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Abstract. The load-displacement relation for rolling element bearing is a system of nonlinear 
algebraic equations describing the relationship of bearing forces and displacements needed to 
compute the bearing stiffness. The computed bearing stiffness is typically employed to represent 
the bearing effect when modeling the whole geared rotor system to optimize the system parameters 
to minimize the unwanted vibrations. In this study, a robust numerical scheme called the energy 
method is developed and applied to solve for the bearing displacements from the potential energy 
of the bearing system instead of solving these nonlinear algebraic equations using the classical 
numerical integration. The proposed energy method is based on seeking the minimal potential 
energy derived from the theory of elasticity that describes the potential energy as a function of the 
displacements of inner ring of rolling bearing relative to the housing support structure. Therefore, 
solving the system of nonlinear algebraic equations is converted into solving a global optimization 
problem in which the potential energy term is the objective function. The global optimization 
algorithm produces the bearing displacements that make the potential energy function of bearing 
system minimum. Parameter studies for bearing stiffness as the explicit expressions of bearing 
displacements are conducted with the varying unloaded contact angles and the varying orbital 
positions of rolling elements. The analysis applying the energy method is shown to yield the 
correct solution efficiently and reliably. 
Keywords: rolling element bearing, nonlinear algebraic equations, bearing stiffness, energy 
method, potential energy of the bearing system, global optimization. 

1. Introduction 

The gear pair assembly has been considered as one of the major noise and vibration sources in 
the rotating machineries typically seen in automotive, aerospace and industrial applications [1-4]. 
The primary excitation force of gear pair vibration is the dynamic mesh force of engaged gear 
teeth caused by the transmission error (due to tooth profile, spacing error, and elastic deformation 
of the gear pair). The resultant vibration can be subsequently transmitted through the shaft-bearing 
system and excite the vibration of housing that radiates annoying noises. In order to design a 
reliable and quiet power transmission system, and/or trouble-shoot the noise and vibration issues, 
it is highly desirable to perform an understanding of the behavior of bearings and their interactions 
with the internal and housing components. In modeling the geared rotor systems, the bearing effect 
can be easily incorporated into the system model by introducing the relevant bearing stiffness set 
[5-7]. However, most of the rolling element bearings are precision elements with very complex 
components that inherently have nonlinear static/dynamic characteristics. Moreover, when a 
poorly designed bearing is considered, the load-displacement relation might become extremely 
complex and would cause vibrations. Hence, a fast and reliable bearing stiffness estimation 
method is necessary to facilitate the static or dynamic analysis of the rotating mechanical systems.  

There have been numerous research efforts driven to determine the stiffness matrix of the 
rolling element bearings. Some of the earlier studies of rolling element bearings were performed 
by Jones [8], Harris [9], and Palmgern [10]. They investigated the radial and axial load-deflection 
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relation using a nonlinear stiffness coefficient. Later, Gargiulo [11] provides an empirical 
formulae for radial and axial load-stiffness and deflection-stiffness relations by assuming rigid 
bearing races. The simplified bearing stiffness matrix obtained through these early studies is either 
based ideal boundary conditions assumption or neglecting certain degree of freedom (DOF). It 
was reported by Lim and Singh [12-14] that these early bearing stiffness formulations could not 
well represent the real bearing characteristics, especially for the coupled translational and 
rotational vibration. They proposed a more general bearing stiffness matrix with complete 5 DOF 
terms for ball and roller bearing elements. In their model, a discrete summation approach was 
adopted to obtain the total bearing forces and moments of all the loaded rolling elements. Hence, 
a set of nonlinear algebraic equations were formulated for the bearing stiffness, which was 
numerically solved by using Newton-Raphson method. Then, Hernot et al. [15] derived the 
stiffness matrix of a five-DOF (degree-of-freedom) angular contact ball bearing by using an 
analytical approach in which the load summation over ball elements is replaced by an integration. 
Similarly, the classic Newton-Raphson approach was applied to solve the whole matrix equations. 
Instead of using the analytical approaches, very recently, Guo and Parker [16] developed a finite 
element/contact mechanics model to obtain the bearing stiffness matrix for a wide range of bearing 
types and parameters. The accuracy of the results depends on contact control parameters and step 
size selected for the finite difference formulation. However, this method is very time-consuming. 
There are also several experimental techniques [17, 18] hat have been recently developed to 
determine the bearing stiffness matrix. One major concern of these FEM methods and 
experimental approaches is the efficiency especially from system design point of view. On the 
other hand, the general approach proposed by Lim and Singh [12] has demonstrated its efficiency 
and accuracy. Their theory has been widely adopted in general geared rotor dynamic analysis, 
such as spur and hypoid geared rotor systems [7, 19-22]. Very recently, Liew and Lim [23] 
extended the prior study to establish the time-varying stiffness formulation considering the orbital 
motion of the rolling elements. The time-varying bearing stiffness model has been implemented 
into both linear parallel and nonlinear non-parallel geared rotor system dynamics analysis [21].  

In spite of these successes of obtaining stiffness matrix for bearing elements, one of the major 
concerns is the computational efficiency and robustness of these numerical models. The 
coefficients of stiffness matrix can be derived from the partial derivatives of the load expressions 
with respect to the displacements including translational and rotational coordinates of the inner 
ring of rolling element bearing relative to the housing support. In this formulation, the coefficients 
of stiffness matrix can be directly computed given a set of bearing displacement vectors. Yet, in 
practice, only the external forces applied to bearing system are known. In such cases, the bearing 
displacement vectors due to known bearing forces can be obtained by solving the system of 
nonlinear algebraic equations describing the load-displacement relation of the bearing system. For 
the solution to be reliable, an appropriate numerical method must be chosen to solve these 
nonlinear equations iteratively. However, the commonly used numerical methods, such as the 
Newton-Raphson and Powell’s hybrid methods [24], require careful application and can be 
cumbersome. Also, the accuracy of these algorithms typically relies on the trial and error of 
different initial estimates since the number of the numerical solutions is not known in advance. 
The classic Newton-Raphson method is a local minimal approach and the iterative solution tends 
to trap into the local point. Obviously, if the initial solution was chosen far away from the exact 
solution point, the whole numerical scheme will be very time-consuming.  

In this paper, a reliable, fast and efficient energy method is developed to better quantify the 
relations of bearing displacements and applied forces. The proposed energy method is based on 
the principle of minimum potential energy derived from classical mechanics, which is a global 
searching method. The exact displacements can be found by searching for the displacements that 
yield the minimum total potential energy of the bearing system. This algorithm overcomes the 
deficiencies seen in classical iterative method requiring the trial-and-error of different initial 
estimates. Also, the trap of local minimum solution can be avoided especially for the existence of 
multiple numerical solutions typically seen in system of nonlinear algebraic equations. In addition, 
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the proposed method can be used to guide the design of the bearings, especially for minimizing 
the vibrations of a poorly designed bearing. The minimized potential energy condition would give 
the desired system parameters to minimize the vibrations. 

