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Abstract. The friction damper has been widely used to reduce the resonant vibration of blades. 
The harmonic balance method is a well-known method for the linearization of the nonlinear 
friction force. Meanwhile Mindlin gives analytical expression to describe the nonlinear friction 
force during stick contact condition, therefore the nonlinear force is represented by two linear 
coefficients, i.e., equivalent stiffness and equivalent damping. In this work, the stiffness matrix 
and mass matrix are normalized to a lumped mass and corresponding stiffness according to the 
definition of stiffness and modal mode. For blades system with underplatform dampers, the 
dynamic equation for multi lumped mass system is derived and also the iteration method is listed. 
At last, the experiment verification is conducted using 2 plate blades with underplatform damper. 
The comparison shows a good agreement in both resonant response and resonant frequency for 
low normal load cases, and still capture the tendency for high normal load cases. 
Keywords: underplatform damper, harmonic balance method, resonant response, normalization, 
multi-lumped-mass system. 

1. Introduction 

The rotor blades in aero-engine are subjected to high dynamic loads caused by fluctuating gas 
forces resulting in forced vibrations of the blades. The forced vibrations can lead to high cycle 
fatigue [HCF] failures causing substantial damage and high maintenance effort. Thus, in order to 
avoid such failures, designers of aircraft engines frequently incorporate friction devices into 
turbine designs to increase damping and reduce vibratory stresses. This friction devices transmits 
a load through a friction contact which dissipates energy by micro-slip and macro-slip effects. 

The need of reliable prediction for the blades with friction dampers has led to a large number 
of technical literature and can be grouped to two types: those which emphasize the mathematical 
aspects of solving systems governed by nonlinear differential equation, e.g., [1-6], and others 
which are concerned with a specific design application, e.g., [7-11]. In the latter type, Griffin [9] 
propose a simplest model for the analysis which was a classical single-lumped-mass oscillator. 
Since it assumed the damper as blade-to-ground type, the damper vibration can not be included. 
In this paper, multi-lumped-mass for a two-bladed system with underplatform damper is derived 
and therefore damper mass and damper vibration can be taken into consideration. Verification is 
conducted by the comparison of numerical prediction and those tested by two plate blades system 
with underplatform damper. The result shows a good agreement on resonant response and also 
capture the tendency of resonant frequency shift. 

2. Single lumped mass method 

The equation of motion for a discrete model of a blade is: ܃ܯሷ + ሶ܃ܥ + ܃ܭ = ௟, (1)܎

where ܃ is the generalized displacement vector and ܥ ,ܭ ,ܯ represents the mass, viscous damping, 
and stiffness matrices respectively; ܎௟ is the exciting force vector acting on the blade, and the ( ሶ ) 
indicates differentiation with respect to time. 
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Fig. 1. Schematic map of one-dimension model 

Suppose that ߶௜  are mass-normalized eigen-vectors of the non-damped linear system, i.e.: ߶௜் ௜߶ܭ = ߱௜ଶ, ߶௜் ௜߶ܯ = 1.  

Since this paper will focus on the first mode, the situation in which the system is forced 
sinusoidally at a frequency near the lowest resonant frequency ߱௜  is considered, however the 
treatment of higher mode is analogous. It is reasonable to assume that the single lowest mode will 
dominate and ܃ may then be written as: ܃ = ߮ଵ߬ଵ(ݐ). (2) 

Substitute Eq. (2) into Eq. (1) and premultiply ߮ଵ்  results in the following differential equation 
for the first mode of the damped blade: ߮ଵ் ଵ߮ܯ ሷ߬ଵ + ߮ଵ் ଵ߮ܥ ሶ߬ଵ + ߮ଵ் ଵ߬ଵ߮ܭ = ߮ଵ் ,௟܎ (3) 

The physical definition of stiffness means the force that in line with unit displacement. At the 
same time, the damping effect depends on the relative displacement between damper and blade, 
thus the eigen-vector should be mode normalized to make the damper location (red solid circle in 
Fig. 1) displacement unit. The mode normalized eigen-vector can be represented as ߮ߣଵ  and 
Eq. (3) can be represented as:’ ݉ ሷ߬ଵ + ܿ ሶ߬ଵ + ݇߬ଵ = ௟݂, (4) 

where the ݉, ܿ and ݇ are defined consistent with Eq. (3). Thus the blade system depicted in Fig. 1 
can be simplified to a massless cantilever beam with bending stiffness k and a lumped mass m at 
the cantilever beam tip. 

