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Abstract. In order to save energy and materials, some mechanical structures are very thin. Aiming 

to study the influence of impeller blade thickness on the performance of stainless steel multistage 

centrifugal pump, the whole flow field of stainless steel multistage centrifugal pump with different 

blade thickness were calculated based on ANSYS Fluent. The relationship between the impeller 

blade thickness and the overall performance of the pump was analyzed. To further study the 

reliability of the impeller structure for stainless steel multistage centrifugal pump, based on the 

ANSYS Workbench, the final stage impeller of the pump with different blade thickness were 

calculated by using the finite element method. Results indicate that with the increase of blade 

thickness, the maximum stress and deformation of the impeller gradually decreased, while the 

stability of the impeller structure increased. 

Keywords: energy-saving, stainless steel impeller, multistage pump, finite element, fluid solid 

interaction. 

1. Introduction 

It is becoming a world consensus to implement energy-saving and emission reduction because 

of global energy crisis and soaring atmospheric temperature [1]. Some researchers go on 

developing new energy sources [2], while others prefer to save energy in existing machinery. As 

a significant device for energy conversion and fluid transportation, pump is widely used in national 

economic fields. It is not exaggerated to say that there is an operating pump wherever fluid is 

flowing [3-5]. 

Stainless steel multistage centrifugal pump is specially equipped for groundwater extraction 

in rural areas, factories, mines, water supply companies, geothermal development, and oil fields 

[1]. It is mainly produced through some advanced procedures including laying-off, stamping, 

stretching, bulging, shaping, welding, polishing, and etc. [6-8]. Impeller is the key component of 

stainless steel multistage centrifugal pump, whose blade thickness determined by the steel sheet 

can reach 0.5 mm. The blade thickness is one of the main parameters in pump design, which makes 

the traditional design method of casting pump is not fully applicable to stainless steel pump. 

Although thin blade causes energy-saving effects, it may also influence the reliability of impeller 

structure. Hence, it has a great realistic significance to study the stress and deformation on impeller 

with different blade thicknesses. 

In the past, some papers studied on the blade thickness in the rotational machinery. C. Sarraf 

[9] did the experimental study of blade thickness effects on the overall and local performances of 

a controlled vortex designed axial-flow fan, and the results show the efficiency of the thick blades 

fan is lower than the efficiency of the fan with thin blades but remains high on a wider flow-rate 

range, and the mean velocity fields downstream of the rotors are very similar at nominal points 

with less centrifugation for the thick blades fan. D. Chapple [10] did the effect of impeller and 

tank geometry on power number for a pitched blade turbine, and the results show that the power 

number is independent of blade thickness, but dependent on the impeller to tank diameter ratio. 
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C. Galletti [11] did the effect of shaft eccentricity and impeller blade thickness on the vortices 

features in an unbaffled vessel, and the results show the characteristic frequency of flow 

instabilities was found to increase with reducing eccentricity or impeller blade thickness. However, 

few papers studied on the blade thickness in the centrifugal pump. 

The strength calculation on impeller of centrifugal pumps is currently based on empirical 

formulas, but the formulas have simplified greatly the load on impeller. As a result, there are fairly 

large errors between the calculated value and actual value. With the continuous improvement of 

computer performance, numerical calculation develops rapidly [12, 13], and Computational Fluid 

Dynamics has been widely used in the pump design [14-16]. Flow field calculation and strength 

calculation can be combined through fluid structure interaction (FSI), which makes the results 

close to actual value. So far most of contemporary studies on FSI of rotating machinery only focus 

on single stage centrifugal pump [17, 18]. 

With finite volume method, this study implements flow field calculation on impeller with five 

different blade thicknesses by ANSYS Fluent and then analyzes the changing law of pump's 

performance. Based on ANSYS Workbench, this paper studies the final stage impeller of stainless 

steel multistage pump with FSI and implements finite element calculation on impeller. As a 

reasonable value of blade thickness, 1.5 mm is selected at last. 

2. Solving theory 

2.1. Theory on flow field calculation 

According to Bernoulli equation, pump experimental head is: 

� = �� − ���� + 
�� − 
��2� + �� − ���, (1)

where �� and �� are fluid static pressure on outlet and inlet section, 
� and 
� are fluid velocity 

on outlet and inlet section, �� and �� are the distances to base level from outlet and inlet section. 