2. Bearing load-displacement relations 

The schematic diagram for the relations between bearing forces and displacements for ball and 
roller bearings are shown in Fig. 1 and Fig. 2, respectively, detailed load-displacement relations 
were proposed by Lim and Singh [12, 14]. To recap, these relations are given briefly in this paper. 
In the proposed formulation, the load-displacement relations can be derived by considering the 
relations of (i) the displacements of inner ring and the deformation of outer raceway-ball/roller 
element-inner raceway, (ii) the load and the deformation for outer raceway-ball/roller 
element-inner raceway, and (iii) the normal loads on all ball/roller elements and bearing forces 
and moments. 

 
a) 

 
b) 

 
c) 

Fig. 1. Ball element bearing kinematics and co-ordinate system [12, 14] 

As seen from Fig. 1(a), for the ball bearing subjected to forces (ܨ௕௫, ܨ௕௬, ܨ௕௭) and moments 
 the resultant translational and rotational displacements generated in the bearing inner ,(௕௬ܯ ,௕௫ܯ)
are (ߜ௕௫, ߜ௕௬, ߜ௕௭) and (ߚ௕௫, ߚ௕௬), respectively. Also, the ball and raceways will be displaced. 
Detailed schematic diagram of the deflection for the ݆th ball element and raceway located at angle ߰௝ from the ݔ-axis is shown in Fig. 1(b). Here, ܽ௢ is the position of the outer groove curvature 
centers, ܽ௜ and ܽ௜ᇱ are the initial and final locations of the inner raceway groove curvature center 
before and after the deflection of the ݆th ball element and raceways, respectively. The normal force ܳ௝ on ball element and the deflection of ball and raceways is given in detail in Fig. 1(c), where 
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the bearing structures including ball element, inner raceway and outer raceway are ignored for 
purpose of simplification. 

Based on Fig. 1(b)-(c), the total deformation of the ݆ th ball element and raceway can be 
described in the following expressions: 

஻௝ߜ = ቊܣ൫߰௝൯ − ,଴ܣ ஻௝ߜ > 0,0, ஻௝ߜ ≤ 0, (1a)߰௝ = ߨ2ܰ ∗ (݆ − 1) + ߰଴, (1b)ܣ൫߰௝൯ = ට൫ܣ଴sinߙ଴ + ௭௝൯ଶ(ߜ) + ൫ܣ଴cosߙ଴ + ௥௝൯ଶ, (1c)(ߜ)

where ߰௝ is the ݆th rolling element azimuth, ߰଴ is the angle between the first rolling element and ݔ-axis, ܰ is the total number of ball elements for the ball bearing or roller elements for roller 
bearing, ܣ଴ and ܣ௝  are the unloaded and loaded relative distance between the inner and outer 
raceway groove curvature centers, and ߙ଴ is the unloaded contact angle for ball bearing or roller 
bearing. The ݆th ball element and raceways deflection in the axial (ߜ)௭௝  and the radial (ߜ)௥௝ 
directions are given as follow according to the displacements of inner ring: (ߜ)௭௝ = ௕௭ߜ + ௕௫sin൫߰௝൯ߚ௝൛ݎ − ,௕௬cos൫߰௝൯ൟߚ (2a)(ߜ)௥௝ = ௕௫cos൫߰௝൯ߜ + ௕௬sin൫߰௝൯ߜ − ,௅ݎ (2b)

where ݎ௝ is the radial distance of the inner raceway groove curvature center for the ball bearing, 
and ݎ௅ is the bearing radial clearance. Note ߜ௕௫, ߜ௕௬ and ߜ௕௭ are the translational displacements of 
the inner ring along ݖ ,ݕ ,ݔ axis, respectively; ߚ௕௫, ߚ௕௬ are angular displacements of the inner ring 
along ݕ ,ݔ axial directions. 

The load-deformation relation for outer raceway-ball element-inner raceway can be defined 
by the Hertzian contact theory [25]: ܳ௝ = ஻௝௡ߜ௡ܭ , (3)

where ܳ௝ is the resultant normal load on the ball element, and ܭ௡ is the effective stiffness constant 
for the inner race-ball element-outer race contacts and is a function of the bearing geometry and 
material properties. The exponent ݊ is equal to 3/2 for ball type with elliptical contacts. The effects 
of centrifugal forces and gyroscopic moments of rolling element on ball bearing and roller bearing 
are ignored as these effects are considered only at extremely high rotational speeds.  

The normal force ܳ௝ on the ݆th ball element can be divided into two components ܳ௝cosߙ௝ and ܳ௝sinߙ௝ along the negative direction of ݎ axis and ݖ axis, respectively, as shown in Fig. 1(c). Due 
to the ݆th rolling element azimuth ߰௝, the component ܳ௝cosߙ௝ can be divided into ܳ௝cosߙ௝cos߰௝ 
(along the negative direction of ݔ axis) and ܳ௝cosߙ௝sin߰௝ (along the negative direction of ݕ axis). 
The orthogonal load components of normal forces on all ball elements, including ܳ௝cosߙ௝cos߰௝ 
 and bearing forces and moments lead to the (axis ݖ) ௝ߙand ܳ௝sin (axis ݕ) ௝sin߰௝ߙ௝cosܳ ,(axis ݔ)
following forces and moments equilibrium relations: 

۔ۖەۖ
ۓ ௕௬ۙۘۖܯ௕௫ܯ௕௭ܨ௕௬ܨ௕௫ܨ

ۖۗ = ෍ ܳ௝ ۔ۖەۖ
ۓ cosߙ௝cos߰௝cosߙ௝sin߰௝sinߙ௝ݎ௝sinߙ௝sin߰௝−ݎ௝sinߙ௝cos߰௝ۙۘۖ

ۖۗே
௝ୀଵ , (4)
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where ߙ௝  is the loaded contact angle, and the two relations, sinߙ௝ = ൫ܣ଴sinߙ଴ + ௝ܣ/௭௝൯(ߜ) , cosߙ௝ = ൫ܣ଴cosߙ଴ +  .௝ can be obtained based on Fig. 1(c)ܣ/௥௝൯(ߜ)
The load-displacement relation of ball bearing can be obtained by substituting the Eqs. (1)-(3) 

into the Eq. (4). This relation is very complicated if the normal force ܳ௝ is expressed explicitly 
with the displacements of inner ring. Here, the following simplified expression by Lim and Singh 
[12] is still used by substituting Eq. (1a), Eq. (1c) and Eq. (3) into Eq. (4): 

෍ ௡ܭ ቊටൣܣ଴sinߙ଴ + ௭௝൧ଶ(ߜ) + ଴ߙ଴cosܣൣ + ௥௝൧ଶ(ߜ) − ଴ቋ௡ܣ
ටൣܣ଴sinߙ଴ + ௭௝൧ଶ(ߜ) + ଴ߙ଴cosܣൣ + ௥௝൧ଶ(ߜ)

ே
௝ ۔ۖۖەۖۖ

ۓ ଴ߙ଴cosܣൣ + ଴ߙ଴cosܣ௥௝൧cos߰௝ൣ(ߜ) + ଴ߙ଴sinܣ௥௝൧sin߰௝ൣ(ߜ) + ଴ߙ଴sinܣ௝ൣݎ௭௝൧(ߜ) + ଴ߙ଴sinܣ௝ൣݎ−௭௝൧sin߰௝(ߜ) + ௭௝൧cos߰௝ۙۘۖۖ(ߜ)
ۖۗۖ

 

      − ۔ۖەۖ
ۓ ௕௬ۙۘۖܯ௕௫ܯ௕௭ܨ௕௬ܨ௕௫ܨ

ۖۗ = ۔ۖەۖ
00000ۙۘۖۓ

ۖۗ. 
(5)

