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Abstract. Vibrations of non-homogeneous tapered parallelogram plate with mixed boundary 

conditions are investigated. Tapering of plate is specified exponentially in one direction while the 

behaviour of non-homogeneity is considered with parabolic variation in density. Theoretical 

analysis of bi-parabolic temperature variation is presented. The developed approach is based on 

classical plate theory and plate geometry is approximated by skew coordinates. Effect of mixed 

boundary conditions on first two modes of natural frequencies of vibration of parallelogram plate 

are discussed for various values of plate parameters such as thermal gradient, aspect ratio, skew 

angle, taper constant and non-homogeneity constant. Results are shown in graphical manner. 

Keywords: parallelogram plate, thermal gradient, taper constant, non-homogeneity, aspect ratio, 

boundary conditions. 

1. Introduction 

Using plates of variable thickness mainly in aerospace industry, bridges, submarine etc. is a 

very frequent engineering situation due to operational reasons imposed on the structures such as 

their light weight, low cost, good strength and high temperature performance characteristics etc. 

Due to feasibility of boundary conditions and relatively expensive and time consuming 

experimental set up, it becomes necessary for design engineers to get information about 

vibrational behaviour of plates for various values of plate parameters. Thus, efficient 

determination of vibrational frequencies of such kind of plates is fundamental in their designs and 

performance evaluations. 

A lot of work [1-11] has been carried out in the field of vibrations of plates in last few decades. 

Khanna and Sharma [12] studied natural vibration of visco-elastic plate of varying thickness with 

thermal effect. Recently, Khanna and Kaur [13, 14] studied effect of non-homogeneity and 

thermal gradient on natural frequencies of rectangular plate with varying thickness. Khanna and 

Arora [15] discussed effect of sinusoidal thickness variation on vibrations of non-homogeneous 

parallelogram plate with bi-linearly temperature variations. Korobko and Chernyaev [16] 

determined maximum deflection in transverse bending of parallelogram plates. Alijani and 

Amabili [17] discussed nonlinear vibrations of imperfect rectangular plates with free edges. Rao 

and Rao [18] presented study on vibrations of elastically restrained circular plates resting on 

winkler foundation.  

The objective of the present study is to analyze the effect of different combinations of boundary 

conditions on vibration of parallelogram plate under bi-parabolic temperature variation. Authors 

discussed the vibrational behaviour of parallelogram plate under six boundary conditions i.e. 

CCCC, SCSC, CCCS, SSSC, CSCS and SSSS where C and S represent clamped and simply 

supported boundary condition respectively. Authors calculated first two modes of natural 

frequency of parallelogram plate at various values of plate parameters for all six boundary 

conditions. 

2. Geometry of parallelogram plate 

Consider a non-homogenous parallelogram plate OABC (Fig. 1) of density �(�), thickness 
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ℎ(�) and Poisson ratio (�) in ��-plane. Let 	 and 
 be the length and breadth of parallelogram 

plate respectively. Also, plate is assumed to be skewed at an angle ‘�’ with �-axis. Edges of 

parallelogram plate are numbered as shown in Fig. 1. Skew coordinates (� , �) are taken in 

direction of OA and OC respectively. 

 
Fig. 1. A parallelogram plate with skew coordinates (�, �),  

rectangular coordinates (�, �) and skew angle (�) 

With the help of Fig. 1, rectangular coordinates (�, �) can be expressed in terms of skew 

coordinates (�, �) and skew angle (�) [5]: 

� = � + �sin�,   � = �cos�. (1)

3. Fourth order differential equation of motion 

Differential equation of motion of parallelogram plate of variable thickness is [2]: 

[����,���� + 2�,���� + �,����� + 2��,���,��� + �,����       +2��, ��,��� + �,���� + ��,����,�� + ��,��� + ��,����,�� + ��,���       +2(1 − �)��,���,��] − �$%ℎ� = 0, (2)

where, �(�, �) is deflection function; ' is modulus of elasticity and �� = ()*
�%(�+,-) is flexural 

rigidity of parallelogram plate. Here, ‘,’ followed by the suffix denotes partial differentiation with 

respect to that suffix. 