3. Linearized method 

The system with friction dampers can be linearized by fiction model combined with harmonic 
balance method. For a friction damper the energy dissipated during one cycle of motion is the area 
enclosed by the hysteresis curve shown in Fig. 2. It is considered as a “micro-macro-slip” model 
since the energy can be dissipated before gross slip across the interface. Mindlin gives analytical 
expressions that define the various parts of the hysteresis curves. 

Specifically, the nonlinear friction force is given by. 
For unloading [PRS in Fig. 2(a)]: 

௡݂ = ܰߤ ቎1 − ൬1 − ଴൰ଷଶ቏ܣ2ܺ3 − ܰߤ2 ቎1 − ൬1 − ܺ − ଴ܣ3ݔ ൰ଷଶ቏. (5) 
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And for cyclic reloading [STP in Fig. 2(a)]: 

௡݂ = ܰߤ− ቎1 − ൬1 − ଴൰ଷଶ቏ܣ2ܺ3 + ܰߤ2 ቎1 − ൬1 − ܺ + ଴ܣ3ݔ ൰ଷଶ቏, (6)

where ܣ଴ = ௗ݇/ܰߤ  and ܺ ߤ , , ܰ , ݇ௗ  represent the relative displacement, friction coefficient, 
normal force and contact stiffness respectively. This formulas were used to generate the hysteresis 
curves shown in Fig. 2(b). 

 
a) 

 
b) 

Fig. 2. Hysteresis from mindlin analysis  

The nonlinear friction force can be approximated by a spring and damper acting in parallel, 
i.e.: 

௡݂ ≈ ݇௘௤ݔ + ܿ௘௤ݔሶ . (7)

The equivalent stiffness ݇௘௤  and damping ܿ௘௤  are obtained using the harmonic balance  
method. It assumes that the displacement is sinusoidal and the nonlinear force has the same period 
as the motion. Then the force is expanded in a Fourier series and truncated after its fundamental 
terms that expressed as ܨ௖ in phase with motion and ܨ௦ out of phase , i.e.: 

௡݂ ≈ ௖ܺܨ ݔ − ௦ωܺܨ ሶݔ . (8)

 

 
a) Equivalent damping 

 
b) Equivalent stiffness 

Fig. 3. Normalized equivalent damping and equivalent stiffness 

Compare the Eqs. (7) and (8), the in phase term ܨ௖ represents spring force and the out of phase 
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term ܨ௦ represents damping force. Thus the nonlinear friction force is represented by two linear 
coefficients. Notice that the relative displacement ܺ used for the calculation of nonlinear friction 
force must be first assumed, so the solution of system response is obtained by the iteration of ܺ. 
The dimensionless equivalent stiffness and equivalent damping of friction force are plotted as a 
function of relative amplitude in Fig. 3. The horizontal axis is normalized by the distance required 
to slip, i.e., 3ܣ଴/2, and the vertical axis is normalized by the contact stiffness ݇ௗ. It is clear that 
the equivalent stiffness decrease with the increase of relative displacement, and an optimal relative 
displacement is existed that provides max damping. 

4. Multi-lumped mass method 

4.1. Derivation of modal equations 

Fig. 4 shows the blade system having a underplatform damper and the nonlinear friction force 
is generated by the relative motion between damper and blades. The blades are simplified to 2 
lumped mass and 2 corresponding stiffness by lumped mass method depicted in chapter 2. 
Meanwhile the nonlinear force can be represented by 2 equivalent coefficients, equivalent 
damping ܥ௘௤ and equivalent stiffness ܭ௘௤. Since the damper vibration can not be ignored and the 
nonlinear forces are generated between the damper and the contact blades, the equivalent stiffness 
coefficients and equivalent damping coefficients are also separated as left side and right side, 
subscripts are 1 and 2 respectively. Thus the blades system depicted in Fig. 4 can be represented 
by only 3 lumped mass 4 springs and 2 damping coefficients, see Fig. 5. 

