′)ߤ௦sin(Ωݒ + Φ)ܨே, 0 < sgn(ݔᇱᇱ) < |ᇱᇱݔ|2 ߤ߬ ,  (5)

where: 

൞Φ = arcsin ൬ߤߤ௦ ൰ ,Ω = ߨ)ߤ − Φ)ݔᇱᇱ߬ ,  (6)

where ߤ is the kinetic friction coefficient, ߤ௦ is the static friction coefficient, ݒ is the relative 
velocity, and ߬ is the delay time. 

a) Linear part 
 

b) Hysteretic part 
 

c) Linear along with hysteresis 
Fig. 3. Bilinear hysteresis model 

 
Fig. 4. Mcmillan hysteresis model 

 
Fig. 5. Wojewoda hysteresis model 

The Mcmillan hysteresis model can accurately express the effect of hysteresis. However, 
considerable physical quantities are present in this model, and some even have unclear physical 
meanings. Parameters are hard to be selected. Meanwhile, the simulation results are remarkable 
when the value of acceleration ݔᇱᇱ is fixed, but unsatisfactory when ݔ′′ varies. The acceleration of 
two contacting surfaces always varies at any time, which limits the calculation of this hysteresis 
friction model. 
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2.2.3. Wojewoda hysteresis model 

Wojewoda [17, 18] proposed a new friction model to address the deficiency of the previous 
models (Fig. 5). The mathematical model is expressed as follows: 

ݑ = ቐݑ௦௧sgn(ݒ), ௦௧ݑ < ௗାݑ ∪ sgn(ݒݒ′) > ,(ݒ)ௗାsgnݑ,0 ௦௧ݑ > ௗାݑ ∪ sgn(ݒݒ′) > ,(ݒ)ௗ sgnݑ,0 sgn(ݒݒ′) < 0, ܨ(7) = ே. (8)ܨݑ

Among them: 

ەۖۖ
ۖۖۖ
۔ۖۖ
ۖۖۖ
௦௧ݑۓۖۖ = 12 ேܨ݇ |′ݒ|ଶݒ − ݑ,ݑ = ݑ2 − ௗାݑ,௦ݑ = ݑ ൭1 + (ݒ)௦ݑ − ݑݑ ,ݒ)݃ ᇱ)൱ݒ ,

(ݒ)௦ݑ = ௦ݑ + Δݑ௦ 11 + ቚ ቚݒݒ ,
,ݒ)݃ (ᇱݒ = 11 + ቀݒ − ݒᇱݒ߬ ቁଶ ,
ௗିݑ = ݑ ൭1 − ௦ݑ − ݑݑ ,ݒ)݃ ᇱ)൱ݒ ,

 

where ݒ = ′ݔ − ݒ  represents the relative velocity, ݒ  is the initial velocity, ݑ  is the kinetic 
friction coefficient, ݑ௦  is the static friction coefficient, Δݑ௦  is the conditioning parameter of 
maximum static friction, ݒ is the conditioning parameter of mean velocity, ߬ is the delay time, 
and ݇ represents stiffness. 

This model introduces transient relative motion acceleration and considers varying static 
friction nature, maximum static friction nature, Stribeck effect, pre-slip effect, and friction 
hysteresis to accurately reflect the features of dry friction. Moreover, the formulation of this model 
is simple and easy to understand and calculate. Hence, this model is selected for further 
computation and analysis in this paper. 

On the basis of Eq. (3) and Table 1, the properties of hysteretic friction are presented in Fig. 6. 

 
Fig. 6. Characteristic diagram of hysteretic friction 
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Table 1. Parameters for calculation of dry friction properties 
Nomenclature Physical quantities/Unit Value 

Static friction coefficient ݑ௦ 0.6 
Kinetic friction coefficient ݑ 0.4 
Delay time ߬/ݏ 0.002 
Conditioning parameter of mean velocity ݒ 0.2 
Conditioning parameter of maximum static friction Δݑ௦ 0.03 

3. Calculation and analysis of multiple limit cycle properties of system 

According to Eqs. (1), (2), (6), and (7), system equations are highly nonlinear. Using analytical 
methods to solve multiple limit cycle oscillation properties of the system can be  
difficult; hence, a numerical method is selected. Typical numerical methods include the Euler 
method, shooting method, and Runge-Kutta method. 

