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Abstract. For machinery product experienced several operating conditions, this paper proposes a 
framework of fuzzy reliability analysis of machinery accelerated testing. Due to the non-stationary 
of the vibration signals, a Gaussian mixture model (GMM) method is introduced to obtain the 
degradation index through calculating the overlap between current feature set and the historical 
baseline set. The features in four domains are extracted. Considered that the uncertainties exit in 
feature extraction and health assessment, a fuzzy regression model is used to describe the 
degradation path at each operating condition and compute fuzzy quasi time to failures (q-TTFs). 
Meanwhile, the relationship between q-TTFs and environmental variables are identified by a 
linear model, through which the fuzzy reliability analysis can be conducted with the most 
appropriate lifetime distribution. An industrial application is used to verify the effectiveness of 
the proposed framework and the results have confirmed a good consistency with the true values. 
Keywords: machinery product, accelerated testing, fuzzy regression, uncertainty, reliability. 

1. Introduction 

In many engineering applications, such as airplanes, wind turbines and automobiles, rotating 
machinery parts are widely used and play a key role in their functions. Two commonly used 
machinery products are bearing and gear, which must have the attribute of high reliability [1]. The 
health monitoring of their status will not only prevent the unscheduled system downtime but also 
save related personnel and property losses. Thus, the research of condition-based maintenance 
(CBM) [1, 2] and prognostics and health management (PHM) [3] have being studied during the 
past decades. The purpose of the health monitoring is to tell that how far is the current state to 
system/component failure, i.e. remaining useful life (RUL), and make corresponding maintenance 
policy. A host of methods have been provided to conduct RUL prediction which are model-based, 
data-driven and hybrid models [1, 2, 4, 5]. 

The process of implementing CBM or PHM to machinery products is mainly consist of three 
aspects: data acquisition, data processing and maintenance decision support [2]. In general, the 
acquired data is vibration signal that cannot be directly used for RUL prediction, which is 
significantly different from electronic products or others whose degradation indexes are explicit, 
e.g. the light output of LEDs [6] and relative resistance in lithium-ion cells [7]. Although some 
statistical models can be applied to the vibration signals, there are still not a universal method. 
Thus, feature extraction methods are introduced to find the possible indexes that not be limited to 
time domain and can reflect the health status of the machinery products. 

Feature extraction methods are also called signal processing techniques [2] that is to acquire 
health indexes from the raw vibration signals. The most common methods are time-domain, 
frequency-domain, time-frequency and information-domain analysis [8-10]. For example, Huang, 
et al. [11] obtained six vibration features from the ball bearing signals, which then are used to train 
the back propagation neural network and produce a performance degradation indicator for residual 
life prediction. Ocak, et al. [12] selected the node energies of decomposition tree as the features 
for bearing failure prognostics. In some applications, the features from the vibration signal cannot 
be selected as degradation indexes due to the dynamic and non-stationary properties of the 
vibration signal, which may be influenced by the uncertainties of the ambient environment or the 



1830. FUZZY RELIABILITY PREDICTION OF ROTATING MACHINERY PRODUCT WITH ACCELERATED TESTING DATA.  
LE LIU, XIAO-YANG LI, WEI ZHANG, TONG-MIN JIANG 

4194 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. DEC 2015, VOL. 17, ISSUE 8. ISSN 1392-8716  

complexity of machinery failure mechanism. 
To solve above problem, a new aspect is proposed which considers that the machinery products 

are undergoing a gradual deterioration process. Thus, there must have some kind of difference 
between current status and historical health status using the extracted features. Liu, et al. [13] 
proposed a similarity-based method to quantitative the overlap between the distribution of the 
most recent status and the baseline health status and obtained an index named confidence value 
(CV) for health assessment. Following this idea, Liao, et al. [10] proposed a machine degradation 
assessment based on fixed cycle features test using Gaussian Mixture Model (GMM) and also 
used CV index to reflect the degradation status. 

The literature of machinery health assessment mainly concentrates on specific eminent 
environment. While for product experienced different operating conditions [8, 14, 15], limited 
papers make research on identifying the influence of environment variables to the failure of the 
system or product and enhance their reliability level. Meanwhile, the uncertainties in feature 
extraction and health assessment should be considered since they may affect user’s belief on the 
assessment results. The uncertainties may originate from geometry [16], measurements [17] or 
degradation process modeling [18], etc. 

Hence, based on abovementioned work, a framework of fuzzy reliability analysis of machinery 
accelerated testing is proposed in this paper. The paper is organized as follows: the proposed 
framework is given in Section 2. In Section 3, the features in four domains are obtained from raw 
vibration signals and the degradation indexes at each operating condition are acquired through 
GMM methods. In order to capture the inherent uncertainties in the degradation indexes, a fuzzy 
regression method is used to model the degradation path through which the fuzzy quasi time to 
failures (q-TTFs) are obtained in Section 4. Meanwhile, a linear model is provided to identify the 
relationship between q-TTFs and the operating conditions. In Section 5, the fuzzy reliability 
analysis is given with the selection of lifetime distribution. Section 6 illustrates an application of 
bearing accelerated degradation data from IEEE PHM 2012 data challenge to validate the 
effectiveness of the proposed framework in rotating machinery products. Discussions and 
conclusions are presented in Section 7 and 8. 

2. The proposed framework of fuzzy analysis for machinery accelerated testing 

The proposed framework of fuzzy analysis of machinery accelerated testing is given in Fig. 1. 
The framework consists of three parts: degradation index acquisition, degradation modeling and 
fuzzy reliability analysis. 

The first part is to obtain a degradation index from the raw vibration signals to reflect the health 
status of products. We at first de-noised the signals, if needed, by wavelet method to eliminate the 
extra influence of environmental noise. Then, the features in four domains, i.e. time, frequency, 
time-frequency and information domains, are extracted to obtain the overall information of 
products. Since the feature set is high dimensional, principal component analysis (PCA) method 
is introduced to reduce the dimension of the feature set based on the cumulated percentage of the 
principal components. After that, the GMM method is used to compute the degradation index by 
evaluating the overlap rate (CV) between the baseline features with the real-time ones. If the CV 
is near 1, the real-time health status is approximately normal, otherwise deterioration. 