Similarly, the load-displacement relations can be obtained for the roller bearing by following 
the derivation steps mentioned above. Figs. 2(a)-(c) show the undeformed (unloaded) and 
deformed (loaded) roller element. The point ݋ locating at the center of the effective roller length 
is the origins of ݖᇱ and ߦ axis, where ݖᇱ is the local rolling element axis coordinate and ߦ is the 
dimensionless local coordinate, ߦ =  ᇱ variesݖ is the effective length of the roller. Note ܮ ,ܮ/ᇱݖ
from –2/ܮ to 2/ܮ, and ߦ from –0.5 to 0.5. The total roller and raceways elastic deformation at the 
origin ݋ for the ݆th roller is: ܸ൫߰௝൯ = ଴cos߰௝ߙ௕௫cosߜ + ଴sin߰௝ߙ௕௬cosߜ + ଴ߙ௕௭sinߜ − ௖ݎ + ଴cos߰௝ߙ௝sinݎ௕௬ߚ−       ଴sin߰௝ߙ௝sinݎ௕௫ߚ − ,଴ߙ௅cosݎ (6a)

where ݎ௝ ௅ݎ ,  and ݎ௖  are the pitch bearing radius, bearing radial clearance and crown drop, 
respectively. Note the term ߜ௕௫cosߙ଴cos߰௝ + ଴sin߰௝ߙ௕௬cosߜ + ଴ߙ௕௭sinߜ  is the deformation 
generated by the translational displacement of the inner ring, and  ߚ௕௫ݎ௝sinߙ଴sin߰௝ − ଴cos߰௝ߙ௝sinݎ௕௬ߚ  is the deformation due to the inner ring angular 
misalignment (ߚ௕௫ ௕௫ߚ ௕௬). Bothߚ,  and ߚ௕௬  cause the rotation of the ݆th roller, and hence also 
contributing to the extra roller raceway deformation ∆ܸ varying along the roller length as: ∆ܸ൫߰௝, ൯ߦ = ௕௫sin߰௝ߚ−ᇱ൫ݖ + ௕௬cos߰௝൯ߚ = ௕௫sin߰௝ߚ−൫ܮߦ + ௕௬cos߰௝൯ߚ = ൫߰௝൯, (6b)߱ܮߦ

where: ߱൫߰௝൯ = ௕௫sin߰௝ߚ− + ,௕௬cos߰௝ߚ (6c)

where ߱൫߰௝൯ stands for the rotation angle of the ݆th roller due to inner ring angular misalignments 
 The elastic deformation of the ݆th roller effective length could be characterized by a .(௕௬ߚ ,௕௫ߚ)
dimensionless parameter ߦ and its azimuth angle ߰௝: 

ோ௝కߜ = ቊܸ൫߰௝൯ + ∆ܸ൫߰௝, ൯ߦ = ܸ൫߰௝൯ + ,൫߰௝൯߱ܮߦ ோ௝కߜ > 0,0, ோ௝కߜ                         ≤ 0, − 0.5 ≤ ߦ ≤ 0.5. (6d)
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a) b) 
 

c) 
Fig. 2. Roller element bearing kinematics and co-ordinate system 

The normal pressure along the roller length is usually different due to different deflections at 
each contact location, as shown in Fig. 2(c). The sum of normal pressure at dimensionless 
coordinate ߦ on the elemental length ݀ߦ can be calculated based on Hertzian contact theory [25]: ݀ܳ௝ = ோ௝క௡ߜ௡ܭ ߦ݀ = ௡ܭ ቀܸ൫߰௝൯ + ൫߰௝൯ቁ௡߱ܮߦ (7a) ,ߦ݀

and the resultant normal force applied on the roller can be obtained by integration on ߦ as: 

ܳ௝ = න ݀ܳ௝ = ௡ܭ න ൛ܸ൫߰௝൯ + కమకభߦ൫߰௝൯ൟ௡݀߱ܮߦ , (7b)

where ݊ is equal to 10/9 corresponding to line contact. 

 
a) 

 
b) 

Fig. 3. The rotation of roller element with respect to outer raceway 

The subset ( ,ଵߦ ଶߦ ) can be bounded based on Fig. 3. For ߱ܮ൫߰௝൯ > 0 , it implies the 
deformation mode will be like Fig. 3(a) based on the Eq. (6c). In this case, the upper limit of 
integral ߦଶ is 0.5. The lower limit of integral ߦଵ should satisfy ߜோ௝కభ = ܸ൫߰௝൯ + ൫߰௝൯߱ܮଵߦ ≥ 0 
(The deflection ߜோ௝కభ at the dimensionless coordinate ߦଵ is equal to or larger than zero), therefore, 
it could be obtained by choosing the larger one of both −ܸ൫߰௝൯/ ቀ߱ܮ൫߰௝൯ቁ  and –0.5. For ߱ܮ൫߰௝൯ < 0, it refers to the Fig. 3(b). The lower limit of integral ߦଵ should be –0.5. The upper 
limit of integral ߦଶ should satisfy ߜோ௝కమ = ܸ൫߰௝൯ + ൫߰௝൯߱ܮଶߦ ≥ 0, therefore, could be obtained 
by choosing the smaller one of both −ܸ൫߰௝൯/ ቀ߱ܮ൫߰௝൯ቁ and 0.5. For ߱ܮ൫߰௝൯ = 0, the roller does 
not rotate with respect to outer raceway and the lower and upper integral limits are –0.5 and 0.5, 
respectively. The normal force on the roller does not exist for ߱ܮ൫߰௝൯ = 0 when the total elastic 
deformation of the roller raceways at the origin ݋ for the ݆th roller is less than zero. Based on the 
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above discussion, the subset (ߦଵ,  :ଶ) can be given asߦ

ଵߦ = ۔ۖەۖ
ݔܽ݉ۓ ቎− ܸ൫߰௝൯ቀ߱ܮ൫߰௝൯ቁ , −0.5቏ , ൫߰௝൯߱ܮ > 0,−0.5, ൫߰௝൯߱ܮ ≤ 0, (8a)

ଶߦ = ۔ۖەۖ
,0.5ۓ ൫߰௝൯߱ܮ ≥ 0,݉݅݊ ቎− ܸ൫߰௝൯ቀ߱ܮ൫߰௝൯ቁ , 0.5቏ , ൫߰௝൯߱ܮ < 0. (8b)

In order to obtain the equilibrium relations between normal pressures of all the rollers and 
bearing forces and moments, the normal pressure along the roller length needs to be transformed 
into point force as shown in Fig. 2(c). The value of the point force is the resultant normal force ܳ௝ 
and its location (the load eccentricity) is determined by following equation: 

௝݁ = ܮ ׬ ,൛ܸ൫߰௝ߦ ൯ߦ + ,൫߰௝߱ܮߦ ׬కమకభߦ൯ൟ௡݀ߦ ൛ܸ൫߰௝, ൯ߦ + ,൫߰௝߱ܮߦ కమకభߦ൯ൟ௡݀ߦ , (9)

where the load eccentricity ௝݁ is the distance between the point load vector line of action and roller 
mid-point.The point load can be divided into three orthogonal load components along ݖ ,ݕ ,ݔ axis 
as done for ball element and the equilibrium relations between load components from all the rollers 
and bearing forces and moments are obtained by applying vector sum to the bearing inner ring: 