The expressions for kinetic energy (.) and strain energy (/) are [1]: 

. = 12 �$% 0 ℎ�%1�1�, (3)

/ = 12 0 ��  2��,���% + ��,���% + 2��,���,�� + 2(1 − �)��,���%3 1�1�. (4)

On using Eq. (1) in Eqs. (3) and (4), maximum kinetic energy (.4) and strain energy (/4) are 

obtained as: 

.4 = 12 �$%cos� 0 ℎ�%1�1�, (5)

/4 = 12cos5� 0 'ℎ5
12(1 − �%) ��,66-− 4sin��,66 �,6 + 2(sin%� + �cos%�)�,66 �,  

+ 2(1 + sin%� − �cos%�)�,6 -− 4sin��,6 �,  + �,  - � 1�1�. (6)

4. Assumptions 

Since researchers and design engineers always try to know about first few modes of vibration 
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before finalizing any design, authors restricted their study to fulfill their requirements with the 

following assumptions: 

a) Authors assumed that plate is subjected to study bi-parabolic temperature variation [14]: 

8 = 89 :1 − �%
	%; :1 − �%


%;, (7)

where 8 denotes the temperature excess above the reference temperature at any point (�, �) and 89 denotes the temperature excess above the reference temperature at � = � = 0. 

Since temperature directly affects the modulus of elasticity ('), authors considered ' as linear 

function of 8 [14]: 

' = '9(1 − <8), (8)

where < is the slope of the variation of ' with 8. 
Using Eq. (7) in Eq. (8): 

' = '9 =1 − > :1 − �%
	%; :1 − �%


%;?, (9)

where, > = <89 (0 ≤ α < 1) is thermal gradient. 

b) Thickness variation in parallelogram plate is assumed exponential in �-direction as: 

ℎ = ℎ9BC6, (10)

here, ℎ = ℎ9 when � = 0 and D is taper constant i.e. (0 ≤ D < 1). 

c) Behaviour of non-homogeneity is assumed with parabolic variation in density in  �-direction: 

� = �9 =1 − >� :�%
	%;?. (11)

Here, � = �9 at � = 0 and α� (0 ≤ α� < 1) is non-homogeneity constant. 

Using Eqs. (9)-(11) in Eqs. (5) and (6), one gets modified kinetic energy (.4∗ ) and modified 

strain energy (/4∗) as: 

.4∗ = 12 ℎ9�9$% G G BC6
H

6I9

J

 I9
=1 − >� :�%

	%;? �%1�1�, 
/4∗ = '9ℎ9524(1 − �%)cosK� G G =1 − > :1 − �%

	%; :1 − �%

%;? �BC6�5H

6I9
J

 I9 L(�,66 )%

− 4 M	
N sin��,66 �,6 + 2 M	
N (sin%� + �cos%�)�,66 �,  
+ 2 M	
N (1 + sin%� − �cos%�)��,6 �% − 4 M	
N5 sin��,6 �,  
+ M	
NK ��,  �%O 1�1�. 
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5. Boundary conditions and corresponding deflection functions  

Authors discussed vibration of non-homogeneous parallelogram plate with six boundary 

conditions i.e. CCCC, SCSC, CCCS, SSSC, CSCS, SSSS on sides 1, 2, 3, 4 (as shown in Fig. 1) 

respectively. In order to satisfy all above six boundary conditions, deflection function �(�, �) is 

taken as [11]: 

�(�, �) =  P(�, �) ∙ R(�, �), (12)

where: 

P(�, �) = M�	NS M1 − �	NT M�
NU M1 − �
NV ,   R(�, �) = WX� + X% M1 − �	N M1 − �
N M�	N M�
NY. 
Here, P(�, �) is responsible to hold all six different boundary conditions with the use of four 

parameters $, Z, [ and \. These parameters ($, Z, [, \) can take any two values i.e. 1 (for simply 

supported boundary condition) and 2 (for clamped boundary condition). Also, R(�, �) is taken for 

first two modes of frequency with two arbitrary constants X� and X%. 