The Euler method is the earliest numerical method used to solve the initial value problem of 
first-order ordinary differential equations. Considering its low calculation accuracy and gross  
error, the Euler method is seldom used in practical calculation. The shooting method is also a 
typical method used to calculate nonlinear vibration and is usually applied to solve the response 
given the period or to solve the period given the response. This method is mainly used in weak 
linear issues. Given that the dry friction model in this paper is strongly linear, the shooting method 
is unsuitable to be applied. By contrast, the Runge-Kutta method is widely used because this 
method can be conveniently employed using Matlab. Considering its ability to make the equation 
solution smooth enough and to obtain relatively high calculation accuracy, the Runge-Kutta 
method is used for the numerical calculation in this paper. 

3.1. Numerical calculation of multiple limit cycle properties of dual-cylinder dual-pad brake 
system 

With aid from the cooperating brake manufacturer, the dual-cylinder dual-pad brake system is 
proposed. Subsequently, the dynamic model of the brake system is developed. Wojewoda 
hysteresis model is selected to search the phenomenon of multiple limit cycles caused by dry 
friction. The Runge-Kutta method is employed to calculate the multiple limit cycle properties of 
the proposed brake. The data needed in calculation are listed in Tables 1 and 2. 

Table 2. System structure parameters 

Nomenclature Physical 
quantities/Unit Value Nomenclature Physical 

quantities/Unit Value 

Mass of brake pad 1 ݉ଵ / kg 0.5 Mass of brake pad 2 ݉ଶ / kg 0.5 
Linear stiffness 

coefficient ݇ଵଵ / N⋅m-1 1×106 Linear stiffness 
coefficient ݇ଶଵ / N⋅m-1 1×106 

Square stiffness 
coefficient ݇ଵଶ / N⋅m-2 1×106 Square stiffness 

coefficient ݇ଶଶ / N⋅m-2 1×106 

Cube stiffness 
coefficient ݇ଵଷ / N⋅m-3 1×106 Cube stiffness 

coefficient ݇ଶଷ / N⋅m-3 1×106 

Damping ܿଵ / N⋅m⋅s-1 150 Damping ܿଶ / N⋅m⋅s-1 150 
Connecting stiffness ݇ / N⋅m-1 1×10^4 Viscous damping ܿ / N⋅m⋅s-1 50 

Brake pressure during braking with varying time is calculated using the selected parameters 
[19]. The results are illustrated in Fig. 7. 

Fig. 7 shows that the brake pressure ܨே is stabilized in around 6000 N. To calculate system 
dynamics during braking, ܨே = 6000 N is selected. Considering the symmetry of the two brake 
pads, only the vibration of the left brake (brake pad 1) is studied. The diagram of displacement of 
brake pad 1 under different initial excitation and the bifurcation diagram of initial brake speed are 
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shown in Fig. 8. 
Fig. 8 shows the bifurcation relationship between the displacement of brake pad 1 and speed 

under different initial excitation. Brake pad 1 tends to the equilibrium point when initial brake 
speed ݒ > 10 m/s. With the gradual decrease of initial brake speed, Hopf bifurcation, which 
generates limit cycles, appears in the system, with the corresponding ݒ = 10 m/s initial brake 
speed of Hopf. When the initial brake speed 1.8 m/s  < ݒ < 10 m/s, weak initial excitation 
induces small stable limit cycles, and the amplitude of vibration of the brake system is relatively 
small, and vice versa. When the initial brake speed decreases further until ݒ < 1.8 m/s, the system 
generates relatively large limit cycles regardless of weak or strong initial excitation, which means 
that the amplitudes of vibration of the brake system are relatively large. 

 
Fig. 7. Diagram of brake pressure varying with time

 

 
Fig. 8. Bifurcation diagram of ݉ଵݔଵ-ݒ with  ܨே = 6000 N brake pressure 

Different initial speeds are determined as ݒ = 12 m/s, 10 m/s, and 1.8 m/s, and the dynamics 
of brake pad 1 under different initial excitations are calculated (Fig. 9). 

 
a) 

 
b) 

Fig. 9. Dynamics of ݉ଵ given ݒ = 12 m/s: a) ݔଵ − ଵᇱݔ  phase diagram of brake pad 1 under  
weak initial excitation; b) ݔଵ − ଵᇱݔ  phase diagram of brake pad 1 under strong initial excitation 

Fig. 9 describes the motion dynamics of brake pad 1 under different initial excitations and 
12 m/s initial braking speed. The phase diagram of brake pad 1 gradually tends to an equilibrium 
point without stick-slip motion regardless of strong or weak initial excitation. The final 
equilibrium point is kept unchanged under different initial excitations. 