۔ۖەۖ
ۓ ௕௬ۙۘۖܯ௕௫ܯ௕௭ܨ௕௬ܨ௕௫ܨ

ۖۗ = ෍ ܳ௝ ۔ۖەۖ
ۓ cosߙ଴cos߰௝cosߙ଴sin߰௝sinߙ଴൫ݎ௝sinߙ଴ − ௝݁൯sin߰௝−൫ݎ௝sinߙ଴ − ௝݁൯cos߰௝ۙۘۖ

ۖۗே
௝ୀଵ . (10)

The load-displacement relations for roller bearing can be easily attained by substituting the 
Eqs. (6)-(9) into Eq. (10). Similarly, the following reduced load-displacement expression can be 
obtained by substituting Eq. (7b) into Eq. (10): 

෍ ௡ܭ න ൛ܸ൫߰௝൯ + కమకభߦ൫߰௝൯ൟ௡݀߱ܮߦ ×
۔ۖەۖ
ۓ cosߙ଴cos߰௝cosߙ଴sin߰௝sinߙ଴൫ݎ௝sinߙ଴ − ௝݁൯sin߰௝−൫ݎ௝sinߙ଴ − ௝݁൯cos߰௝ۙۘۖ

ۖۗ − ۔ۖەۖ
ۓ ௕௬ۙۘۖܯ௕௫ܯ௕௭ܨ௕௬ܨ௕௫ܨ

ۖۗ = ۔ۖەۖ
00000ۙۘۖۓ

ۖۗே
௝ୀଵ . (11)

Here, the bearing displacements for the ball and roller bearings can be solved from Eqs. (5) 
and (11) using classical iterative method. For example, the Newton-Raphson and Powell’s hybrid 
methods [24] have been applied to solve these nonlinear equations, which typically require a 
careful application and can be cumbersome due to the local minimal searching feature. In the 
following section, a reliable, fast and efficient energy method is applied to solve bearing 
displacements, which facilitates the quantification of the relations of bearing displacements and 
applied forces. The proposed energy method is a global searching method, which is based on the 
principle of minimum potential energy derived from classical mechanics. 
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3. Energy method 

The energy method, based on the potential energy of the bearing system, is developed to solve 
the bearing displacements. The proposed energy method links the energy of the system to the 
displacements of the bearing, which can efficiently yield the correct displacement solution vectors. 
Further discussion of this proposed strategy is provided below. 

Based on the theory of elasticity, the total potential energy of the rolling element bearing 
system is directly related to the displacements of the bearing system. The principle of minimum 
potential energy states that the potential energy corresponding to the correct solution satisfying all 
the differential equations and boundary condition is less than the potential energy corresponding 
to any other admissible displacement that satisfies geometrical equation and displacement 
boundary condition [26]. According to this principle, if the potential energy of the bearing system 
can be derived as a function of the displacements of inner ring relative to the housing support 
structure, the problem becomes finding the set of displacements that, satisfying the displacement 
boundary conditions and differential equations, make the potential energy minimum. 

The potential energy of total bearing system consists of the elastic strain energy and the 
potential energy of bearing forces. Generally, the deformation is considered only at the “outer 
raceway-roller element-inner raceway” contacts when loads are applied to bearing. Therefore, the 
elastic strain energy is caused by the contact deflection and can be calculated by the following 
equation: 

௦ܷ௧௥௔௜௡ = න 12 ,ܸ݀ߝ்ߪ (12)

where ௦ܷ௧௥௔௜௡  is the strain energy. Also, ߪ = ൫ߪ௫ ߪ௬ߪ௭ ߬௫௬ ߬௬௭ ߬௭௫൯்  are the six stress  
components, and ߝ = ൫ߝ௫ ߝ௬ߝ௭ ߛ௫௬ ߛ௬௭ ߛ௭௫൯் are the six strain components corresponding to stress 
components. Note that ߪ௜ and ߝ௜ (݅ =  are the normal stress and strain components, and ௝߬ (ݖ ,ݕ ,ݔ
and ߛ௝  (݆ =  are the shear stress and strain components, respectively. Finally, ܸ is (ݔݖ ,ݖݕ ,ݕݔ
entire compressed volume, and 1 2⁄  is the strain energy for each unit volume. It is almost ߝ்ߪ
impossible to determinate the elastic strain energy in applying Eq. (12) since it is very difficult to 
determine the stress and strain components accurately in the whole compressed volume. However, 
strain energy in the bearing can be calculated by the work due to forces causing contact deflection 
at the “outer raceway-roller element-inner raceway” contacts. 

For the ball bearing, given the deformation for the “outer raceway-ball element-inner raceway” 
contacts as ߜ௝ for the ݆th ball element, the corresponding normal load should be calculated in term 
of the Eq. (3) as: ܨ௝௖ = ௝௡, (13)ߜ௡ܭ

where the elemental work due to ܨ௝௖ on the elemental displacement along the direction of ߜ௝ can 
be describedas follow: ݀ ௝ܹ = ௝, (14)ߜ௝௖݀ܨ

and the total work of ܨ௝௖ can be obtained by integrating the above expression: 

௝ܹ = න ݀ ௝ܹ = න ௝ߜ௝௡݀ߜ௡ܭ = ஻௝௡ାଵ݊ߜ௡ܭ + 1ఋಳೕ଴ , (15)

where ߜ஻௝ is the total deflection of the ݆th ball element and can be calculated by Eq. (1), (2) as a 
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function of the displacements of inner ring of the bearing relative to the housing support.  
Therefore, the total strain energy for whole ball bearing can be obtained by adding ௝ܹ for all ball 
elements: 

ܷ஻௦௧௥௔௜௡ = ෍ ௝ܹ =ே
௝ୀଵ ෍ ஻௝௡ାଵ݊ߜ௡ܭ + 1ே

௝ୀଵ . (16)

The potential energy of bearing forces is subsequently calculated from: ܷ஻௙௢௥௖௘ = −൫ܨ௕௫ߜ௕௫ + ௕௬ߜ௕௬ܨ + ௕௭ߜ௕௭ܨ + ௕௫ߚ௕௫ܯ + .௕௬൯ߚ௕௬ܯ (17)

Therefore, the total potential energy is the sum of elastic strain energy and potential energy of 
bearing forces given by: ∏஻ = ܷ஻௦௧௥௔௜௡ + ܷ஻௙௢௥௖௘. (18)

Substituting Eqs. (16)-(17) into Eq. (18) yields the total potential energy described as a 
function of the displacements of inner ring of the bearing relative to the housing support structure. 