The efficiency of pump is the ratio of effective power to shaft power, and is represented by: 

� = ���� = ����
�� , (2)

where ��  is the effective power, �� is the shaft power, � is volume flow, � is the sum torque on 

shaft, and � is angular velocity of impeller. After applying the results of flow field calculation, 

the pump performance curve is obtained. 

2.2. Theory on fluid structure interaction 

Fluid solid interaction (FSI) mechanics is the interdisciplinary branch of fluid mechanics 

science and solid mechanics science. It mainly studies the deformation and movement of solids in 

the flow field, as well as the impact of this behavior to the flow field. In order to check the impeller 

strength and predict the exact location of maximum stress on impeller directly, flow field 

calculation and finite element calculation can be combined together by using FSI. 

The solving of FSI problems is comprised of two-way coupling and unilateral coupling. The 

former one means all unknown quantities in both fluid field and solid field are solved at the same 

time step according to common coupling equations, while the latter is a kind partition iterative 

solving that means the data is unidirectional when transferring on coupling interface. For inner 

flow field, the solid deformation influence may be neglected because the deformation of impeller 

is very small. Thus, unidirectional FSI method is used in this paper and the flow table is shown in 

Fig. 1. 
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Fig. 1. Computational flow table 

3. Modeling 

3.1. Hydraulic design of model pump 

The stainless steel multistage centrifugal pump of 100XQJ8 is selected in the studies. Its design 

parameters are listed as below: rated flow � = 8 m3/h, single stage head � = 4.5 m, rotational 

speed � = 2850 r/min, maximum power � = 3 kW, and the total head � = 72 m. In view of the 

structural condition that the outer diameter of multistage well pump is limited by well diameter, 

Lu Weigang [19] studied a design method of well pump, the impeller maximal diameter design 

method, which expands the front shroud of impeller to the edge of pump wall and makes the 

impeller diameter achieve maximum value while well diameter is invariable. 

Impeller with five different blade thicknesses (�� = 0.5 mm, �� = 1.0 mm, �� = 1.5 mm, �� = 2.0 mm, and �� = 2.5 mm) are designed as research objects. The geometric parameters are 

shown in Table 1. 

Table 1. Geometric parameters of impeller 

Geometric parameter Value 

Blade number � 9 

Blade inlet angle  � (°) 35  

Blade outlet angle  � (°) 23.2  

Blade wrap angle ! (°) 120  

Front cover plate diameter "�#$% (mm) 79.5  

Inlet diameter of impeller "& (mm) 39.4  

Width of the blade outlet '� (mm) 5 

Slope of impeller outlet ( (°) 29.4  

Shaft diameter ) (mm) 12.5  

External diameter of shaft sleeve )* (mm) 17  

There is an impeller model displayed in Fig. 2(a), whose blade thickness is 1.5 mm. The 

impeller is in coordination with reverse diffuser, which can shorten the axial length of well pump 
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to the minimum. The main parameters of reverse diffuser are listed as below: the number of blade � = 8, inlet width +� = 6.2 mm, inlet diameter "� = 75 mm, and outlet diameter ", = 37.5 mm. 

Reverse diffuser is shown in Fig. 2(b). 

 
a) Impeller 

 
b) Reverse diffuser 

Fig. 2. Three-dimensional diagram of impeller and reverse diffuser 

3.2. Fluid calculation model 

3.2.1. Computational domain 

Stainless steel stamping centrifugal pump is one of multi-stage pumps. Compared with 

single-stage pump, the structure of multi-stage pump is more complex and its flow characteristics 

are different. Therefore, it’s particularly important to select appropriate series when making 

numerical simulation for multi-stage pump. I have ever done relevant research. Four different 

series in a numerical simulation with the blade thickness of 1.5 mm are selected and the efficiency 

and head at all series are shown in Table 3 and Table 4. As can be seen from Table 3 and Table 4, 

the efficiency and head of the first-stage in different stages are almost the same. When the series 

is � ≥ 2, there is little difference between the second stage and the following, but the difference 

is big compared with the first stage. It is also consistent with the fact that the flow in the first 

impeller inlet of multi-stage pump is usually irrotational while rotational in the other impeller inlet. 

Taking into account that increase of stage will bring about more cell number, thereby demand 

computer with higher performance, so the two-stage model is selected and the efficiency as well 

as head of the second stage are taken as performance prediction value. In the numerical calculation 

of the pump, the water part in the pump is meshed by many small cells. The pump water model is 

consist of inlet section (water), two impellers (water), two chambers (water), two reverse diffusers 

(water), outlet section (water), which is shown in Fig. 3. 