Fig. 10 illustrates the motion dynamics of brake pad 1 under different initial excitations with 
10 m/s initial braking speed. When the initial excitation is weak, the phase path of brake pad 1 
finally tends to a limit cycle, wherein brake pad 1 obeys a single periodic motion with 0.042 mm 
amplitude and 223 Hz frequency [Fig. 10(a)]. When the initial excitation is strong, the phase path 
of brake pad 1 finally tends to a limit cycle, wherein brake pad 1 obeys a single periodic motion 
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with 13.3 mm amplitude and 223 Hz frequency [Fig. 10(b)]. When the initial braking speed is 
10 m/s, a small stable limit cycle and a large limit cycle under different initial excitations exist. 
An unstable limit cycle with 9.6 mm amplitude exists between these two cycles. 

 
a) 

 
b) 

 
c) 

Fig. 10. Dynamics of ݉ଵ given ݒ = 10 m/s: a) ݔଵ − ଵᇱݔ  phase diagram, Poincare sections, and FFT 
spectrogram of brake pad 1 under weak initial excitation; b) ݔଵ − ଵᇱݔ  phase diagram, Poincare sections,  

and FFT spectrogram of ݉ଵ under strong initial excitation; c) multiple limit cycles of the system 

Fig. 11 represents the motion dynamics of brake pad 1 under different initial excitations with 
1.8 m/s initial braking speed. When the initial excitation is weak, the phase path of brake pad 1 
finally tends to a limit cycle, wherein brake pad 1 obeys a single periodic motion with 6.5 mm 
amplitude and 223 Hz frequency [Fig. 11(a)]. When the initial excitation is strong, the phase path 
of brake pad 1 finally tends to a limit cycle, wherein brake pad 1 obeys a single periodic motion 
with 15.5 mm amplitude and 223 Hz frequency [Fig. 11(b)]. When the initial braking speed is 
1.8 m/s, a small stable limit cycle and a large limit cycle under different initial excitations exist. 
An unstable limit cycle with 1.65 mm amplitude exists between these two cycles. 

On the basis of Figs. 8 to 12, the peculiarities of multiple limit cycles of the brake system under 
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different initial speeds are summarized in Table 3. 
Based on Figs. 8-11 and Table 3, the conclusions are drawn as follows: 
1) The brake frequency of dual-cylinder dual-pad brake is ݂ = 220 Hz, which implies 

oscillation of the braking process. Oscillation occurs when dry friction generates stick-slip motion 
between brake pads and disc brakes. Oscillation is the phenomenon wherein stable limit cycles 
appear on the phase diagram. 

 
a) 

 
b) 

 
c) 

Fig. 11. Dynamics of ݉ଵ given ݒ = 1.8 m/s: a) ݔଵ − ଵᇱݔ  phase diagram, Poincare sections, and FFT 
spectrogram of ݉ଵ under weak initial excitation; b) ݔଵ − ଵᇱݔ  phase diagram, Poincare sections, and FFT 

spectrogram of ݉ଵ under strong initial excitation; c) multiple limit cycles of the system 

2) Regarding the dual-cylinder dual-pad brake system, the number of its limit cycles changes 
with varying initial braking speed. A small and a large stable limit cycle exist in the system when 
the initial braking speed ݒ is in the range of 1.8 mm to 10 mm. Moreover, an unstable limit cycle 
exists between the two stable limit cycles. However, when the initial braking speed ݒ < 1.8 m/s, 
only the small stable limit cycle exists. The large and the unstable limit cycles disappear. Although 
the amplitude of the small limit cycle is small, its frequency of vibration is high enough to cause 
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damage to the entire system. 
3) The amplitudes of the limit cycles of the dual-cylinder dual-pad brake system also change 

with varying initial braking speed. With increasing initial braking speed, the amplitude of the large 
stable limit cycle gradually increases; the amplitude of the small stable limit cycle gradually 
decreases; and the amplitude of the unstable limit cycle gradually decreases. However, when the 
initial braking speed is less than a certain value, both the small stable and unstable limit cycles 
disappear, leaving one large unstable limit cycle. 

