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pendulum rod is about 0.15 rad (8.59°). As the absence of self-synchronization, the motion of the 
platform is destabilized with a noperiodic vibration (see Fig. 3(f)). 

4.2.2. Simulation result for ࣁ = , ࢘࢘ = .  

Fig. 4 shows the self-synchronization of the vibrating system when we take the eccentricity ݎ 
of unbalanced rotors as a constant and increase the length of the pendulum rod rଷto two times that 
of section 3.2.1, i.e. ߟଶଵ = 1 and ݎ = 0.5. The velocity of rotor 2 is far less than the rated velocity 
of motors in the start process as a stronger disturbance of the pendulum rod on the motor shaft, 
but the velocity of rotor 1 is close to the rated velocity of the motor (see Fig. 4(a)). In 17 s when 
the pendulum rod steadily and periodically swings (see Fig. 4(e)), the rotors operate with 
approximate velocity 156 rad/s called as synchronous velocity or synchronous speed. At this 
moment, the displacement amplitude of the pendulum rod is 0.069 rad (3.95°); the rotor velocity 
difference only approaches ±1.6 rad/s (see Fig. 4 (b)); the rotor phase difference begins to stabilize 
gradually at 1693.875 rad (269×2ߨ1.18+ߨ, see Fig. 4(c)). Omitting integral multiple of 2ߨ, the 
phase difference of the system synchronization could be rewritten as 2α = ߨ1.18 ; this is in 
accordance with the theoretical analysis in Section 3.2 (2/ߨ ≤ ߙ2 ≤ .(2/ߨ3  And the 
synchronous process of the vibrating system is adjusted by transmission of electromagnetic torque 
between the two motors began at 15 s and ended at 17.5 s (see Fig. 4(d)). As the counteraction of 
the vibration force produced by two identical rotors, the platform with micro-vibration moves in 
cycles on the ݕ-direction (see Fig. 4(f)). 
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Fig. 4. Self-synchronization for ߟଶଵ = 1 and ݎ = 0.5 (݉ଶ = ଷݎ ,3 = 0.1) 

4.2.3. Simulation result for ࣁ = ࢘࢘ ,1 = 0.3 

Fig. 5 shows self-synchronization of the vibrating system when we take the parameterras a 
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constant and continually increase the length of the pendulum rod ݎଷ  to three times of that in 
Section 4.2.1, i.e. ߟଶଵ = 1 and ݎ = 0.3. The velocity of rotor 2 is also far less than the rated speed 
of the motor as the stronger disturbance of the pendulum rod on the motor shaft during the starting 
few seconds (at first 1.7 s). Then the two rotors synchronously rotate with velocity 157 rad/s, but 
still a weaker disturbance of the pendulum rod to the motor shaft still does not end until at 15 s 
(see Fig. 5(a)). At the moment, the rotor velocity difference approaches only ±1.7 rad/s (see 
Fig. 5(b)), and the rotor phase difference begins to stabilize gradually at 9.63 rad (2ߨ +  see ,ߨ1.06
Fig. 5(c)). Omitting integral multiple of 2ߨ, the phase difference of system synchronization could 
be rewritten as 2ߙ = ߨ1.06 , which is also in accordance with the theoretical analysis in 
Section 3.2 (2/ߨ ≤ ߙ2 ≤  The displacement amplitude of the pendulum rod is around .(2/ߨ3
0.044 rad (2.52°, see Fig. 5(e)). The platform with micro-vibration also moves in cycles in the ݕ direction (see Fig. 5(f)). Comparing the simulation results with section 4.2.1 and 4.2.2, it can be 
seen that with the increase of the length of the pendulum rod, the pivot angle becoming smaller is 
in favour of the self-synchronization implementation of the two rotors. So the larger displacement 
amplitude of the pendulum rod leads to a stronger disturbance to the synchronous velocity of  
rotor 2. 
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Fig. 5. Self-synchronization for ߟଶଵ = 1 and ݎ = 0.3 (݉ଶ = ଷݎ ,3 = 0.15) 