Table 2. Efficiency comparisons of different stages 

Series (�) 1 2 3 4 

The first-stage efficiency (%)  59.51 59.93 59.79 59.86 

The second-stage efficiency (%)  62.50 62.53 62.53 

The third-stage efficiency (%)   62.59 62.58 

The fourth-stage efficiency (%)    62.61 

The total efficiency (%) 56.57 59.55 60.12 60.14 

Table 3. Head comparisons of different stages 

Series (�) 1 2 3 4 

The first-stage head (m) 4.745 4.762 4.758 4.755 

The second-stage head (m)  4.611 4.605 4.612 

The third-stage head (m)   4.608 4.621 

The fourth-stage head (m)    4.628 

The average head (m) 4.511 4.588 4.595 4.597 
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Fig. 3. Pump water model 

3.2.2. Model mesh 

In order to verify the quantity of cell affecting the computational accuracy, the experiment of 

cell independence is done. In theory, with the increase of the cell number, the solution caused by 

the cell will be gradually reduced until it disappears. But the more the cell number, the slower the 

computing speed, thus considering the configuration of the computer and the computing time, cell 

number can not be too much. For the above hydraulic model with the blade thickness of 1.5 mm, 

five different cell sizes of numerical calculation are selected; the results are shown in Table 4. As 

can be seen from Table 4, when the cell size is large, the efficiency and single head at rated point 

(� =	8 m3/h) are relatively small. If the cell size is less than 1.2 mm, with the decrease of cell size, 

the efficiency and single head almost remain invariable. Taking into account the coordination of 

computing time and accuracy, 1.2 mm of cell size meets the requirements, so the cell size in this 

paper is 1.2 mm. Also the detailed information of cell distribution is given as shown in Table 5. 

In order to verify the quality of the model mesh, the mesh of impeller and reverse diffuser are 

shown in Table 5. 

Table 4. Mesh independent analysis 

Parameters 
Cell size (mm) 

1.0 1.2 1.4 1.6 1.8 

Cell number 1912342 1176683 802300 563413 418491 

Efficiency � (%) 62.49 62.50 62.53 61.97 61.72 

Single head � (m) 4.612 4.611 4.605 4.551 4.483 

Table 5. Detailed information of grid distribution 

Component Grid number 

Inlet section 139083 

First impeller 96007 

First chamber 140078 

First reverse diffuser 180234 

Second impeller 96007 

Second chamber 140078 

Second reverse diffuser 180234 

Out section 204962 

Total water model 1176683 

3.2.3. Select of turbulent model 

Aiming at the turbulent model problem, five different turbulent models of Standard . � /, 

RNG . � / , Realizable . � / , Standard . � �  and SST . � �  are used relatively in the 

numerical calculation of the pump with the blade thickness of 1.5 mm, which is shown in Table 6. 

According to the Table 5, it is conducted that the efficiency and the single-head by using the 
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Standard . � / are more close to the experimental values, so the Standard . � / is selected in this 

paper. 

Table 6. Comparison of different turbulent model 

Parameters 

Turbulent model 
Experimental 

values 
Standard  . � / 

RNG . � / 

Realizable . � / 

Standard . � � 

SST . � � 

Efficiency � / % 62.50 63.14 64.57 65.28 65.83 61.36 

Single-head H/m 4.61 4.52 4.98 5.07 5.16 4.75 

3.2.4. Control equations 

Control equations include the continuity equation, momentum equation, energy equation, 0 

equation, / equation. For steady flow, the general form of equations is as follow: 

1(�!)
12 + )3
(�4!) = )3
(Γ�67)!) + 8, (3)

where Γ – diffusion coefficient; 8 – source term; ! – independent variable, when ! take different 

values, Eq. (3) will have different means of expression. 

3.2.5. Test rig setup 

Experiments were done in an open-type pump system, which have the identification from 

Jiangsu Province of China. The test rig is composed of two parts, namely, the data acquisition 

system and the water circulation system. The data acquisition system changes all kinds of physical 

quantities at different conditions, while the water circulation system supplies the necessary 

environment for centrifugal pump operation. The test rig is shown in Fig. 4. A turbine flowmeter 

was used to measure the flow �  and the precision of turbine flowmeter is ±0.3 %. Speed is 

measured by a tachometer (PROVA RM-1500, Taiwan). During the experiment, only one 

dynamic pressure transmitters (CYG1401) was used to measure the outlet pressure. The precision 

of CYG1401 is ±0.2 %. 