Table 3. Peculiarities of multiple limit cycles of brake system under different initial speeds 
Initial brake 

speed ݒ (m/s) 
Amplitude of large stable 

limit cycles (mm) 
Amplitude of small stable 

limit cycles (mm) 
Amplitude of unstable 

limit cycles (mm) 
10 13.3 0.42 9.6 
1.8 15.5 0.65 1.65 

3.2. Effects of brake pressure on peculiarities of multiple limit cycles 

To analyze the effects of brake pressure on the peculiarities of multiple limit cycles,  ܨே = 6000 N, ܨே = 5000 N, ܨே = 2000 N are selected for the investigation according to Fig. 7. 
The obtained system ݔଵ-ݒ bifurcation diagrams are shown in Figs. 12(a) to 12(c). 

 
a) ܨே = 6000 N 

 
b) ܨே = 5000 N 

 
c) ܨே = 2000 N 

Fig. 12. ݔଵ-ݒ bifurcation diagram of ݉ଵ under different brake pressure  

Fig. 12 presents the bifurcation relationship between the displacements and speeds of brake 
pad 1 under different initial excitations. This bifurcation diagram is obtained by using Poincare 
sections method. ݔଵᇱ = 0 is used to extract the phase diagram obtaining two corresponding values 
of ݔଵ and is used to select the larger value to draw the bifurcation diagram. According to Figs. 10 
and 11, the large stable limit cycle is symmetric around the vertical axis; hence, the displacement 
of ݔଵ is extracted and regarded as the approximation of the amplitude. The small limit cycle is not 
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symmetric around the vertical axis but to a point which means the extracted value of ݔଵ is not the 
true value of the amplitude. However, the variation trend of amplitudes can be reflected on the 
bifurcation diagram. 

Fig. 12 describes the peculiarities of the multiple limit cycles of brake pad 1 under  ܨே = 6000 N brake pressure. Hopf bifurcation of braking oscillation in the brake system appears 
when the initial breaking speed is 10 m/s. Multiple limit cycles appear when the initial braking 
speed ranges from 1.8 m/s to 10 m/s. The small stable and unstable limit cycles disappear when 
the initial breaking speed is 1.7 m/s. The maximum amplitude of the large stable limit cycle is 
15.7 mm. Moreover, the small stable limit cycle gradually increases with decreasing speed. Hence, 
the corresponding maximal amplitude of small stable limit cycle appears when the initial braking 
speed is 1.8 m/s. The unstable limit cycle gradually decreases with decreasing speed. Therefore, 
the corresponding maximal amplitude of unstable limit appears when the initial breaking speed  
is 10 m/s. 

Fig. 12(b) describes the peculiarities of multiple limit cycles of brake pad 1 under  ܨே = 5000 N brake pressure. Hopf bifurcation of braking oscillation in the brake system appears 
when the braking speed is 8.4 m/s. Multiple limit cycles appear when the initial braking speed 
ranges from 1.6 m/s to 8.4 m/s. The small stable and unstable limit cycles disappear when the 
initial braking speed is 1.5 m/s. The maximal amplitude of the large stable limit cycle is 13 mm. 
Furthermore, the corresponding maximal amplitude of the small stable limit cycle appears when 
the initial braking speed is 1.6 m/s. The maximal amplitude of the unstable limit cycle appears 
when the initial braking speed is 8.4 m/s. 

Fig. 12(c) illustrates the peculiarities of multiple limit cycles of brake pad 1 under  ܨே = 2000 N brake pressure. Hopf bifurcation of braking oscillation appears in the brake system 
when the initial braking speed is 3.3 m/s. Multiple limit cycles appear when the initial braking 
speed ranges from 1.2 m/s to 3.3 m/s. The small stable and unstable limit cycles disappear when 
the initial braking speed is 1.1 m/s. The maximal amplitude of the large stable limit cycle is 
5.1 mm. Moreover, the corresponding maximal amplitude of the small stable limit cycle appears 
when the initial braking speed is 1.2 m/s. The maximal amplitude of the unstable limit cycle 
appears when the initial braking speed is 3.3 m/s. 