The second part is to model the degradation path of CV results and obtain the q-TTFs at each 
accelerated operating conditions. Due to the inherent uncertainties in feature extraction and health 
assessment, a fuzzy regression method is used to model the CV results with fuzziness and 
extrapolate the q-TTFs with the failure threshold. Before the fuzzy q-TTFs is used for reliability 
analysis, the acceleration model should be given to transfer the q-TTFs in accelerated operating 
conditions to normal ones. Thus, a linear model is used to find the relationship between the q-
TTFs and the environmental variables. In addition, the contribution of each environmental 
variable or their combination to the failure of products can be expressed by the coefficients of the 
linear model. 
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The last part is to conduct fuzzy reliability analysis based on the fuzzy q-TTFs in normal 
operating condition, which can provide reliable information for maintenance decision-making 
through reliability, MTTF or other indexes. The following sections will address the analysis of 
accelerated testing with vibration data in detail. 

 
Fig. 1. The framework of fuzzy analysis of machinery accelerated testing 

3. The degradation index 

To implement the reliability prediction for machinery products which experience a gradual 
deterioration process that cannot be directly acquired from raw vibration data, feature extraction 
methods are used to find the degradation features. In general, one feature may be not enough to 
reflect the degradation status. For instance, the kurtosis factors from the vertical accelerometer 
signal is suitable for describing a gradual degradation for some bearings, but not for others [15]. 
Thus, the integration of multiple features is needed which can comprehensively reflect the 
degradation state of products. In this part, the degradation index CV is obtained by GMM method 
using features from four domains, which quantifies the overlap rate between current feature set 
(degradation status) and baseline set (normal status). 

3.1. Feature extraction and principal component analysis 

Feature extraction is to understand the performance of machinery product from the vibration 
signal (ݐ)ݏ  at different aspect, which mainly includes time-domain, frequency-domain, 
time-frequency domain and information entropy as follows [2, 3]. 

3.1.1. Time-domain 

The time-domain features present the transient variation of the vibration signal, which can 
directly reflect the health status of the products. In general, the features can be obtained from the 
statistical analysis, e.g. mean, variance, root mean square, peak, peak index, skewness, kurtosis, 
waveform, pulse and margin index, etc. 

3.1.2. Frequency-domain 

The frequency-domain features are transformed from the original time-domain signal using 
spectrum analysis, e.g. fast Fourier transform (FFT), to have a comprehensive understanding of 
the signal over the whole spectrum, e.g. the center frequency, mean square frequency and 
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frequency variance. 

3.1.3. Time-frequency domain 

The time-frequency analysis method utilizes the strengths for both time-domain and 
frequency-domain analysis, and reflects the signal energy into two directions for the purpose of 
capturing fault pattern and conducting failure prognostics. In general, wavelet packet 
decomposition (WPD) and Hilbert-Huang transform (HHT) are widely used for time-frequency 
analysis. The energy of the first eight nodes from WPD method, which is decomposed into 4 layers 
with Daubechies wavelet as the mother wavelet, and HHT energy are selected as the features in 
this domain. 

3.1.4. Information entropy 

Information entropy is a measure of the uncertainty of the signal. A higher value indicates a 
higher uncertainty of the signal. Following this idea, the marginal spectrum entropy, HHT 
marginal spectrum entropy and HHT energy spectrum entropy are computed for feature analysis. 

Assumed that ݊  signals are recorded during the experiment. The feature set is ܆ = ,ଵݔൣ ,ଶݔ … , ݔ ൧′, whereݔ = ,ଵݔ] ,ଶݔ … ,  ܆ ,]. To reduce the effect of different feature unitݔ
is normalized into [0, 1] for each feature by ݔ = ቀݔ − min(ݔି)ቁ ൫max(ݔି) − min(ݔି)൯ൗ , ݆ =  .and its mean value ܆ ି are the ݅th row of feature setݔ̅ ି andݔ ,݊ ,…,2 ,1

The high dimensional feature set will led to the curse of dimensionality and cause heavy 
computational effort on the calculations. To facilitate the process of health assessment, PCA 
method [19] is introduced, which is a linear dimension reduction method through mapping the 
original set to a orthogonal space while minimizing the total squatted reconstruction error. 

The × covariance matrix ܴ௫ and its eigenvalue analysis are: ܴ௫ = (ܺ − തܺ)(ܺ − തܺ)், ߥߣ = ܴ௫ߥ, (1)

where, ߭ is the eigenvector, and ߣ is a diagonal matrix where the eigenvalues are in descending 
order. The cumulated percentage from eigenvalue 1 to ݇ is defined as ܥ ܲ = ∑ ୀଵߣ ∑ ୀଵൗߣ . In 
engineering applications, it is acceptable to reduce the feature dimension with a ܲܥ value around 
[0.8, 0.9], while 0.8 is used in this paper. Then, the reduced ݇×݊ dimensional feature set ܇ can be 
given by Eq. (2): ܇ = ଵ:்ߥ (2) .܆

3.2. Acquiring degradation index through GMM method 

Based on the new ݇ dimensional feature set, the next step is to acquire the degradation index. For 
bearings, a gradual deterioration may happen due to ball wearing or inner impurity particles, which 
means that the extracted features should present the changing process. For instance, during the first ݉ monitor intervals, the tested product is in health status. With the time goes on, the most recent ݉ 
intervals should be in a partially degradation status. Following this idea, a GMM modeling method 
is introduced to obtain the degradation index through the measure of overlap rate [10, 20, 21]. 

Supposed that ܡ = ,ଵݕ] ,ଶݕ … ,  The .܇ ] present one status with the ݉ columns of feature setݕ
probability density function (PDF) of ݕ, ݍ = 1, 2,…, ݉, follows a mixture distribution with ܰ 
Gaussian components that is: 

݂൫ݕ൯ =  ߱ܰ݉ݎ൫ݕหૄ, ൯ேୀଵ , (3)
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where, ߱ is the weight of the th mixture and ܰ݉ݎ൫ૄ, ൯ is: ܰ݉ݎ൫ݕหૄ, ൯ = ି(ߨ2) ଶ⁄ หหିଵ ଶ⁄ expቂ− 1 2⁄ ൫ݕ − ૄ൯ᇱΣି ଵ൫ݕ − ૄ൯ቃ. (4)

Through the expectation maximization (EM) algorithm, the values of unknown parameters, 
i.e. ߱, ߤ, Σ, will be obtained when the likelihood function value ܡ)ܮ|ૄ, ) = ∏ ݂൫ݕ൯ୀଵ  is 
converged or the number of iteration reaches the maximum ݅୫ୟ୶ [10, 22].  