 
Fig. 4. Test ring of multistage well pump 

3.2.6. Experimental results 

Fig. 5 is comparison between experimental value and calculating value of multistage pump 

with the blade thickness of 1.5 mm. It can be seen from Fig. 6, calculating value and efficiency 

value coincides perfectly and deviation is less than 1 % at design flow rate while calculating flow 
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field is not same as the real one at un-designed flow rate. Hence, the calculating result has more 

than 3 % deviation compared with experimental result. 

There are three main reasons making deviation. Firstly, at small flow rate, the liquid in the 

impeller and return diffuser is easy to produce flow separation or vortex. Secondly, in order to set 

modeling and calculation, the model is simplified to some extent in the process of simulation. 

Thirdly, due to the limitations of stamping process, model of simulation has some deviation to 

real model. Overall, calculation value is close to experimental value, and numerical calculation is 

credible at a certain extent. Thus, in order to analyze inner flow field and strength of impeller, 

numerical simulation in the study is adopted. 
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Fig. 5. Comparison of calculating and experimental value 

3.3. Element model of impeller 

The finite element analysis of the impeller in this paper is based on ANSYS Workbench and 

the impeller is made of stainless steel 0Cr18Ni9, whose basic property is listed in Table 7. 

Table 7. Material properties 

Properties Value 

Elasticity modulus 9 (MPa) 193000 

Density � (kg/m3) 7930 

Yielding strength :� (MPa) 207 

Poisson ratio ; 0.37 

The structural cell of impeller is divided freely, and calculating model has 129654 cells and 

248258 nodes. The impeller is connected with quincunx shaft and shaft sleeve is used to realize 

axial locating between impellers. To set constraint condition conveniently, the intersection 

between impeller and shaft is simplified as circular holes plane and constrained with cylindrical 

plane. Loads on impeller include inertial force and surface force. Inertial force is mainly caused 

by the rotation speed while surface force by the fluid pressure impacting on impeller surface. The 

interfaces between the impeller and fluid (all of blade surfaces, inner surfaces and outer surfaces 

of impeller cover) are set as Fluid Solid Interface. 

4. Calculation results 

4.1. Effect of blade thickness on pump performance 

The theoretical head is drawn from Euler equation of pump: 

�� = 4�
<� � 4�
<�� = 4�� =4�ℎ? � ��@"�'�A�2� � B − 4�
<�� , (4)
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A� = 1 � �D<�@"� = 1 � ��
@"�sin �sinH, (5)

ℎ? = 1 − I@
�J sin �. (6)

In the equations above, 4� and 4� are peripheral speed at blade inlet and outlet, 
<� and 
<� 

are peripheral component of absolute speed at inlet and outlet, � is the acceleration of gravity, �� 

refers to theoretical flow, ℎ? is Stodala slip coefficient, "� is outlet diameter of impeller,  � is 

blade outlet angle, � is number of blades, and !� is outlet crowding coefficient. Law could be 

found from Eqs. (4) and (5) that smaller !�, that is, thicker blades may bring steeper head curve. 

Under the same conditions, five impeller models with different blade thicknesses are calculated 

by ANSYS Fluent, and the performance curves are shown in Fig. 6. 
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Fig. 6. Performance curve with different blade thicknesses 

According to Fig. 3, the inlet section and outlet section are at the same height, so �� − �� = 0, 

and the Eq. (1) can be simplified to the Eq. (7) as follows: 

� = �� − ���� + 
�� − 
��2� = ���� − ����. (7)

In the Eq. (7), �� and �� show the total pressure on outlet and inlet section, and they can be 

obtained through the post-processing in the ANSYS Fluent, so the head �  can be calculated 

through the Eq. (7). Moreover, the sum torque on shaft � can also be gained through ANSYS 

Fluent, the flow rate � and the angular velocity of impeller are known quantities, so the efficiency � can be calculated through the Eq. (2). 