To study the influence of brake pressure on the maximal amplitude of the small stable and 
unstable limit cycles, according to the aforementioned analysis, (a) ܨே = 6000 N, ݒ = 10 m/s;  
(b) ܨே = 6000 N, ݒ = 1.8 m/s; (c) ܨே = 5000 N, ݒ = 8.4 m/s; (d) ܨே = 5000 N, ݒ = 1.5 m/s; 
(e) ܨே = 2000 N, ݒ = 3.3 m/s; and (f) ܨே = 2000 N, ݒ = 1.2 m/s are selected to obtain the 
diagrams of motion peculiarities of brake pad 1 under different initial excitations. 

 
a) ݒ = 10 m/s 

 
b) ݒ = 1.8 m/s 

Fig. 13. Motion peculiarities of ݉ଵ under different initial speeds given ܨே = 6000 N 

On the basis of the aforementioned analysis and Fig. 12, the amplitude of unstable limit cycle 
reaches the maximum 9.6 mm when ܨே = 6000 N and ݒ = 10 m/s. In addition, the amplitude of 
small stable limit cycle reaches its maximum 0.65 mm when ݒ = 1.8 m/s. 

-0.02 -0.01 0 0.01 0.02
-30

-20

-10

0

10

20

30

x1(m)

x 1
(m

/s
)

 

 
Stable limit cycle
Unstable limit cycle

-0.02 -0.01 0 0.01 0.02
-30

-20

-10

0

10

20

30

x1(m)

x 1
(m

/s
)

 

 
Stable limit cycle
Unstable limit cycle



1810. MULTIPLE LIMIT CYCLES OF A DUAL-CYLINDER DUAL-PAD BRAKE SYSTEM CAUSED BY DRY FRICTION.  
DAOGAO WEI, LILI LI, WEI SHI, TIANPEI LI, JIYU ZHANG 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. NOV 2015, VOLUME 17, ISSUE 7. ISSN 1392-8716 3961 

The amplitude of unstable limit cycle reaches the maximum 8.2 mm when ܨே = 5000 N and ݒ = 8.4 m/s, and the amplitude of small stable limit cycle reaches its maximum 0.5 mm when ݒ = 1.6 m/s (Fig. 14). 
The amplitude of unstable limit cycle reaches the maximum 3 mm when ܨே = 2000 N and ݒ = 3.3 m/s, and the amplitude of small stable limit cycle reaches its maximum 0.2 mm when ݒ = 1.2 m/s (Fig. 15).  
On the basis of the aforementioned analysis, we obtain the effects of different pressure on the 

peculiarities of multiple limit cycles (see Table 4). 

 
a) ݒ = 8.4 m/s 

 
b) ݒ = 1.6 m/s 

Fig. 14. Motion peculiarities of ݉ଵ under different initial speeds given ܨே = 5000 N 

 
a) ݒ = 3.3 m/s 

 
b) ݒ = 1.2 m/s 

Fig. 15. Motion peculiarities of ݉ଵ under different initial speeds given ܨே = 2000 N 

Table 4. Effects of different pressure on peculiarities of multiple limit cycles 
Brake 

pressure ܨே 
(N) 

Maximal amplitude 
of large stable limit 

cycle (mm) 

Maximal amplitude 
of small stable limit 

cycle (mm) 

Maximal amplitude 
of unstable limit 

cycle (mm) 

Speed range where 
exist multiple limit 

cycles (m/s) 
6000 15.7 0. 65 9.6 [1.8, 10] 
5000 13 0. 5 8.2 [1.6, 8.4] 
2000 5.1 0. 2 3 [1.2, 3.3] 

Based on Figs. 12 to 15 and Table 4, the conclusions are drawn as follows: 
1) With increasing brake pressure, the maximal amplitudes of large and small stable limit 

cycles and unstable limit cycles correspondingly increase. 
2) With increasing brake pressure, the speed of Hopf bifurcation point increases. Moreover, 

the corresponding initial speed when the small stable limit cycle and the unstable limit cycle 
disappear accordingly increases. The speed range where multiple limit cycles exist also increases. 
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3.3. Effects of combination of kinetic and static friction coefficients on peculiarities of 
multiple limit cycles. 