3.3. Basic EM algorithm for the estimation of GMM model parameters 

1) ݅ ← 0, initialize the unknown parameters for all Gaussian components, ߱(), ߤ(), Σ(). 
2) do ݅ ← ݅ +  :th component  in theݕ step: compute the posterior probability of sample of ܧ .1

,ݕ൫߱ห̂ ,(ିଵ)ߤ Σ(ିଵ)൯ = ,(ିଵ)ߤหݕ൫݉ݎܰ Σ(ିଵ)൯߱(ିଵ)∑ ,(ିଵ)ߤหݕ൫݉ݎܰ Σ(ିଵ)൯ ߱(ିଵ)ேୀଵ . (5)

 : and Σߤ ,step: update ߱ ܯ

߱() = 1݉  ,ݕ൫߱ห̂ ,(ିଵ)ߤ Σ(ିଵ)൯ୀଵ ()ߤ, = ∑ ,ݕ൫߱ห̂ ,(ିଵ)ߤ Σ(ିଵ)൯ݕୀଵ∑ ,ݕ൫߱ห̂ ,(ିଵ)ߤ Σ(ିଵ)൯ୀଵ , 
Σ() = ∑ ,ݕ൫߱ห̂ ,(ିଵ)ߤ Σ(ିଵ)൯൫ݕ − ݕ(ିଵ)൯൫ߤ − (ିଵ)൯ᇱୀଵߤ ∑ ,ݕ൫߱ห̂ ,(ିଵ)ߤ Σ(ିଵ)൯ୀଵ .

(6)

3) end if ݅ = ݅୫ୟ୶ or ห൫ܮ − ห(ିଵ)ܮ/൯(ିଵ)ܮ <  .ߝ

Therefore, the GMM model for each ݉-interval (i.e. one health state) can be computed through 
abovementioned algorithm. The confidence value (CV) between the baseline model (i.e. normal 
state) ݂ and the most recent ℎth model ݂ can then be calculated by the overlap between two 
GMM models [10, 23]: 

ܥ ܸ =  ݂(ݕ) ݂(ݕ)݀ݕቈට൫ ݂(ݕ)൯ଶ݀ݕ ට൫ ݂(ݕ)൯ଶ݀ݕ.
(7)

If the ℎth state is still in normal, the CV value will be near 1. Otherwise, it will be near 0 if the ℎth state is barely normal which indicates the corresponding maintenance should be given to avoid 
the system failure. Hence, the CV results can be used as the degradation index for machinery 
product health assessment. 

4. Degradation modeling and acceleration model 

Given the degradation index from the vibration data under different operating conditions, the 
assessment of reliability and lifetime for machinery products can be conducted after extrapolating 
q-TTFs based on the degradation index. In this paper, we consider the uncertainties from 
information loss when acquiring features from raw vibration data, and CV calculation by 
Mahalanobis distance (M-D). The inherent uncertainties are not negligible since that they have 
influence on the credibility of the user’s belief on the reliability and lifetime assessment results. 
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Thus, the fuzzy regression method is used to model the degradation paths for CV results with 
fuzzy theory. Similar applications are referred to [17, 18].  

In this section, the basic fuzzy arithmetic is at first introduced for fuzzy calculations. Then, the 
modeling process using fuzzy regression model is illustrated in order to obtain the fuzzy q-TTFs 
at different operating conditions. After that, the acceleration model is identified to establish the 
relationship between failure times and operating conditions since the reliability prediction is 
conducted at normal operating condition. 

4.1. Basic fuzzy arithmetic 

Zadeh [24] introduced fuzzy set theory to solve the problem of uncertainty due to imprecise or 
vague through applying a membership function to data rather than crisp one. Membership 
functions, e.g. triangular, rectangular or trapezoidal, are widely used. Without loss of generality, 
triangular membership function is selected to simply the calculations. Let ෨ܺ = ,ݔ̅)݂݊ݐ ݈,  be a (ݎ
fuzzy number with triangular membership function, see Fig. 2. Herein, ̅ݔ , ݈  and ݎ  donate the 
center, left boundary and right boundary, respectively. The ߤ෨ (ݔ) ∈ [0, 1]  presents the 
membership value of ݔ in ෨ܺ, i.e.: 

෨ߤ (ݔ) =
۔ۖەۖ
,0ۓ ݔ ≤ ݔ̅ − ݈,1 + ݔ) − ,݈(ݔ̅ ݔ̅ − ݈ < ݔ ≤ 1,ݔ̅ − ݔ) − ,ݎ(ݔ̅ ݔ̅ < ݔ ≤ ݔ̅ + ,0,ݎ ݔ > ݔ̅ + .ݎ

 (8)

 
Fig. 2. Fuzzy number and its alpha-cuts 

The realization of fuzzy numbers are always conducted with alpha-cuts, which decomposes 
the membership function at the vertical axis with membership value ߙ  (see Fig. 2), i.e.  0 ≤ ߙ ≤ 1. The alpha-cuts of ෨ܺ is defined as: ෨ܺ[ߙ] = ሼߤ|ݔ෨ (ݔ) ≥ ሽߙ = ,(ߙ)ܿ] ,[(ߙ)݀ (9)

where, ܿ(ߙ) and ݀(ߙ) are increasing and decreasing function of ߙ with ܿ(ߙ) ≤ ߙ When .[25] (ߙ)݀ = 0, [ܿ(0), ݀(0)] is called the support of fuzzy number ෨ܺ. 
Assuming two triangular numbers ܣሚ  and ܤ෨  with their alpha-cuts, namely  ܣሚ[ߙ] = [ܿଵ(ߙ), ݀ଵ(ߙ)]  and ܤ෨[ߙ] = [ܿଶ(ߙ), ݀ଶ(ߙ)] , the operator can be calculated with basic 

interval arithmetic and alpha-cuts. The results of addition, subtraction, multiplication and division 
between two fuzzy numbers are ܥሚ[ߙ] = [ߙ]ሚܣ + [ߙ]ሚܣ ,[ߙ]෨ܤ − [ߙ]ሚܣ and [ߙ]෨ܤ[ߙ]ሚܣ ,[ߙ]෨ܤ ⁄[ߙ]෨ܤ , 
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respectively. Provided that zero does not belong to ܤ෨[ߙ] for all ߙ in division [18, 25]. Assuming 
a function is ℎ: [ܽ, ܾ] → ℛ, ෨ܼ = ℎ( ෨ܺ) is a fuzzy function and the membership function of ෨ܼ can 
be calculated through Zadeh’s extension principle, i.e. ߤ෨(ݖ) = sup௫ ሼߤ෨ (ݔ)ℎ|(ݔ) = ,ݖ ܽ ≤ ݔ ≤ ܾሽ. (10)