6. Methodology 

To obtain a frequency equation for parallelogram plate, authors used Rayleigh Ritz method. In 

Rayleigh Ritz method, the maximum strain energy (/4∗) must be equal to maximum kinetic energy 

(.4∗ ). Hence, it is observed that [15]: 

](/4∗ − .4∗ ) = 0. (13)

Using values of /4∗  and .4∗  in Eq. (13), one gets: 

](/̂ − _%.̂) = 0, (14)

where: 

/̂ = 1cosK� G G =1 − > :1 − �%
	%; :1 − �%


%;? �BC6�5H
6I9

J
 I9 L(�,66 )%

− 4 M	
N sin��,66 �,6 + 2 M	
N (sin%� + �cos%�)�,66 �,  
+ 2 M	
N (1 + sin%� − �cos%�)(�,66 )% − 4 M	
N5 sin��,6 �,  
+ M	
NK ��,  �%O 1�1�, 

.̂ = G G BC6
H

6I9

J

 I9
=1 − >� :�%

	%;? �%1�1�, 

and _% = �%H`S-ab(�+,-)
(b)b-  is frequency parameter. 

Substituting the value of � from Eq. (12) in Eq. (14), an equation involving X�  and X%  is 

obtained. These two constants (X� and X%) can be obtained as: 

ccXd (/̂ − _%.̂) = 0,    e = 1, 2. (15)
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After simplification of Eq. (15), one obtains: 


d�X� + 
d%X% = 0,   e = 1, 2,  (16)

where 
d�, 
d% (e = 1, 2) involve plate parameters and frequency parameter. 

For a non trivial solution of Eq. (16), determinant of the coefficients of Eq. (16) must be zero. 

Therefore, one gets the frequency equation as: 

f
�� 
�%
%� 
%%f = 0. (17)

Eq. (17) is a bi-quadratic equation in _. On solving this equation for various values of plate 

parameters, different values of frequency parameter (_) are calculated. 

7. Results and discussion 

Authors calculated first two modes of frequency for all six boundary conditions. Variations in 

frequency for both modes of vibration at different values of plate parameters are concisely 

provided in Figs. 2-13. 

Variations in first and second mode of frequency with increasing taper constant at  > = >� = 0.0, 	 
⁄ = 1.5, � = 0° are shown in Fig. 2 and Fig. 3 respectively. It is clearly seen 

that both modes of frequency continuously increase with increasing taper constant for all six 

boundary conditions. 

In Fig. 2, frequency (mode I) is maximum at CCCC boundary condition and minimum at SSSS 

boundary condition while in Fig. 3, frequency (mode II) is maximum at CCCS and minimum at 

SCSC boundary condition. 

  
Fig. 2. Frequency (mode I) vs. taper constant  

(� = 0°, > = 0, >� = 0, 	 
⁄ = 1.5) 

Fig. 3. Frequency (mode II) vs. taper constant  

(� = 0°, > = 0, >� = 0, 	 
⁄ = 1.5) 

 

  
Fig. 4. Frequency (mode I) vs. taper constant  

(� =  45°, > = 0, >� = 0, 	 
⁄ = 1.5) 

Fig. 5. Frequency (mode II) vs. taper constant  

(� = 45°, > = 0, >� = 0, 	 
⁄ = 1.5) 

For the same values of parameters i.e. >� = 0.0, 	 
⁄ =1.5 but at � = 45°, both modes of 

frequency are plotted in Fig. 4 (mode I) and Fig. 5 (mode II) respectively. Variations of frequency 

in Figs. 4 and 5 are as same as variations of frequency in Figs. 2 and 3 respectively. It is noted that 

both modes of frequency increase as � increases from 0° to 45°. 
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Figs. 6 and 7 show the variations of first and second mode of frequency respectively with 

increasing thermal gradient at D = 0.2, 	 
⁄ =1.5, � = 45° and >� = 0.0. It is found that both 

modes of frequency continuously decrease as value of thermal gradient increases. Also, it is 

evident that frequency (mode I) is maximum at CCCC boundary condition and minimum at SSSS 

boundary condition in Fig. 6 but second mode of frequency in Fig. 7 is maximum at CCCS 