To investigate the effects of friction coefficients on the peculiarities of multiple limit cycles, 
combinations of different kinetic and static friction coefficients are selected and considered as the 
research object to obtain different combination of ݔଵ-ݒ bifurcation diagrams (see Figs. 16(a)  
to 16(c)). 

Fig. 16 describes the peculiarities of multiple limit cycles of brake pad 1 under combinations 
of different kinetic and static friction coefficients. Figs. 16(a) and 16(b) describe the peculiarities 
of multiple limit cycles under combinations of ݑ = ௦ݑ ,0.4  = 0.6 and ݑ = ௦ݑ ,0.4  = 0.8, 
respectively. The bifurcation characteristics of the two combinations are identical. The initial 
braking speed when the brake system yields Hopf bifurcation of brake oscillation is 10 m/s. The 
range of initial braking speed when multiple limit cycles appear is 1.8 m/s to 10 m/s. The initial 
braking speed when the small stable limit cycle and the unstable limit cycle disappear is 1.7 m/s. 
The maximal amplitude of the large stable limit cycle is 15.7 mm. The corresponding maximal 
amplitude of the small stable limit cycle appears when the initial braking speed is 1.8 m/s. The 
maximal amplitude of the unstable limit cycle appears when the initial braking speed is 10 m/s. 

Fig. 16(c) shows the peculiarities of multiple limit cycles for the combination of ݑ ௦ݑ  ,0.3 = = 0.6. The initial braking speed when the brake system yields Hopf bifurcation of brake 
oscillation is 7.6 m/s. The range of the initial braking speed when multiple limit cycles appear is 
1.6 m/s to 7.6 m/s. The initial braking speed when small stable limit cycle and the unstable limit 
cycle disappear is 1.5 m/s. The maximal amplitude of the large stable limit cycle is 11.5 mm. The 
corresponding maximal amplitude of the small stable limit cycle appears when the initial braking 
speed is 1.6 m/s. The maximal amplitude of the unstable limit cycle appears when the initial 
braking speed is 7.6 m/s.  

 
a) ݑ ௦ݑ ,0.4 = = 0.6 

 
b) ݑ = ௦ݑ ,0.4 = 0.8 

 
c) ݑ = ௦ݑ ,0.3 = 0.6 

Fig. 16. 0ݒ-1ݔ bifurcation diagrams of ݉1 displacements under combinations of different kinetic  
and static friction coefficients 
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a) ݒ = 10 m/s 

 
b) ݒ = 1.8 m/s 

Fig. 17. Motion peculiarities of ݉ଵ under different initial speeds given ݑ ௦ݑ ,0.4 = = 0.6 

 
a) ݒ = 10 m/s 

 
b) ݒ = 1.8 m/s 

Fig. 18. Motion peculiarities of ݉ଵ under different initial speeds given ݑ ௦ݑ ,0.4 = = 0.8 

 
a) ݒ = 7.6 m/s 

 
b) ݒ = 1.6 m/s 

Fig. 19. Motion peculiarities of ݉ଵ under different initial speeds given ݑ ௦ݑ ,0.3 = = 0.6 

The corresponding initial braking speeds of the maximal amplitudes of small stable limit 
cycles and unstable limit cycles under different combinations are selected as follows to study the 
peculiarities of multiple limit cycles. 

According to the aforementioned analysis and Fig. 17, if ݑ = ௦ݑ ,0.4  = 0.6: 1) When  ݒ = 10 m/s, the amplitude of unstable limit cycle reaches the maximum value of 9.6 mm; and 
2) when ݒ = 1.8 m/s, the amplitude of small stable limit cycle reaches the maximum value of 
0.65 mm. 

If ݑ ௦ݑ ,0.4 = = 0.8: 1) When ݒ = 10 m/s, the amplitude of unstable limit cycle reaches the 
maximum value of 9.6 mm; and 2) when ݒ = 1.8 m/s, the amplitude of small stable limit cycle 
reaches the maximum value of 0.65 mm (Fig. 18). 

If ݑ ௦ݑ ,0.3 = = 0.45: 1) When ݒ = 7.6 m/s, the amplitude of unstable limit cycle reaches 
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the maximum value of 7.5 mm; and 2) when ݒ = 1.6 m/s, the amplitude of small stable limit 
cycle reaches the maximum value of 0.45 mm (Fig. 19).  