If ℎ is continuous, then the alpha-cuts for ෨ܼ, namely ෨ܼ[ߙ] = ,(ߙ)ଵݖ] (ߙ)ଵݖ :are [26] ,[(ߙ)ଶݖ = minሼℎ(ݔ), ݔ ∈ ෨ܺ[ߙ]ሽ, ݖଶ(ߙ) = maxሼℎ(ݔ), ݔ ∈ ෨ܺ[ߙ]ሽ. (11)

4.2. Fuzzy regression method and q-TTFs 

For the analysis of imprecise degradation data, fuzzy regression method is a powerful tool to 
model the degradation path containing the epistemic uncertainty by means of fuzzy theory. There 
are two options when using this method to model the degradation path. The first one utilizes a 
membership function to each degradation data. Then, the regression method with fuzzy parameters 
is used to model the degradation path [17, 27]. The second one directly uses the regression method 
to model the degradation path and select the (1-ߙ) 100 % confidence intervals of the parameters 
as their fuzzy estimators [18]. Taking the CV results in Section 3.2 as an example, the data are 
imprecise because of the inherent uncertainties. Since no prior information is given to establish 
the membership function for CV results, the second method is selected in this paper.  

In general, the degradation paths can be classified into three types: linear, convex and concave. 
Thus, the linear, exponential and power law relationships are widely used for degradation 
modeling. And, the basic regression model is defined as: 

(ݐ)ݕ = ;ݐ)ܦ (ߠ + ,ߝ ;ݐ)ܦ (ߠ = ቐܽ + ,ݐܾ linear,ܽ ⋅ exp(ܾݐ), exponential,ܽ ⋅ ,ݐ power, (12)

where, ܦ(·) is the expected degradation path, ߠ = [ܽ, ܾ] is the constant parameters, ߝ is the error 
term which follows normal distribution. Herein, one may use the statistical fitting indexes to select 
the most appropriate degradation model among the three candidate models in Eq. (12), e.g. ܴଶ 
and ܴௗଶ . Meanwhile, the unknown parameters of the selected degradation model can be estimated 
through least square method.  

Then, the (1-ߙ) 100 % confidence interval for vector parameters are regarded as the fuzzy 
estimators ߠ෨ for parameters ߠ, which is [18]: 

ێێۏ
ۍێێ expߠ ቈݐ(ଵିఈ/ଶ,ೡି)݁ݏ൫ߠ൯ߠ  , ߠ ⋅ exp ቈݐ(ଵିఈ/ଶ,ೡି)݁ݏ൫ߠ൯ߠ ۑۑے

(13) ,ېۑۑ

where, ݊௩ is the number of CV results,  is the number of unknown parameters which is equal to 
2. For the sake of simplicity, the symmetric triangular membership function is selected for fuzzy 
parameters, i.e. ݈ = ߙ for all [ߙ]෨ߠ in Eq. (8), and their alpha-cuts are defined as ݎ ∈ [0, 1]. 

Thus, the fuzzy regression model is: ݕ(ݐ) = ;ݐ൫ܦ ෨൯ߠ + ̅.ߝ (14)
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When the failure threshold ܥ  is available, the corresponding fuzzy failure time at each 
operating condition ෨ܶ [ߙ] = ,(ߙ)(ܥ|ଵݐ)] [(ߙ)(ܥ|ଶݐ)  will be computed at each alpha-cut using 
interval arithmetic. 

4.3. Acceleration model 

The machinery products are experienced with hasher than normal conditions. In order to 
evaluate the lifetime and reliability results at normal operating condition, the relationship between 
q-TTFs and accelerated conditions should be obtained through acceleration model.  

Generally, acceleration models are given through physical mechanism analysis or empirical 
experiences. Examples include Arrhenius model, Eyring model or inverse power model [28]. 
When no prior knowledge is acquired for machinery products, like the bearing under different 
load and speed conditions, the following log-linear relationship is recommended. Similar 
application can be found in [29]: log(ܶ + 1) = ߣ + ଵlogܵߣ + ܮଶlogߣ + ଷlogܵߣ ⋅ logܮ + ସlogܵଶߣ + ଶܮହlogߣ + ,ߝ (15)

where, ߣ is the coefficient, ݇ = 1, 2,…,5, ܵ and ܮ donate speed and load for bearing operating 
conditions, ܶ is the failure time. The optimal parameters for Eq. (15) can be obtained through least 
square method by “fitlm” function in Matlab. Similarly, the fuzzy acceleration model can be given 
to describe the relationship between the environmental variables, i.e. load, speed, and the fuzzy 
q-TTF ෨ܶ ߙ under each alpha-cut for all [ߙ] ∈ [0, 1]. 

Then, under each alpha-cut, the averaged fuzzy q-TTFs at both normal operating condition and 
the ݆th stress level, i.e. തܶ෨[ߙ] and തܶ෨[ߙ], can be computed by substituting the corresponding speed 
and load into the optimal function. Therefore, the fuzzy acceleration factor (AF) is defined as: 

[ߙ]ሚܣ = തܶ෨[ߙ]തܶ෨[ߙ]. (16)

With the results from Eq. (16), fuzzy q-TTFs ෨ܶ  can be extrapolated to normal operating [ߙ]
condition ෨ܶ[ߙ]. 