 
Fig. 4. Blade system with underplatform damper 

 
Fig. 5. Schematic map of the multi lumped mass model 

Here ݉ଷ mean the damper mass and the kinematic equation of the multi-lumped-mass system 
can be expressed as follow: [ܯ][ܠሷ ] + ሶܠ][ܥ] ] + [ܠ][ܭ] = [܎]  

where: 
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[ܯ] = ቎݉ଵ ݉ଶ ݉ଷ቏, [ܥ] = ቎ܥ௘௤,ଵ 0 ௘௤,ଵ0ܥ− ௘௤,ଶܥ ௘௤,ଵܥ௘௤,ଶܥ− ௘௤,ଶܥ ௘௤,ଵܥ− − ௘௤,ଶ቏ܥ ,
[ܭ] = ቎݇ଵ + ௘௤,ଵܭ 0 ௘௤,ଵ0ܭ− ݇ଶ + ௘௤,ଶܭ ௘௤,ଵܭ௘௤,ଶܭ− ௘௤,ଶܭ ௘௤,ଵܭ− − ,௘௤,ଶ቏ܭ [܎] = ൥ ଵ݂݂ଶ0 ൩.

For most blade system, it is reasonable to assume the blades have same geometric characteristic 
and boundary conditions, thus the bending stiffness and lumped mass obtained by modal mode 
and frequency are same, i.e., ݉ଵ = ݉ଶ and ݇ଵ = ݇ଶ. 

4.2. Experiment verification 

In order to verify the numerical prediction using the multi mass method with respect to the 
experimental results, 2 plate blades system with a underplatform damper system depicted in [12] 
is analysed. 

The nonlinear solution of the 2 plate blades system is performed iteratively with bisection 
method using the following steps: 

1) A guess value of relative displacement ଵܺ that between the damper and the blades is given; 
2) The equivalent stiffness coefficients and damping coefficients are calculated based on the 

Mindlin micro-macro model using single harmonic balance method, then the nonlinear system 
turns to be a linear system; 

3) The relative displacement ܺଶ is computed; 
4) The error between the assumptive relative displacement ଵܺ  and the computed ܺଶ  is 

calculated to decide whether the iteration has achieved a convergence. 

 
a) Resonant response 

 
b) Resonant frequency 

Fig. 6. Comparison between test and calculated results 

A comparison of the response predicted by numerical analysis and those measured in [12] are 
plotted as function of damper normal load in Fig. 6(a). For high normal load cases, predicted 
resonant response is lower than the test data. However overall, the predicted resonant response 
curve is in good agreement with the test data. Experimental and numerical values of resonant 
frequency are portrayed in Fig. 6(b). A obvious frequency difference existed between predicted 
and tested values, however the numerical data still capture the tendency of the frequency shift on 
normal load.  

Since the lumped mass and bending stiffness are normalized on the modal mode without 
consideration of damper, the effect of the damper on resonant frequency and modal mode can not 
be included. The damper reinforce the blades system, thus the bending stiffness increases which 
is in line with the comparison.  
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5. Conclusion 

In this paper, the blades system with underplatform damper is normalized according to 
stiffness definition and the modal mode, thus a two blades with underplatform damper is 
transformed to only a 3 DOFS system. The linearization of the nonlinear system is conducted 
through the Mindlin micro-macro model and single harmonic balance method. In addition the 
nonlinear solution of blades system with underplatform damper is achieved by iterating the 
assumptive relative amplitude. 

Numerical predictions were compared to the experimental data, overall in good match in terms 
of the resonant amplitude. Obvious difference in terms of resonant frequency is observed as the 
modal mode that used in the normalization process is obtained without damper. However this 
multi lumped mass method can quickly calculated the response and resonant frequency in a certain 
accuracy as the dynamic equation is so simple. 
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