As can be seen from Fig. 6, the change of impeller blade thickness impacts on efficiency and 

head significantly, and the head curve becomes steeper with the increase of impeller blade 

thickness. At the design flow rate and large flow rate, the efficiency and single-stage head decrease 

as the increase of impeller blade thickness while instead at small flow rate, which indicates that 

the best efficiency point of the pump shifts to the small flow direction with the increase of impeller 

blade thickness. The efficiency and head change a little at design flow rate when impeller blade 

thickness changes from 0.5 mm to 1.5 mm. If it exceeds 1.5 mm, with the increase of thickness, 

the efficiency and head decrease rapidly. This means the thickness should be limited within a 

reasonable range. 
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Table 8. Stress distribution for impellers with different thicknesses 

Blade thickness Inertia load Fluid load Combination of both loads 

0.5 mm 

  

 

 

1.5 mm 

   

2.5 mm 

   

4.2. Effects of impeller loads on stress 

Loads on stainless steel impeller consist of inertial force load caused by impeller rotation speed 

and fluid pressure load when pump is working. In order to compare the influence of the two loads 

on impeller, this study calculates respectively inertial force load, fluid pressure load, and both 

loads at design flow rate on stress and deformation of impeller. Table 8 means the stress 

distribution of impellers whose blade thicknesses are 0.5 mm, 1.5 mm, and 2.5 mm. The table 

indicates stress distributions on three impellers are similar. The maximum stress by fluid pressure 

load is much greater than those brought by inertial force load, while slightly smaller than those 

brought by both of them, which means that the load brought by high-pressure fluid plays a 

dominating role in stress distribution. Affected by three different loads, stress on impeller 

distributes in circumference and it is apparently larger at the inlet of blade. Besides, when the 
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radius is the same, the stress at intersection between impeller and cover is obviously larger. With 

the increase of blade thickness, the maximum stress caused by inertial force load gradually 

increases, while the maximum stress of fluid pressure load decreases. That’s because thicker blade 

brings heavier impeller and larger stress caused by inertial force. Moreover, thicker blade 

increases the area of intersection between blade and cover, which makes impeller steady and 

reduces the maximum stress caused by fluid pressure. If the blade thickness is 0.5 mm, the 

maximum stress caused by both of the two loads is 277.29 MPa (kg/cm2) which exceeds the 

stainless steel’s yield strength :� = 207 MPa; if it is 1.5 mm and 2.5 mm, the maximum stress are 

respectively 78.16 MPa (kg/cm2) and 50.69 MPa (kg/cm2). But the over-thick blade not only 

increases the cost of impeller, but also reduces the performance of pump. Hence, as a reasonable 

value of blade thickness of impeller, 1.5 mm is selected at last. 

Table 9. Deformation distribution for impellers with different thicknesses 

Blade thickness Inertia load Fluid load Combination of both loads 

0.5 mm 

   

1.5 mm 

   

2.5 mm 
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4.3. Effects of impeller loads on deformation 

Table 9 shows the deformation distribution of impellers whose blade thicknesses are 0.5 mm, 

1.5 mm, and 2.5 mm. The table indicates deformation distributions on three different impellers 

are similar. The maximum deformation caused by fluid pressure load is much greater than those 

caused by inertial force load and slightly smaller than those caused by both of them, which is 

similar to stress distribution illustrated above. When the thickness is 0.5 mm, the deformation 

caused by inertial force load increases gradually along the flow direction from inlet to outlet and 

at the outlet of front shroud it reaches the maximum value, while the deformation by fluid pressure 

load gets the highest at the blade inlet because equivalent stress here is too large and blade is too 

thin. Maximum deformation caused by three loads gradually decreases with the increase of blade 

thickness, but the position where maximum deformation appears transfers from blade inlet to 

outlet of front shroud. In addition, due to relatively high rigidity of cylindrical interface between 

the impeller and shaft, deformation in this position is always small for all load cases. 

5. Conclusions 

1) At design flow rate and large flow rate, the efficiency and single-stage head of stainless 

steel multistage centrifugal pump decrease as the increase of impeller blade thickness while 

instead at small flow rate, which indicates that the best efficiency point of the pump shifts to the 

small flow direction with the increase of impeller blade thickness. 

2) Through the finite element calculation of the impeller with different blade thicknesses, 

distribution patterns of stress and deformation caused by inertial force load and fluid pressure load 

are found. 

3) When the blade thickness is from 0.5 mm to 1.5 mm, the efficiency and head change a little 

at design flow rate; if it is more than 1.5 mm, the efficiency and head decrease rapidly with the 

increase of thickness. With comprehensive consideration of pump performance and strength, the 

blade thickness of 1.5 mm is selected at last. 
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