For the roller bearing, provided the deformation at the dimensionless coordinate ߦ, for the ݆th 
roller element is ߜ௝క, then the contact load ܨ௝క on the elemental length ݀ߦ could be calculated as 
follow: ܨ௝క = ௝క௡ߜ௡ܭ (19) ,ߦ݀

then, the elemental work due to ܨ௝క on the elemental displacement along the direction of ߜ௝క is 
calculated as: ݀ ௝ܹక = ௝క, (20)ߜ௝క݀ܨ

and the total work for ݆th roller element can be attained by integrating with respect to ߜ௝క and ߦ as 
given below: 

௝ܹ = න ݀ ௝ܹక = ඵ ௝క௡ߜ௡ܭ ߦ݀ ௝కߜ݀ = න ቆන ௝క௡ߜ௡ܭ ௝కఋೃೕ഍଴ߜ݀ ቇ కమకభߦ݀ = 1݊ + 1 න కమకభߦோ௝క௡ାଵ݀ߜ௡ܭ , (21)

where ߜோ௝క is the total deformation of the ݆th roller element at dimensionless coordinate ߦ. Also, ߜோ௝క can be calculated by the Eq. (6) and the limits of integration (ߦଵ, ߦଶ) can be obtained from 
Eq. (8). Substituting Eq. (6d) into above Eq. (21) yields: 

௝ܹ = 1݊ + 1 න ௡ܭ ቀܸ൫߰௝൯ + ൫߰௝൯ቁ௡ାଵ߱ܮߦ కమకభߦ݀ , (22)

௝ܹ =
۔ۖەۖ
௡ܸ൫߰௝൯௡ାଵ݊ܭۓ + 1 ଶߦ) − ,(ଵߦ ௝߱ = ݊)௡ܭ,0 + ൫߰௝൯߱ܮ(1 ቎ቀܸ൫߰௝൯ + ൫߰௝൯ቁ௡ାଶ݊߱ܮଶߦ + 2 − ቀܸ൫߰௝൯ + ൫߰௝൯ቁ௡ାଶ݊߱ܮଵߦ + 2 ቏ , ௝߱ ≠ 0, (23)

therefore, the total strain energy for the whole roller bearing could be attained by adding ௝ܹ for 
all the roller elements: 
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ܷோ௦௧௥௔௜௡ = ෍ ௝ܹே
௝ୀଵ . (24)

The potential energy of bearing forces for roller bearing can be obtained by the same formula 
in Eq. (17) used for ball bearing: ܷோ௙௢௥௖௘ = −൫ܨ௕௫ߜ௕௫ + ௕௬ߜ௕௬ܨ + ௕௭ߜ௕௭ܨ + ௕௫ߚ௕௫ܯ + .௕௬൯ߚ௕௬ܯ (25)

The sum of the elastic strain energy and potential energy of the bearing forces contribute to 
the total potential energy as a function of bearing displacements can be written briefly as: Πோ = ܷோ௦௧௥௔௜௡ + ܷோ௙௢௥௖௘. (26)

Given the above analysis, the energy method can be established employing the expression of 
potential energy in Eq. (18) and Eq. (26) as the objective functions for ball and roller bearing 
systems, respectively. Furthermore, the left expression of the given system of nonlinear algebraic 
Eq. (5) and Eq. (11) are actually the derivatives of the objective functions in Eq. (18) and Eq. (26), 
respectively. The global optimization method in MATLAB can be used to find the correct 
displacements that make total potential energy minimum and that also satisfy the differential 
equation and displacement boundary condition. The differential equation, in fact, does not need 
to be considered since bearing displacements here are the displacements of rigid mass point (i.e. 
the center of mass of rolling bearing) not a continuum body. The displacement boundary condition 
also does not exist since all the bearing displacements are unknown priori. It may be noted that 
since the energy method is based on the principle of minimum potential energy derived from the 
theory of elasticity, the approach for solving bearing displacements is assumed to be reliable. In 
addition, the energy method seeks the correct displacements from the energy minimization 
principle as opposed to earlier approaches [12] based on mathematical viewpoint since the 
nonlinear algebraic Eq. (5) and Eq. (11) are not solved directly. The feature of the proposed 
method will yield a fast and robust determination of the bearing stiffness, which can be employed 
in the vibration analysis of the geared rotor system modeling the bearing effect as supporting 
stiffness.  

4. Computational study 

In this section, numerical simulations were conducted to validate the efficiency of the proposed 
approach. The combination of loads for ball bearing and roller bearing has been given by Lim and 
Singh [12], which outlines the valid input combination of bearing loads. The translational and 
rotational displacements due to three different combinations of loads, that are (i) only constant 
axial force ܨ௕௭; (ii) constant radial force ܨ௕௫, axial force ܨ௕௭ and moment ܯ௕௬; and (iii) constant 
axial force ܨ௕௭, and moments ܯ௕௫ and ܯ௕௬ are calculated for ball bearing. And, the translational 
and rotational displacements for roller bearing subject to three different combinations of loads, 
that are (iv) only constant axial force ܨ௕௭ ; (v) constant radial force ܨ௕௫ , axial force ܨ௕௭  and 
moment ܯ௕௬ ; (vi) constant radial force ܨ௕௫ , moments ܯ௕௫  and ܯ௕௬  are also calculated in 
following computational cases. The design data for ball bearing and roller bearing is listed in 
Table 1 [12]. 

The energy method is used first to solve for the displacements of inner rings of ball bearing 
and roller bearing due to different combinations of loads. In the proposed computational process, 
the algorithm searches all the admissible displacements that make the potential energy of the 
bearing systems local minimum, and then finds the correct displacements that make the potential 
energy globally minimum from those admissible displacements found locally. In this manner, it 
is guaranteed that there is only one solution set for each one of these combinations of loads. The 
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computational flowchart for solving bearing displacements using the energy method is shown in 
Fig. 4. Our new results are also compared to the calculations from the classical Newton method, 
Powell’s hybrid method [24] and Modified Powell’s method [27] applied to the systems of 
nonlinear algebraic Eq. (5) and Eq. (11). The comparison shows that all of the methods yield the 
same bearing displacements as these obtained from energy method. However, all of these classical 
approaches require multiple sets of initial guesses. As noted earlier in this paper, the classical 
iterative approaches necessitate the use of different initial guesses to find the proper displacements 
since the number of solutions of nonlinear equations is not known a priori. In contrast, these 
cumbersome procedures are not needed in the newly proposed energy method because all the 
admissible displacements solutions can be found even if multiple solutions exist for systems of 
nonlinear algebraic Eq. (5) and Eq. (11). Further discussions and comparisons are given below. 

Table 1. Design parameter for typical ball and roller bearing [12] 
Parameters Ball bearing Roller bearing 

Load-deflection exponent, ݊ 3/2 10/9 
Load-deflection constant, ܭ௡ (N/mn) 8.5×109 3.0×108 
Number of rolling element, ܰ 12 14 
Radial clearance, ݎ௅ (mm) 0.00005 0.00175 
Pitch radius, ݎ௝ (mm) 19.65 21.25 
Crown drop, ݎ௖ (mm) – 0 ܣ଴ (mm) 0.05 – 

 
Fig. 4. The computational flowchart of the energy method 

For the case of only the axial displacement is non-zero when only the axial force is loaded 
onto the ball bearing, as shown in Fig. 5a, the results are as expected. The axial displacement 
decreases with greater unloaded contact angle ߙ଴, which implies the capacity to resist axial force 
improves as ߙ଴ increases. The same trend is shown when the combinations of loads, that are cases 
(ii) and (iii), are applied on the bearing system. For the combination of complex loads, denoted by 
case (ii), more non-zero displacements exist, as shown in Fig. 5b. The translational displacements 
in the ܺ-direction increase with the unloaded contact angle, which is caused by the curvature of 
the raceway that provides lesser resistance to the radial loads. The rotational displacement ߚ௕௬ 
increases in the beginning with increasing unloaded contact angle, and then decreases as the 
unloaded contact angle increases further. In Fig. 5c, the bearing inner ring generates rotational 
displacements about both the ܺ-direction and ܻ-direction due to the existence of the moments ܯ௕௫ and ܯ௕௬. The radial displacement here is obviously less than ߚ௕௫ for the combination of loads 
case (ii) because no radial forces are applied in third case. 
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Fig. 5a. The displacements of ball bearing given a constant axial force ܨ௕௭ = 3000 N,  

as denoted by case (i) 