4.2.4. Simulation result for ࣁ = ࢘࢘ ,0.3 = 1 

In section 4.2.1, the two identical rotors cannot operate synchronously with such parameters ߟଶଵ = ݎ ,1 = 1. Nevertheless, theoretical analysis having displayed parameter ߟଶଵ is also another 
key parameter to influence the synchronization of the vibrating system. Here, the simulation 
results would be given when dimensionless parameter ߟଶଵ was decreased to 0.3 (i.e. keeping the 
mass of rotor 1 invariable and reducing the mass of rotor 2 to one-third of that in Section 4.2.1). 
Fig. 6 shows self-synchronization of the vibrating system for ߟଶଵ = 0.3 and ݎ = 1. The variation 
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tendency of the velocity and torque of the rotors are similar to Fig. 4. When the system operates 
synchronously and steadily, the synchronous speed of the rotors is around 156.5 rad/s; the velocity 
difference of the rotors is around ±0.4 rad/s; the rotor phase difference is around 1085.1 rad (i.e. 2ߙ =  displacement amplitude of the pendulum rod is around 0.054 rad (3.09°). Comparing ;(ߨ1.4
Fig. 3-6, it can be seen that the self-synchronization of the two rotors are implemented in the 
system whose displacement amplitude of the pendulum rod is smaller. And the values of 
dimensionless parameters ߟଶଵ and ݎ determine the value of the phase difference of the rotors. 
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Fig. 6. Self-synchronization for ߟଶଵ = 0.3 and ݎ = 1 (݉ଶ = ଷݎ ,2 = 0.05) 

4.2.5. Simulation results for ࣁ = ࢘࢘ ,1 = 0.3 with a disturbance 

To further verify the self-synchronous stability of the rotors, it is necessary to perform 
simulations for the vibrating system with a phase disturbance on the rotor, and the results are 
shown in Fig. 7. Here, a disturbance of 2/ߨ phase is added to the motor 2 at 20 s. The driving 
torques that the coupling toques act on the motor 1 becomes the load torques. Oppositely, the load 
torques on motor 2 becomes the driving torques (see Fig. 7(d)). This phenomenon leads to 
decrease of the velocity of rotor 2 and the increase of the velocity of rotor 1 (see Fig. 7(a)). With 
the self-adjustment of the coupling torque, the disturbed vibrating system gradually returns to the 
previous steady state. In the above process of disturbance added, the displacements of the 
pendulum rod and the platform have the large value as the phase difference changes. However, 
throughout the numerical simulation, no matter how much and when the disturbance is, the 
synchronization of the two rotors still continues. If a disturbance of 2/ߨ phase is added to motor 1, 
the disturbed vibrating system could also return to previous steady state. Here, we don’t give a 
detail discussion as the numerical result is similar to Fig. 7. 
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Fig. 7. Self-synchronization for ߟଶଵ = 1 and ݎ = 0.3 with a disturbance 

5. Conclusions 

The vibrating system we proposed in this paper could be used to design new balanced elliptical 
vibrating screens when their structure parameters satisfy the self-synchronization criterion and 
synchronous stability condition. For the development in the early stage and clearly understand the 
self-synchronization criterion and synchronous stability, we investigate the system considering 
only the platform with the vertical displacement (actually horizontal displacement of the platform 
is neglected) because of the complex nonlinear of the dynamics system, but the simplified model 
wouldn’t loss itself natural properties (see Ref. [4] and [6]). In the future research (considering 
multiple DOFs of the platform) will be needed. With the theoretical investigation and numerical 
simulation, the following conclusions are obtained.  

Base on the average method and revisionary small parameters, the self-synchronization 
equation of the vibrating system is deuced. The criterion of implantation synchronization for two 
rotors is also derived, and that of stability of synchronous state is judged by the Routh-Hurwitz 
criterion. The theoretical results show that the displacement of the pendulum rod ߮ଷ  and 
dimensionless parameter ܹ  directly determine whether the two rotors in the system can 
implement the synchronous motion. We find that the overlarge value of parameters ߮ଷ and ܹ 
may lead to absence of self-synchronization. This means that a small value of parameters ߟଶଵ and ݎ is beneficial to the implementation of self-synchronization of this vibrating system. 

Then, we employ numeric simulations to verify the correctness of theoretical investigation. So 
the regions and process of self-synchronization of the vibrating system are numerically ascertained. 
From the regions of the self-synchronization of the system (see Fig. 2), it can be seen that 
increasing the value of parameters ߟଶଵ,  ߮ଷ  and ݎ  the possibility of self-synchronization 
implementation gradually decrease. This is corresponding the theoretical investigation. The 
processes of system self-synchronization with different values of parameters ߟଶଵ  and ݎ  is 
displayed in Figs. 3-7, respectively. By comparing these results of numerical simulation, it can 
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also be seen that smaller values of parameters ߟଶଵ and ݎ are in favor of the self-synchronization 
of the system. In sum, in order to obtain the steady self-synchronization of two rotors in the 
vibrating system, we could increase the length of the pendulum rod or decrease the mass of the 
rotor connected with the pendulum rod. 
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