Besides the lifetime and reliability evaluation, another advantage of accelerated testing is that 
it can provide information about the stresses or their combinations which are sensitive to the 
failure of machinery products. Such information can provide reliable basis for reliability growth 
and design improvement for products. The following algorithm is proposed for such purpose 
through the analysis of fuzzy coefficients ߣሚ[ߙ]. 
4.4. Analysis of sensitive stresses 

Set ݅୫ୟ୶ =  .which denotes the number of intervals for membership value in [0, 1] ,ܯ
1) ݅ ← 0, compute the fuzzy coefficient at each alpha-cut ߙ ← ݅ ⁄ܯ . 
Substitute all fuzzy failure time ෨ܶ[ߙ] and its corresponding ݆th condition ܵ and ܮ: ݈݉݁݀ ← ൫݈݉ݐ݂݅ ෨ܶ[ߙ],ᇱ ܶ~1 + ܵ + ܮ + ܵ ∗ ܮ + ܵଶ + [ߙ]ߣ ;ଶ′൯ܮ ← .݈݁݀݉ .ݏݐ݂݂݊݁݅ܿ݅݁ܥ [ߙ]തܶ෨ ;(݇)݁ݐܽ݉݅ݐݏܧ ← ,݈݁݀݉)ݐܿ݅݀݁ݎ [ܵ, [ߙ]]); തܶ෨ܮ ← ,݈݁݀൫݉ݐܿ݅݀݁ݎ ൣ ܵ,  ;൧൯ܮ
Compute fuzzy acceleration factor through Eq. (16). 
2) End if ݅ ← ݅୫ୟ୶. 
3) Construct membership function for all fuzzy coefficient ߣሚ[ߙ] and analyze the relationship 

between them, compute the main stress. 
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5. Lifetime distribution selection and fuzzy reliability analysis 

In this section, a procedure of lifetime distribution selection is proposed for fuzzy q-TTFs 
under normal operating conditions. Then, the fuzzy reliability analysis is conducted with the most 
appropriate distribution to compute indexes that of interest, e.g. reliability, MTTF, etc. 

5.1. Lifetime distribution for q-TTFs 

In order to select the lifetime distribution under fuzzy q-TTFs, Anderson-Darling test [30] is 
used to test the goodness of fit of the candidate distribution to the obtained q-TTFs at each 
alpha-cut. The following procedure is proposed to rank the candidate distributions which are 
normal, exponential, extreme value, Log-normal and Weibull distributions. 

1) Set ݅୫ୟ୶ = ℎ ,ܯ = 0 which denotes the total score of the ݆th distribution at all alpha-cuts 
in [0, 1], and the significance level (default is 5 %). 

2) ݅ ← 0, compute the fuzzy coefficient at each alpha-cut ߙ ← ݅ ⁄ܯ . 
Calculate the score whether A-D test reject the null hypothesis that failure times ෨ܶ[ߙ] are 

from the ݆th distribution. ℎ ← ൫ݐݏ݁ݐ݀ܽ ෨ܶ[ߙ],ᇱ ݆௧ ݀݅݊݅ݐݑܾ݅ݎݐݏᇱ൯; 
If yes, ℎ = 0, ℎ = ℎ; else ℎ = 1, ℎ = ℎ + 1. 
3) End if ݅ ← ݅୫ୟ୶. 
4) Rank the ℎ  in an ascending order and select the lowest (or the first) one as the most 

appropriate lifetime distribution. 
For some specific applications, like bearings, studies have shown that the failure times follow 

Weibull distribution [31] which can be directly used for fuzzy reliability analysis: 

(ߠ|ݐ)݂ = ൬ߟߚ൰ ⋅ ൬ߟݐ൰ఉିଵ exp ቈ− ൬ߟݐ൰ఉ, (17)

where, ߟ is scale parameter, and ߚ is shape parameter. In classical reliability engineering, ߚ >1 
means that the product experiences a wear-out phase from the perspective of the bathtub curve. 
For fuzzy q-TTFs, the fuzzy parameters, i.e. ߟ[ߙ]  and ߚ෨[ߙ] , are estimated through lifetime 
distribution fitting for ෨ܶ[ߙ] at each alpha-cut. 

5.2. Fuzzy reliability analysis 

The selected lifetime distribution ݂(∙) can then be used for reliability prediction. The fuzzy 
reliability at time interval [ݐଵ, ݐଶ] is defined as (Weibull distribution as an example): 

෨ܴ(ݐଵ, [ߙ](ଶݐ = 1 − න ݂൫ݐหߠ෨[ߙ]൯௧మ௧భ ݐ݀ = 1 + exp ቈ− ൬ ൰ఉ෩[ఈ][ߙ]ߟଶݐ − exp ቈ− ൬ ൰ఉ෩[ఈ]. (18)[ߙ]ߟଵݐ

Other reliability indexes, e.g. Mean Time to Failure (MTTF) or hazard function, can compute 
through substituting fuzzy parameters into classical analytical results at each alpha-cut: 

[ߙ]෩ܯ = න ݐ ⋅ ݂൫ݐหߠ෨[ߙ]൯ ݐ݀ = Γ[ߙ]ߟ ቆ1 + [ߙ]෨ߚ1 ቇ. (19)

Furthermore, if other lifetime distribution is satisfied, e.g. Log-normal distribution, Eqs. (18) 
and (19) can be rewritten accordingly. 
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6. Case study 

In this section, an industrial application is used to illustrate the feasibility of the proposed 
method. 

6.1. Experiment platform 

The analyzed data is from IEEE PHM 2012 data challenge and the bearing experiment 
platform PRONOSTA is shown in Fig. 3, which is consist of three parts: the rotating, degradation 
generation and measurement parts [15]. The sampling frequencies are 25.6 kHz for the embedded 
acceleration measures and 10 Hz for temperature ones. The platform can perform bearing 
accelerated degradation testing, while monitoring vibration and temperature signals for fault 
diagnosis and remaining useful life (RUL) prediction.  

 
Fig. 3. The bearing experiment platform [17] 

The tested 17 bearings are experienced three operating conditions with different rotating speed 
and load, i.e. ܵ = 1800 rpm and ܮ = 4000 N (Condition 1), ܵ = 1650 rpm and ܮ = 4200 N 
(Condition 2) and ܵ = 1500 rpm and ܮ = 5000 N (Condition 3) and the bearing failure happens 
when the accelerometer exceeds 20 g. Table 1 gives the details about the tested bearings which 
are divided into two sets for training and testing (algorithms or models). Due to the inner 
non-linear property for bearing features, it is quite difficult to accurately estimate the RULs  
[15, 32]. Hence, the proposed framework is used to conduct bearing reliability analysis with 
accelerated data. Since the bearing reliability is an index for the population but not individual, the 
bearings whose lifetimes are significant lower or higher than others are omitted, i.e. 1_2, 1_4, 2_1, 
2_7. In addition, the vibration signals from vertical axis is selected since it has been verified to be 
better reflect the health state [33]. 