boundary condition and minimum at SCSC boundary condition. Further, for the same values of 

plate parameters i.e. D = 0.2, 	 
⁄ = 1.5, � = 45° but increased value of >�  i.e >� = 0.6, 

frequency for both modes of vibration are shown in Fig. 8 (mode I) and Fig. 9 (mode II). Authors 

noticed that frequency for both modes of vibration increases as α1 increases from 0.0 to 0.6 for 

corresponding values of plate parameters. Also, pattern of decreasing frequency lines for first and 

second mode of frequency in Figs. 8 and 9 is similar to frequency lines in Figs. 6 and 7 

respectively for all six boundary conditions. 

  
Fig. 6. Frequency (mode I) vs. thermal gradient 

(>� = 0, D = 0.2, 	 
⁄ =1.5, � = 45°) 

Fig. 7. Frequency (mode II) vs. thermal gradient 

(>� = 0, D = 0.2, 	 
⁄ =1.5, � = 45°) 

 

     
Fig. 8. Frequency (mode I) vs. thermal gradient 

(>� = 0.6, D = 0.2, 	 
⁄ =1.5, � = 45°) 

Fig. 9. Frequency (mode II) vs. thermal gradient 

(>� = 0.6, D = 0.2, 	 
⁄ =1.5, � = 45°) 

Effect of varying aspect ratio on first two modes of frequency at D = > = >� = 0.2 for two 

values of skew angle � i.e. � = 0°, 45° are analyzed for all six boundary conditions and shown in 

Figs. 10-13. 

At D = > = >� = 0.2, � = 0°, first and second mode of frequency with increasing aspect ratio 

are shown in Figs. 10 and 11 respectively. A continuous increment is noticed in frequency for 

both modes of vibration as aspect ratio increases from 0.5 to 1.5. 

In Fig. 10, frequency (mode I) is maximum at CCCC boundary condition and minimum at 

SSSS boundary condition. Also, frequencies for SCSC and CSCS boundary conditions are nearly 

equal at 	/
 = 1. 

In Fig. 11, frequency (mode II) is maximum at CCCS boundary condition and minimum at 

SCSC boundary condition at 	/
 = 1.5. Here, it is interesting to note that frequencies for CCCS 

and CSCS boundary conditions are approximately equal at 	/
 = 0.5. 

At D = > = >� = 0.2, � = 45°, frequency is shown in Fig. 12 (mode I) and Fig. 13 (mode II) 

with increasing values of aspect ratio. Here, behaviour of frequency for both modes of vibration 

in Figs. 12 and 13 is similar to behaviour of frequency for both modes of vibration in Figs. 10 

and 11 respectively. Also, frequency for both modes of vibration increases as � increases from 0° 

to 45° at fixed D = > = >� = 0.2. 
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Fig. 10. Frequency (mode I) vs. aspect ratio  

(� = 0°, D = > = >� = 0.2) 

Fig. 11. Frequency (mode II) vs. aspect ratio  

(� = 0°, D = > = >� = 0.2) 

 

  
Fig. 12. Frequency (mode I) vs. aspect ratio  

(� =  45°, D = > = >� = 0.2) 

Fig. 13. Frequency (mode II) vs. aspect ratio  

(� = 45°, D = > = >� = 0.2) 

8. Conclusions 

Main emphasis of the authors is to provide some information to researchers and scientists about 

few modes of vibration of parallelogram plate with different boundary conditions. On the behalf 

of Figs. 2-13, authors conclude the study as follows: 

1) Values of both modes of frequency increase as skew angle of the plate increases for all 

boundary conditions. 

2) Frequency for both modes of vibration is more for non-uniform plate i.e. plate of variable 

thickness (0 < D < 1) as compared to uniform plate i.e. plate of constant thickness (D = 0.0). 

3) Frequency for both modes of vibration is low for homogeneous parallelogram plate  

(>� = 0.0) as compared to non-homogenous parallelogram plate (0 < >� < 1). 

4) Consideration of bi-parabolic temperature variations (0 < > < 1) provides low frequency 

for both modes of vibration as compared to non-thermal effect (> = 0.0). 
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