 
Fig. 5b. The displacements of ball bearing given constant radial force ܨ௕௫ = 1000 N, axial force  ܨ௕௭ = 3000 N and moment ܯ௕௬ = 5000 Nmm, as denoted by case (ii) 

 
Fig. 5c. The displacements of ball bearing given constant axial force ܨ௕௭ = 5000 N, moments  ܯ௕௫ = 3000 Nmm and ܯ௕௬ = 10000 Nmm, as denoted by case (iii) 

For the roller bearing, it should be noted that ߙ଴ = 0° implies a cylindrical roller bearing type 
in which only the combinations of radial forces and transverse moments could be applied. This 
type of cylindrical roller bearing is not designed to carry axial forces without an axial flange. For 
this reason, the bearing structure is not expected to deform axially, and its potential energy is only 
a function of the radial and angular displacements. This is evident from the fact that the variation 
of axial displacement has no effect on the elastic deformation of roller element due to the vanishing 
term ߜ௕௭sinߙ଴ in the Eq. (6a). Therefore, axial displacement must vanish in the computational 
process. To deal with this special case, the lower and upper bounds of axial displacement are both 
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set to zero, which guarantees that the axial displacement is kept constant at zero value and does 
not influence the calculation of the potential energy for each iterative step. This construction is 
necessary to attain a reasonable combination of radial and angular displacements with minimal 
potential energy. On the other hand, for thrust roller bearing (ߙ଴ = 90°), the radial displacement 
should always be set to zero to avoid arbitrary radial translational motion and to ensure only the 
axial and angular displacements exist when subject to axial forces and moments. The ability to 
discern these special cases is necessary to facilitate the formulation of the proposed energy method 
to solve for the bearing displacements for any contact angles for roller bearing. Examples of 
computational studies of the roller bearing system are given next. 

 
Fig. 6a. The displacements of roller bearing given a constant axial force ܨ௕௭ = 10000 N,  

as denoted by case (iv) 

 
Fig. 6b. The displacements of roller bearing given constant radial force ܨ௕௫ = 3000 N, axial force ܨ௕௭ = 10000 N, and moment ܯ௕௬ = 10000 Nmm, as denoted by case (v) 

The bearing displacement results are shown in Fig. 6a for roller bearing due to constant axial 
force, as denoted by case (iv). Since the axial force carrying capacity provided by axial flange is 
not considered when contact angle approximates zero, only the displacements for ߙ଴ ≥ 10° are 
calculated here. The axial displacement decreases with the increasing contact angle similar to the 
trend for axially loaded ball bearing. In this case, the axial displacement decreases very rapidly 
for ߙ଴ ≤ 30° and then slows down its decrease by approaching a horizontal asymptote for  ߙ଴ ≥ 30°. Note that all the other displacements except axial displacement are zero as expected. 
The displacements results in roller bearing due to the combination of loads, denoted by case (v), 
are obtained as shown in Fig. 6b only for contact angles varying from 10 to 30 degrees because of 
the practical limitation in the translational bearing motion for high contact angles. For example, 
the radial displacement along the ܺ -direction reaches 2.2916 mm when contact angle is at 
40 degrees, which is impractical. Also, as expected, there are more non-zero displacements for 
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this case (v) than the pure axial loading case. Again, it is observed that the axial displacement 
decreases when the contact angle increases similar to case (iv). The radial displacement in the  ܺ-direction and the rotational angle along the ܻ-direction increase with the increasing contact 
angle, which implies that the roller bearings with greater angles provide less capacity to resist 
radial force, and the incremental radial displacement, contributes to the additional rotational angle. 

 
Fig. 6c. The variation of radial displacements of cylindrical roller bearing (ߙ଴ = 0°) given constant radial 

force ܨ௕௫ = 5000 N, moment ܯ௕௫ = 5000 Nmm, and ܯ௕௬ = 10000 Nmm, as denoted by case (vi) 

 
Fig. 6d. The variation of rotational displacements of cylindrical roller bearing (α଴ = 0°) given constant 

radial force ܨ௕௫ = 5000 N, moment ܯ௕௫ = 5000 Nmm, and ܯ௕௬ = 10000 Nmm, as denoted by case (vi) 

To study the effect of orbital position of roller elements on bearing displacements, 
time-varying bearing displacements for cylindrical roller bearing (ߙ଴ = 0°) given constant radial 
force ܨ௕௫, moments ܯ௕௫ and ܯ௕௬, as denoted by case (vi), are shown in Figs. 6c-6d. The radial 
and rotational displacements (axial displacements are zero) behave nearly like a sine wave with 
the normalized orbital position angle (߰ ்߰⁄ , ்߰ = ߨ2 ܰ⁄  is the element-to-element angular 
distance). 

5. Parametric studies 

The stiffness for ball bearing and roller bearing can be derived as shown below applying Eq. (5) 
and Eq. (11): 

ሾܭሿ௕ = ێێێۏ
ۍ ௕௝ߜ௕௜߲ܨ߲ ௕௝ߜ௕௜߲ܯ௕௝߲ߚ௕௜߲ܨ߲ ௕௝ߚ௕௜߲ܯ߲ ۑۑۑے

ې , ݅, ݆ = ,ݔ ,ݕ .ݖ (27)

The stiffness matrix of rolling element bearing systems includes radial, axial and rotational 
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stiffness coefficients (diagonal), and coupling stiffness coefficients (off-diagonal). Explicit 
expressions of stiffness coefficients as the function of bearing displacements for ball bearing and 
roller bearing can be found in Lim and Singh’s [12, 14] papers, as shown in Appendix A1 and A2 
(note that ሾܭሿ௕ is symmetric, i.e., ݇௕௜௝ = ݇௕௝௜). 

For ball bearing, the axial and rotational stiffness coefficients given the constant axial bearing 
force denoted by case (i), as shown in Fig. 7, increase with the increase in unloaded contact angle ߙ଴, but the radial stiffness shows the inverse trend. The coupling stiffness coefficients remain 
almost constant when the unloaded contact angle is less than 30 degree, and decrease gradually 
when ߙ଴  exceeds 30 degrees. The results also show that all dominant stiffness coefficients 
mentioned above are very significant for deep groove ball bearing, but axial and rotational 
stiffness coefficients appear more prominent for angular contact ball bearing.  

 

Fig. 7. Dominant stiffness coefficients of ball bearing given a constant axial force ܨ௕௭ = 3000 N,  
as denoted by case (i) 

In the case when the ball bearing is subjected to the combinations of ܨ௕௫, ܨ௕௭ and ܯ௕௬ denoted 
by case (ii), as shown in Fig. 8, there are more dominant stiffness terms as compared to the case 
with only axial preload. The radial, axial and rotational coefficients show the same trend as seen 
in Fig. 7. The coupling terms related to the axial displacement ߜ௭ is insensitive to change in ߙ଴. 
When the ball bearing is loaded with the combinations of ܨ௕௭, ܯ௕௫ and ܯ௕௬ denoted by case (iii), 
as shown in Fig. 9, the dominant stiffness coefficients are slightly different from the previous two 
cases. The coefficient ܭ௕௭ఏ௬ is also very significant for deep groove ball bearing except for the 
radial, axial and rotational stiffness terms. From middle to high value of ߙ଴ , the axial and 
rotational stiffness coefficients are more dominant. The rotational terms, ܭ௕ఏ௫ఏ௫ and ܭ௕ఏ௬ఏ௬, are 
nearly the same even though the moment ܯ௕௬  is much larger than ܯ௕௫ , but ܭ௕௭ఏ௫  and ܭ௕௭ఏ௬ 
depict significant differences. 