The effects of combinations of different static and kinetic friction coefficients on the 
peculiarities of multiple limit cycles are summarized in Table 5. 

Table 5. Effects of combinations of different static and kinetic friction coefficients  
on peculiarities of multiple limit cycles 

Kinetic 
friction 

coefficient ݑ    

Static 
friction 

coefficient ݑ  ௦  

Maximal 
amplitude of 
large stable 
limit cycle 

(mm) 

Maximal 
amplitude of 
small stable 
limit cycle 

(mm) 

Maximal 
amplitude of 
unstable limit 
cycle (mm) 

Speed range 
where exist 

multiple limit 
cycles (m/s) 

0.4 0.6 15.7 0.65 9.6 [1.8, 10] 
0.4 0.8 15.7 0.65 9.6 [1.8, 10] 
0.3 0.6 11.5 0.45 7.5 [1.6, 7.6] 

Based on Figs. 16-19 and Table 5, the conclusions are drawn as follows: 
1) Through comparison of the data between ݑ ௦ݑ ,0.4 = = 0.6 and ݑ ௦ݑ ,0.4 = = 0.8, the 

amplitudes of limit cycles and the speed range where multiple limit cycles exist are identical under 
the same kinetic friction coefficient and different static friction coefficients. This phenomenon 
verifies that static friction coefficient has few effects on the peculiarities of multiple limit cycles. 

2) Through comparison of the data between ݑ ௦ݑ ,0.4 = = 0.6 and ݑ ௦ݑ ,0.3 = = 0.6, under 
the same static friction coefficient and different kinetic friction coefficients, the larger the kinetic 
friction coefficient is, the larger the amplitudes of limit cycles and speed range where multiple 
limit cycles appear are. This phenomenon shows the significant influence of kinetic friction 
coefficients on the peculiarities of limit cycles.  

3.4. Effects of mass ratio on peculiarities of multiple limit cycles 

Assuming the mass ratio of ݉ଵ to ݉ଶ to be ߜ, given ݒ = 6 m/s, the obtained ݔଵ-ߜ bifurcation 
diagram is shown in Fig. 20. 

Fig. 20 illustrates the peculiarities of multiple limit cycles of brake pad 1 with different mass 
ratio. The amplitude of the large stable limit cycle progressively increases with increasing mass 
ratio [Fig. 20(a)]. The amplitude of small stable limit cycle initially increases and then decreases 
with increasing mass ratio and the amplitude reaches maximum value when ߜ = 1 [Fig. 20(b)]. 

 
a) Global diagram 

 
b) Diagram of partially enlarged details 

Fig. 20. ݔଵ-ߜ bifurcation diagram of the displacements of ݉ଵ given ݒ = 6 m/s 

4. Conclusions 

1) With aid from the cooperating brake manufacturer, a floating caliper-based dual-cylinder 
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dual-pad brake system is proposed. The dynamic model of the system is developed incorporating 
Wojewoda hysteresis dry friction model. Results showed that the system suffer from multiple limit 
cycle oscillation over a certain range of braking speed. Its phase diagram presents a stable limit 
cycle with a large amplitude, a stable limit cycle with a small amplitude, and a phenomenon of an 
unstable limit cycle between two cycles. 

2) With decreasing initial braking speed ݒ, the amplitudes of large and small stable limit 
cycles increase, and the amplitude of the unstable limit cycle decreases. When the initial braking 
speed ݒ is below a certain value, both the unstable limit cycle and the small limit cycle disappear. 

3) With increasing brake pressure, the maximum amplitudes of the large stable limit cycle, the 
small stable limit cycle, and the unstable limit cycle correspondingly increase. The speeds of 
disappearance for the small stable limit cycle and the unstable limit cycle accordingly increase. In 
addition, the speed range of multiple limit cycles increases. 

4) The larger the kinetic friction coefficient is, the larger the amplitudes of multiple limit cycles 
and the speed range where multiple limit cycles exist are. On the contrary, the static friction 
coefficients have no significant effect on the peculiarities of multiple limit cycles. 

5) With increasing mass ratio of ݉ଵ  to ݉ଶ , the amplitude of the large stable limit cycle 
increases by degrees, whereas the amplitude of the small stable limit cycle initially increases then 
decreases. 
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