Table 1. Datasets of the bearing accelerated testing 

Datasets Operating conditions 
Condition 1 Condition 2 Condition 3 

Learning set No. 1_1 No. 2_1 No. 3_1 
No. 1_2 No. 2_2 No. 3_2 

Testing set 
No. 1_3 No. 2_3 

No. 3_3 to to 
No. 1_7 No. 2_7 

6.2. Degradation modeling and fuzzy q-TTFs 

According to the procedure in Section 2, the original signal is at first de-noised by the wavelet 
method at level 4 using the principle of Stein’s unbiased risk with soft-thresholding [34]. Then, 
the  = 25 features in four domains are extracted and then reduced through PCA method where ܲܥ =  0.8. After that, the degradation index CV can be obtained using GMM method in  
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Section 3.2. Herein, the choice for the number of features as one state needs more attention, 
especially for the baseline normal state. We used different combination of ݉ values in three 
operating conditions and compared their CV results with the announced bearing failure in the 
learning set, where the acceleration level exceeds 20 g. Thus, ݉ = 1100, 300 and 250 are selected 
as one health state for three conditions. In addition, the new failure threshold for the degradation 
index is set to 0.2, i.e. ܥ = 0.2. The GMM results are shown in Fig. 4. 

 
Fig. 4. The degradation processes for bearings under three accelerated levels with their fitted paths 

Then, three degradation models given in Eq. (12) are used to model the path of CV results at 
each operating condition. The fitting results are listed in Table 2. The linear model gives bad fitting 
results for bearing 2_3, 2_5, 2_6 although it performs well for other bearings. Meanwhile, Fig. 4 
shows that the degradation processes are non-linear. For the other two models, the exponential 
model is selected with larger ܴଶ and ܴௗଶ  values than power model for most of the bearings, 
which will be used for the following q-TTF extrapolation. 

Table 2. Model comparison for degradation modeling 

Bearing no. 
linear exponential power ܴଶ (%) ܴௗଶ  (%) ܴଶ (%) ܴௗଶ  (%) ܴଶ (%) ܴௗଶ  (%) 

1_1 96.2  96.1  95.4  95.3  90.6  90.4  
1_3 92.9  92.6  87.2  86.6  83.0  82.2  
1_5 98.3  98.3  95.2  95.1  90.9  90.7  
1_6 98.2  98.2  98.5  98.4  96.2  96.1  
1_7 94.8  94.4  93.5  93.0  92.1  91.4  
2_2 96.1  95.6  93.8  93.0  89.9  88.7  
2_3 61.3  60.0  91.8  91.5  86.5  86.0  
2_4 96.8  96.4  90.9  89.9  85.3  83.7  
2_5 48.2  47.3  86.7  86.5  90.8  90.6  
2_6 98.6  98.4  94.1  93.4  89.7  88.4  
3_1 96.9  96.4  92.6  91.5  87.2  85.4  
3_2 62.0  61.1  91.8  91.6  96.9  96.9  
3_3 97.2  95.8  96.8  95.2  95.6  93.3  

The statistical results for the selected exponential degradation model are given in Table 3, 
where Anderson-Darling test is used to check the normal assumption of the error term. Hence, the 
degradation paths for bearings No. 1_3, 2_3, 2_5 and 3_2 are not compromised with the normal 
assumption although the ܴଶ and ܴௗଶ  suggest good fitting. As seen from Fig. 4, the bearing 1_3 
experienced a sudden decrease and it will fail soon which is not accordance with others in 
operating condition 1. Thus, the bearing 1_3 is omitted for the following analysis. In terms of 
bearings No. 2_3, 2_5 and 3_2, the CV values are already lower than the failure threshold 0.2 
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around 2 (h). Considered that the tails of the degradation paths present a state that is much deviate 
from the normal state. The CV results are ignored from time 1.5, 2 and 2.111(h) from the three 
bearings. As to bearing 2_2, it seems to perform better after 1.5833 (h) which, however, has 
already exceeded the threshold. Thus, the CV values after 1.5833 (h) are ignored for bearing 2_2. 
The new results for this four bearings are given in Table 3 by adding a bracket, e.g. [2_3]. 

The fuzzy parameters of the exponential degradation model are constructed as illustrated in 
Section 4.2. The 95 % confidence values are shown at the right of Table 3. For simplicity, the 
symmetrical triangle membership function is selected to present the belief of certain parameter 
through the membership values. Thus, the fuzzy q-TTFs can be computed by substituting fuzzy 
parameters, i.e. ܽ[ߙ] and ෨ܾ[ߙ], and the failure threshold ܥ = 0.2 into Eq. (14) at each alpha-cut, 
which are interval values as ෨ܶ [ߙ] = ,(ߙ)(ܥ|ଵݐ)]  The results are given at the left side .[(ߙ)(ܥ|ଶݐ)
of Table 4. 

Table 3. Fuzzy results for exponential degradation model parameters 

Bearing no. ܽ ܾ AD (error) Fuzzy estimation ܧ SE ܧ SE  stat ܽ ܾ 
1_1 3.389 0.189 –0.367 0.013 0.070 0.68 3.031 3.788 –0.393 –0.342 
1_3 3.461 0.433 –0.377 0.033 0.011 0.98 2.670 4.486 –0.452 –0.315 
1_5 3.646 0.244 –0.402 0.016 0.051 0.74 3.185 4.175 –0.436 –0.370 
1_6 2.376 0.057 –0.264 0.006 0.189 0.51 2.264 2.494 –0.276 –0.253 
1_7 2.648 0.225 –0.312 0.024 0.423 0.35 2.200 3.187 –0.369 –0.264 
2_2 3.314 0.922 –1.483 0.243 0.598 0.29 1.832 5.997 –2.102 –1.046 