For roller bearing subjected to a constant axial force ܨ௕௭, as denoted by case (iv),the radial and 
rotational stiffness coefficients shown in Fig. 10 display the similar tendency as those seen for 
axially loaded ball bearing. The coupled stiffness coefficients are found to be significant in the 
middle contact angle range. The stiffness coefficients related to radial displacements vanish when 
contact angle is equal to 90° since this type of thrust bearings are not able to carry radial loads and 
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hence no radial displacements are possible. 
More dominant stiffness coefficients are shown in Fig. 11 for roller bearing given the 

combinations of ܨ௕௫, ܨ௕௭ and ܯ௕௬, as denoted by case (v). The radial stiffness coefficients are 
dominant near the contact angle of 10 degrees but the rational and coupled stiffness coefficients 
except for those related to axial displacement are dominant for contact angles approaching  
30 degrees. 

 

Fig. 8. Dominant stiffness coefficients of ball bearing given constant radial force ܨ௕௫ = 1000 N,  
axial force ܨ௕௭ = 3000 N and moment ܯ௕௬ = 5000 Nmm, as denoted by case (ii) 

 

Fig. 9. Dominant stiffness coefficients of ball bearing given constant axial force ܨ௕௭ = 5000 N,  
moments ܯ௕௫ = 3000 Nmm and ܯ௕௬ = 10000 Nmm, as denoted by case (iii) 
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Fig. 10. Dominant stiffness coefficients of roller bearing given constant axial force ܨ௕௭ = 10000 N,  
as denoted by case (iv) 

 

Fig. 11. Dominant stiffness coefficients of roller bearing given constant radial force ܨ௕௫ = 3000 N,  
axial force ܨ௕௭ = 10000 N and moment ܯ௕௬ = 10000 Nmm, as denoted by case (v) 

The dominant time-varying stiffness coefficients for cylindrical roller bearing (ߙ଴ = 0°) due 
to combination of loads ܨ௕௫, ܯ௕௫ and ܯ௕௬ denoted by case (vi) are shown in Fig. 12. The stiffness 
coefficients fluctuate with the orbital position of roller elements corresponding to the fluctuation 
of displacements observed in Figs. 6c-6d. The coupled stiffness coefficients vary more 
substantially than non-coupled stiffness coefficients. It is expected that incorporation of these 
time-varying stiffness coefficients can contribute to improvement in results of dynamic analysis 
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of the bearing-supported geared rotor systems as compared to using only the averaged bearing 
stiffness values [13]. 

 

 

 
Fig. 12. The variation of stiffness coefficients of cylindrical roller bearing (ߙ଴ = 0°) given constant radial 

force ܨ௕௫ = 5000 N, moments ܯ௕௫ = 5000 Nmm and ܯ௕௬ = 10000 Nmm, as denoted by case (vi) 

It is worth mentioning that the proposed energy method is highly efficient in calculating the 
bearing displacements and stiffness. In real time, all the cases showed that the bearing results only 
took several seconds to compute at specified orbital position of roller elements and unloaded 
contact angle using a typical desktop computer. The parameters studies show that most bearing 
stiffness terms vary significantly with unloaded contact angle except for those having zero values, 
and the time-varying characteristic of the stiffness terms may also be important. 

6. Conclusions 

A fast and reliable numerical-based energy method based on principle of minimum potential 
energy is developed and applied to compute for the displacements of ball and roller bearings under 
complex loads. In this energy method, a global optimal problem is analyzed in which the potential 
energy of the bearing system constitute the objective function. The global optimization algorithm 
is used to solve for the bearing displacements. The bearing displacements can be obtained by 
searching and finding the minimum total potential energy of the bearing system instead of solving 
the system of nonlinear algebraic equations directly. In addition, the proposed energy method 
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derived from the well-established theory of elasticity runs quicker by avoiding the extra trial and 
error efforts in testing a range of initial estimates as needed in the classical iterative method. The 
computed bearing stiffness will be very important for the vibration analysis of the geared rotor 
system in order to design a quiet driveline. Also, the proposed energy method can be employed to 
analyze the sensitivity of bearing parameters on the potential energy, which can be applied to 
study the vibration problem of certain designed bearings.  

The effect of unloaded contact angle on bearing stiffness of ball and roller bearings is analyzed. 
The analysis reveals the trends of the dominant stiffness coefficients. Time-varying characteristic 
of the stiffness coefficients are also studied using the proposed energy method. The analysis shows 
that the coupled stiffness coefficients are more sensitive to orbital position of roller elements as 
compared to non-coupled stiffness coefficients. 
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Appendix 

A1. Expression of the ball bearing stiffness coefficients 

௕௫௫ܭ = ௡ܭ ෍ ൫ܣ௝ − ଴൯௡cosଶ(߰௝)ܣ ቊ݊ܣ௝(ߜ∗)௥௝ଶܣ௝ − ଴ܣ + ௝ଶܣ − ௥௝ଶ(∗ߜ) ቋܣ௝ଷ
ே
௝ ,

௕௫௫ܭ = ௡ܭ ෍ ൫ܣ௝ − ଴൯௡cosଶ(߰௝)ܣ ቊ݊ܣ௝(ߜ∗)௥௝ଶܣ௝ − ଴ܣ + ௝ଶܣ − ௥௝ଶ(∗ߜ) ቋܣ௝ଷ
ே
௝ ,

௕௫௭ܭ = ௡ܭ ෍ ൫ܣ௝ − ௭௝cos(߰௝)(∗ߜ)௥௝(∗ߜ)଴൯௡ܣ ൜ ௝ܣ௝ܣ݊ − ଴ܣ − 1ൠܣ௝ଷ
ே
௝ , 

௕௫ఏ௫ܭ = ௡ܭ ෍ ௝ܣ௝൫ݎ − ௭௝sin(߰௝)cos(߰௝)(∗ߜ)௥௝(∗ߜ)଴൯௡ܣ ൜ ௝ܣ௝ܣ݊ − ଴ܣ − 1ൠܣ௝ଷ
ே
௝ , 

௕௫ఏ௬ܭ = ௡ܭ ෍ ௝ܣ௝൫ݎ − ௭௝cosଶ(߰௝)(∗ߜ)௥௝(∗ߜ)଴൯௡ܣ ൜1 − ௝ܣ௝ܣ݊ − ௝ଷܣ଴ൠܣ
ே
௝ , 

௕௬௬ܭ = ௡ܭ ෍ ௝ܣ) − ଴)௡sinଶ(߰௝)ܣ ቊ݊ܣ௝(ߜ∗)௥௝ଶܣ௝ − ଴ܣ + ௝ଶܣ − ௥௝ଶ(∗ߜ) ቋܣ௝ଷ
ே
௝ , 

௕௬௭ܭ = ௡ܭ ෍ ൫ܣ௝ − ௭௝sin(߰௝)(∗ߜ)௥௝(∗ߜ)଴൯௡ܣ ൜ ௝ܣ௝ܣ݊ − ଴ܣ − 1ൠܣ௝ଷ
ே
௝ , 
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௕௬ఏ௫ܭ = ௡ܭ ෍ ௝ܣ௝൫ݎ − ௭௝sinଶ(߰௝)(∗ߜ)௥௝(∗ߜ)଴൯௡ܣ ൜ ௝ܣ௝ܣ݊ − ଴ܣ − 1ൠܣ௝ଷ
ே
௝ , 

௕௬ఏ௬ܭ = ௡ܭ ෍ ௝ܣ௝൫ݎ − ௭௝sin(߰௝)cos(߰௝)(∗ߜ)௥௝(∗ߜ)଴൯௡ܣ ൜1 − ௝ܣ௝ܣ݊ − ௝ଷܣ଴ൠܣ
ே
௝ , 

௕௭௭ܭ = ௡ܭ ෍ ௝ܣ) − ଴)௡ܣ ቊ݊ܣ௝(ߜ∗)௭௝ଶܣ௝ − ଴ܣ + ௝ଶܣ − ௭௝ଶ(∗ߜ) ቋܣ௝ଷ
ே
௝ , 

௕௭ఏ௫ܭ = ௡ܭ ෍ ௝ܣ)௝ݎ − ଴)௡sin(߰௝)ܣ ቊ݊ܣ௝(ߜ∗)௭௝ଶܣ௝ − ଴ܣ + ௝ଶܣ − ௭௝ଶ(∗ߜ) ቋܣ௝ଷ
ே
௝ , 

௕௭ఏ௬ܭ = ௡ܭ ෍ ௝ܣ)௝ݎ − ଴)௡cos(߰௝)ܣ ቊ(ߜ∗)௭௝ଶ − ௝ܣ௭௝ଶ(∗ߜ)௝ܣ݊ − ଴ܣ − ௝ଷܣ௝ଶቋܣ
ே
௝ , 

௕ఏ௫ఏ௫ܭ = ௡ܭ ෍ ௝ܣ)௝ଶݎ − ଴)௡sinଶ(߰௝)ܣ ቊ݊ܣ௝(ߜ∗)௭௝ଶܣ௝ − ଴ܣ + ௝ଶܣ − ௭௝ଶ(∗ߜ) ቋܣ௝ଷ
ே
௝ , 

௕ఏ௫ఏ௬ܭ = ௡ܭ ෍ ௝ܣ)௝ଶݎ − ଴)௡sin(߰௝)cos(߰௝)ܣ ቊ(ߜ∗)௭௝ଶ − ௝ܣ௭௝ଶ(∗ߜ)௝ܣ݊ − ଴ܣ − ௝ଷܣ௝ଶቋܣ
ே
௝ , 

௕ఏ௬ఏ௬ܭ = ௡ܭ ෍ ௝ܣ)௝ଶݎ − ଴)௡cosଶ(߰௝)ܣ ቊ݊ܣ௝(ߜ∗)௭௝ଶܣ௝ − ଴ܣ + ௝ଶܣ − ௭௝ଶ(∗ߜ) ቋܣ௝ଷ
ே
௝ ௕௜ఏ೥ܭ , = ௕ఏ೔ఏ೥ܭ = 0,   ݅ = ,ݔ ,ݕ  ,ݖ

where: (ߜ∗)݆ݖ = 0ߙ0sinܣ + ݆ݎ(∗ߜ) and ݆ݖ(ߜ) = 0ߙ0cosܣ +  .݆ݎ(ߜ)
A2. Expressions of the roller bearing stiffness coefficients 

௕௫௫ܭ = (଴ߙ)௡cosଶܭ݊ ෍ ଴cosଶ(߰௝)ேܫ
௝ ,

௕௫௬ܭ = (଴ߙ)௡cosଶܭ݊ ෍ ଴cos(߰௝)sin(߰௝)ேܫ
௝ ,

௕௫௭ܭ = (଴ߙ)sin(଴ߙ)௡cosܭ݊ ෍ ଴cos(߰௝)ேܫ
௝ ,

௕௫ఏೣܭ = (଴ߙ)௡cosܭ݊ ෍(ܫ଴ݎ௝sin(ߙ଴) − ଵ)cos(߰௝)sin(߰௝)ேܫ
௝ ,



1541. A FAST AND RELIABLE NUMERICAL METHOD FOR ANALYZING LOADED ROLLING ELEMENT BEARING DISPLACEMENTS AND STIFFNESS.  
YU ZHANG, GUOHUA SUN, TEIK C. LIM, LIYANG XIE 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAR 2015, VOLUME 17, ISSUE 2. ISSN 1392-8716 641 

௕௫ఏ೤ܭ = (଴ߙ)௡cosܭ݊ ෍(ܫଵ − cosଶ(߰௝)ே((଴ߙ)௝sinݎ଴ܫ
௝ ,

௕௬௬ܭ = (଴ߙ)௡cosଶܭ݊ ෍ ଴sinଶ(߰௝)ேܫ
௝ ,

௕௬௭ܭ = (଴ߙ)sin(଴ߙ)௡cosܭ݊ ෍ ଴sin(߰௝)ேܫ
௝ ,

௕௬ఏೣܭ = (଴ߙ)௡cosܭ݊ ෍(ܫ଴ݎ௝sin(ߙ଴) − ଵ)sinଶ(߰௝)ேܫ
௝ ௕௬ఏ೤ܭ , = ௕௭௭ܭ ,௕௫ఏೣܭ− = (଴ߙ)௡sinଶܭ݊ ෍ ଴ேܫ

௝ , 
௕௭ఏೣܭ = (଴ߙ)݊݅ݏ௡ܭ݊ ෍(ܫ଴ݎ௝sin(ߙ଴) − ଵ)sin(߰௝)ேܫ

௝ , 
௕௭ఏ೤ܭ = (଴ߙ)௡sinܭ݊ ෍(ܫଵ−ܫ଴ݎ௝sin(ߙ଴))cos(߰௝)ே

௝ , 
௕ఏೣఏೣܭ = ௡ܭ݊ ෍(ܫ଴ݎ௝ଶsinଶ(ߙ଴) − (଴ߙ)௝sinݎଵܫ2 + ଶ)sinଶ(߰௝)ேܫ

௝ , 
௕ఏೣఏ೤ܭ = ௡ܭ݊ ෍(2ܫଵݎ௝sin(ߙ଴) − (଴ߙ)௝ଶsinଶݎ଴ܫ − ଶ)sin(߰௝)cos(߰௝),ேܫ

௝  

௕ఏ೤ఏ೤ܭ = ௡ܭ݊ ෍(ܫ଴ݎ௝ଶsinଶ(ߙ଴) − (଴ߙ)௝sinݎଵܫ2 + ଶ)cosଶ(߰௝)ேܫ
௝ ௕௜ఏ೥ܭ , = ௕ఏ೔ఏ೥ܭ = 0, ݅ = ,ݔ ,ݕ  ,ݖ

where: ܫ௣ = ,݌)ܶ (ଶߦ − ,݌)ܶ ,(ଵߦ ݌ = 0, 1, 2,
in which: 

,݌)ܶ (ߦ = ۔ۖەۖ
ܸ)ۓ + ௡݊߱(߱ܮߦ ቈ(ߦܮ)௣ − ܸ)௣ିଵ(ߦܮ)݌ + ݊)(߱ܮߦ + 1)߱ + ݌)݌ − 1)(ܸ + ݊)ଶ(߱ܮߦ + 1)(݊ + 2)߱ଶ ቉ , ߱ ≠ ݌௣ାଵܸ௡ିଵ(ܮߦ),0 + 1 ,  ߱ = 0. 
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