[2_2] 6.421 1.521 –2.143 0.232 0.494 0.32 3.719 11.09 –2.752 –1.669 
2_3 8.164 1.833 –2.278 0.217 0.003 1.20 5.157 12.92 –2.767 –1.876 

[2_3] 3.625 1.109 –1.668 0.337 0.457 0.33 1.759 7.471 –2.691 –1.035 
2_4 3.046 0.483 –1.217 0.142 0.685 0.26 2.128 4.360 –1.584 –0.935 
2_5 2.796 0.311 –1.176 0.086 8e-04 1.46 2.237 3.495 –1.363 –1.015 

[2_5] 2.753 0.307 –1.319 0.109 0.062 0.68 2.163 3.505 –1.576 –1.104 
2_6 4.309 0.742 –1.629 0.162 0.874 0.20 2.897 6.410 –2.049 –1.294 
3_1 2.200 0.251 –1.054 0.120 0.256 0.43 1.679 2.882 –1.378 –0.806 
3_2 1.862 0.134 –0.995 0.057 0.010 1.01 1.611 2.152 –1.117 –0.886 

[3_2] 2.436 0.073 –1.258 0.028 0.558 0.31 2.286 2.595 –1.319 –1.200 
3_3 1.555 0.108 –0.659 0.086 0.152 0.43 1.153 2.098 –1.152 –0.377 

Table 4. Fuzzy q-TTFs under accelerated and normal conditions 

Bearing no. Fuzzy q-TTFs Operating conditions Fuzzy q-TTFs in normal condition 
(3000 rpm, 1200 N) ଵܶ (h) ଶܶ (h) Speed (rpm) Load (N) ଵܶ (h) ଶܶ (h) 

1_1 6.9177 8.6064 

1800 4000 

10.6271  22.0470  
1_5 6.3450 8.2060 9.7474  21.0214  
1_6 8.8065 9.9668 13.5288  25.5319  
1_7 6.5015 10.496 9.9878  26.8877  
2_2 1.0621 2.4053 

1650 4200 

5.2697  35.8368  
2_3 0.8079 3.4998 4.0082  52.1441  
2_4 1.4923 3.2946 7.4040  49.0869  
2_5 1.5105 2.5948 7.4940  38.6610  
2_6 1.3044 2.6794 6.4715  39.9207  
3_1 1.5441 3.3117 

1500 5000 
6.0995  36.8122  

3_2 1.8473 2.1364 7.2975  23.7476  
3_3 1.5210 6.2316 6.0083  69.2690  

6.3. Acceleration model and analysis of sensitive stresses 

After obtaining the fuzzy q-TTFs under three operating conditions, Eqs. (15) and (16) in 
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Section 4.3 can then compute the fuzzy acceleration factors (see Fig. 5) with their fuzzy 
coefficients, and convert the failure times into normal operating conditions. Assumed that the 
normal condition is 3000 (rpm) in Speed and 1200 (N) in load, the results are given at the right 
side of Table 4. 

From Fig. 5, it can conclude that the support of fuzzy acceleration factors under three 
acceleration operating conditions are [1.53, 2.56], [4.96, 14.90] and [3.95, 11.12], while the peak 
values are 2.44, 10.57 and 8.58, respectively. Intuitively, both condition 2 & 3 are harsher than 
condition 1 with larger values of acceleration factor under each alpha-cut for all ߙ ∈ [0, 1]. And 
condition 2 is severer than condition 3 when the belief of the results ߙ > 0.8, otherwise their 
difference are undistinguishable. Furthermore, the fuzzy coefficients of the acceleration model 
can be used to analyze the sensitivity of speed and load to the lifetimes of bearings through the 
procedure in Section 4.3. The results show that ߣ, 1ߣ and ߣଷ are zero for all ߙ ∈ [0, 1] which 
means that no contribution to the failure of bearings has been obtained for the single stress of 
speed and the interactive stress of speed and load. Thus, the sensitive stresses are load, 
self-correlation of speed and load, which are related to coefficient ߣଶ, 4ߣ and ߣହ, see Fig. 6. The 
results can help understand the hazard rating for each stress or their combination to the failure of 
bearings, and improve the design or operating conditions to increase the lifespan of bearings. 

 
Fig. 5. Fuzzy acceleration factors for three accelerated operating conditions 

 
a) 

 
b) 

 
c) 

Fig. 6. Fuzzy coefficients in acceleration models 

6.4. Lifetime distribution selection and fuzzy reliability analysis for bearings 

Once the fuzzy q-TTFs are given, the selection of lifetime distribution is essential for reliability 
analysis. In this case, the procedure of distribution selection proposed in Section 5.1 is used to 
compute the score of each candidate distribution for fuzzy q-TTFs ܶ  at both sides. The [ߙ]0
membership value is equally divided into 10 intervals, which means that ܯ =  10 and the 
maximum score will be  ℎ୫ୟ୶ = ܯ2 + 1 = 21. Fig. 7 presents the results and indicates that  
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normal, Log-normal and Weibull distributions are appropriate for describing bearing lifetime data, 
while exponential distribution is not suitable at all and extreme value distribution seems well with 
only one score. Although it has been demonstrated that the failure times for bearing follows 
Weibull distribution [31], the normal and Log-normal distributions also perform well in this study. 
The reason may be from the small sample (12 bearing lifetime data), which leads to the similar 
shape that those three distributions can describe. Thus, special attention should be given for other 
applications if there have no such prior knowledge. For bearings, the Weibull distribution is used 
for computing fuzzy reliability and MTTF. 

 
Fig. 7. The score of each distribution for bearing failure times 

The fuzzy parameter for Weibull distribution is calculated at each alpha-cut, see Fig. 8. For all ߙ ∈  .is greater than 1 which means that the bearing experienced a wear-out phase [ߙ]෨ߚ ,[1 ,0]
Interested that with different belief of the results, the fuzzy value ߚ෨[ߙ] varied from [2.80, 3.25] to 
the peaking 9.30. That is to say, with different belief, the recognition on the severity of bearing 
deterioration is significantly different. While in traditional analysis, only one crisp value can be 
obtained and such phenomenon cannot be identified. 

 
Fig. 8. Fuzzy parameters for the Weibull lifetime distribution 

As described in the challenge details [15], the lifetimes for the majority of the bearings are 
from 1 to 7 (h). It may be interesting to analyze the reliability of this kind of bearing during the 
next hour in normal operating condition. Thus, the time interval [7, 8] (h) is substituted to Eq. (18) 
with fuzzy Weibull parameters. Fig. 9 shows the results, where the reliability results is in  
[0.8573, 0.9969] and have the peak value at 0.9999. The results demonstrate that the bearings have 
a higher possibility that is safety enough for operating under normal operating condition.  

For users, the maintenance time is that of interest for making schedule to avoid the occurrence 
of failure and reduce their related costs. Hence, the fuzzy MTTF values is then computed using 
Eq. (19), see Fig. 10. The MTTF goes from 7.83 to 36.82 (h) and have the highest peak at  
19.83 (h). In this case, it has the lowest possibility that maintenance schedule should be given 
before 7.83 (h), while the highest at 19.83 (h). Compared with traditional crisp value, the related 
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risk can be directly expressed by fuzzy MTTF. For instance, if the traditional value is at the left 
side of fuzzy MTTF, the schedule will be conservative. Otherwise, it will be radical.  

 
Fig. 9. Fuzzy reliability for bearings  

at time interval [7, 8] (h) 

 
Fig. 10. Fuzzy MTTF for bearings 

 

7. Verification and discussion 

For the proposed framework, it may be interesting to verify its effectiveness through actual 
failure time data from two aspects. On the one hand, the comparison between fuzzy q-TTFs 
obtained from the regression method and the actual ones (see Table 5) is to verify that the extracted 
degradation index, i.e. CV results, can be used for lifetime prediction. On the second hand, the 
comparison between reliability and MTTF results from the proposed method and that from the 
actual data will further verify that the proposed can well handle the risk of the reliability prediction 
results. 

All the tested 17 bearings were ran to failure, which can be found in 
http://www.femto-st.fr/ieee-PHM2012-data-challenge. The actual failure times are summarized at 
the left of Table 5. Among that, 12 bearings are selected for reliability analysis and the fuzzy 
q-TTFs are given in Table 4. Through comparison, it can conclude that the failure times of 5 
bearings are in the intervals of fuzzy results, i.e. 1_1, 1_5, 2_2, 2_4 and 2.6, while 4 bearings are 
slightly overestimated, i.e. 1_6, 1_7, 3_1 and 3_2, the 3 rest bearings are underestimated. Thus, 
the proposed method perform well on lifetime prediction for bearings using the degradation index 
obtained from GMM method. 

Now, before conducting reliability analysis, it is necessary to identify the acceleration model. 
Herein, Eq. (15) is used and the result is: log(ܶ + 1) = −10.772 ⋅ logܮ + 0.5713 ⋅ logܵଶ + 0.8591 ⋅ logܮଶ.

Thus, the main sensitive stresses are load, self-correlation of speed and load, which are in good 
agreement with the results from the proposed method in Section 6.3. In addition, the acceleration 
factors for the three accelerated operating conditions are 4.71, 8.31 and 9.70. As seen from Fig. 5, 
the fuzzy results well capture Condition 2 & 3, while underestimate the Condition 1. Considered 
that the complexity of the interaction among the associated uncertainties, the results are acceptable. 
The extrapolated TTFs under normal operating condition are listed at the right side of Table 5. 
Anderson-Darling test shows that the Weibull distribution is a suitable lifetime distribution.  

In the next step, we compare the reliability and MTTF results. The scale and shape values for 
Weibull distribution are 28.93 and 2.04. Substituting them into Eq. (18), the reliability for the 
bearings at [7, 8] (h) is 0.9837. It is obvious that the fuzzy result from the proposed method can 
well present the value, see Fig. 9. Moreover, the proposed method can tell that the reliability is 
more than 0.8573 even in the worst-case. Similarly for MTTF, the result is 25.63 (h) which is well 
presented by the proposed method in Fig. 10. 

From above analysis, it concludes that the proposed framework can provide reliable reliability 
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and MTTF results for bearings and consider the uncertainties with related risk in accelerated data. 
The proposed framework can be applied to the lifetime prediction and reliability evaluation for 
other machinery applications with accelerated data. 

When implementing the proposed framework, special attention should be given to the 
elimination of noises from the raw vibration signals, which may be originated from the operating 
environment contaminated by noises, and have effect on the results of lifetime evaluation and 
reliability prediction. Therefore, the de-nosing methods should be chosen with carefully 
consideration for one specific machinery product, e.g. the wavelet method given in Fig. 1. 

Table 5. Actual TTFs for all bearings at accelerated and normal operating conditions 

Bearing no. 
TTFs  

(Accelerated condition) ܶ (h) 

Operating conditions TTFs 
(3000 rpm, 1200 N) ܶ (h) Speed (rpm) Load (N) 

1_1 7.7833  

1800 4000 

36.6260  
1_2 2.4167  11.3721  
1_3 6.5944  31.0315  
1_4 3.2553  15.3184  
1_5 6.8389  32.1817  
1_6 6.7969  31.9844  
1_7 6.2725  29.5165  
2_1 2.5278  

1650 4200 

21.0158  
2_2 2.2111  18.3831  
2_3 5.4278  45.1263  
2_4 2.0833  17.3207  
2_5 6.4167  53.3479  
2_6 1.9444  16.1660  
2_7 0.6361  5.2886  
3_1 1.4278  

1500 5000 
13.8529  

3_2 4.5444  44.0921  
3_3 1.2028  11.6699  

8. Conclusions 

This study has focused on the fuzzy reliability analysis of machinery accelerated testing data. 
A framework has been proposed which consists of three aspects: degradation index acquisition, 
degradation modeling and fuzzy reliability analysis. The proposed framework can compute 
reliable reliability and MTTF results for maintenance decision-making. 

The GMM method can use a mixture of Gaussian distributions to capture one status of 
machinery product by extracting features from raw vibration signals. This method can derive a 
health status even though the signals are dynamic and non-stationary. A linear model is used to 
identify the relationship between environmental variables and TTFs. For the case study, it has 
confirmed that the main sensitive stresses of bearing failure are load, self-correlation of speed and 
load. During the comparison with real failure data, the proposed method can capture the real values 
well. Meanwhile, the fuzzy results of reliability and MTTF verified the advantages of the proposed 
method to understand the potential risk of the acceptance of the results. 
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