


1343. ONLINE MILLING TOOL CONDITION MONITORING WITH A SINGLE CONTINUOUS HIDDEN MARKOV MODELS APPROACH.  
LU CHEN, LI TIEYING, LIU HONGMEI 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUGUST 2014. VOLUME 16, ISSUE 5. ISSN 1392-8716 2449 

new incoming data, provides the highest likelihood of obtaining the actual degradation level [3]. 
Rabiner proposed another methodology that would train a single HMM by using the sensor 
measurements corresponding to the entire lifetime of the system, map each degradation phase to 
each state of HMM, and obtain the condition assessment by calculating the Viterbi path on new 
incoming data [4]. 
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Fig. 1. The systematic flowchart of TCM 

This paper presents an online condition monitoring methodology of a milling process to 
determine the health status of the tool based on HMM and is aimed at reduce the requirement of 
training data in our models. The approach uses a continuous HMM to model one cutting pass and 
trains it by the data sampled under normal status of the working tool. Condition monitoring is 
performed by inputting a new observation sequence into the trained model and calculating the 
log-likelihood value that specifies the current health status from the normal one. The difference 
between our models and the conventional HMMs is that the conventional HMMs for TCM need 
features extracted from the specific wear stage to train the models, in the other words, one HMM 
for one wear stage. However, there are little sensor data, let alone lifecycle data for training the 
specific model in some cases. The proposed model works with training the HMM using data form 
the initial milling/cutting passes and estimating the variance between the initial milling/cutting 
“fingerprint” and the test one. Here the “fingerprint” is defined as the feature vectors from the 
sensor data. 

2. Methodology  

2.1. Signal processing and feature extraction 

The reported methods for tool health assessment mentioned above are often based on sensing 
of the cutting forces, vibrations, AE, and motor/feed current mostly. These signals contain rich 
information about the condition of the tools. Zhu et al. trained a CHMM for modeling of the tool 
wear process in micro-milling, and estimation of the tool wear state given the cutting force features 
[5]. Pai et al. applied AE analysis for tool wear monitoring in face milling [6]. The fusion of 
multi-sensors information is also proposed to determine the health status of tools by integrating 
signals from multi-channels or different types of sensors, making TCM more accurate and 
comprehensible [7]. In the paper, we use signals of vibrations and AE to obtain the feature vectors. 

Feature extraction is to find the indicators that can represent the actual tool wear process. 
Fourier analysis, time series and statistic moments are the general methodologies to get these 
indicators such frequency, Amplitude, RMS, kurtosis from the raw signals. Li et al. found that the 
amplitude of AE signals in frequency domain is very sensitive to the changes of tool status [8]. In 
order to obtain the enough frequency band range for both vibrations and AE signals, we choose 
wavelet packet decomposition (WPT) to extract features. Wavelet packet decomposition is a more 
elaborate signal processing method since it splits both approximation parts and detail parts to 
obtain a better frequency resolution. Suppose ܵ, ܦ ,ܣ represent the original signal, approximation 
part and detail part respectively. In a commonly-used 3-level decomposition tree, the original 
signal ܵ is represented as ܣܣܣଷ+ܣܣܦଷ+ܣܦܣଷ+ܣܦܦଷ+ܦܣܣଷ+ܦܣܦଷ+ܦܦܣଷ+ܦܦܦଷ on the 3rd 
level and their frequency bands are 0-ܨௌ ௌܨ ,16/ ௌܨ16-2/ ௌܨ2 ,16/ ௌܨ16-3/ ௌܨ3 ,16/ ௌܨ16-4/ /16, 
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 .ௌ/2 is the bandwidth [9]ܨ ௌ is the sampling frequency andܨ ,ௌ/16ܨௌ/16-8ܨௌ/16, 7ܨௌ/16-7ܨௌ/16, 6ܨௌ/16-6ܨௌ/16, 5ܨௌ/16-5ܨ4
What’s more, we also need to compute the wavelet energy which is the sum of square of 

detailed wavelet coefficients on each node for dimension reduction. The ݇-th wavelet energy of 
coefficients on ݆-th level can be defined as follows: 

௝,௞ܧ = ෍( ௝ܿ,௞(݅))ଶே
௜ୀଵ , (1)

where ௝ܿ,௞(݅) is the wavelet coefficients of the ݇-th node on ݆-th level. 

2.2. Continuous HMM and Gaussian mixture model 

HMM is a popular tool in sequential data analysis since it has an interpretable mathematical 
structure which helps to form the theoretical basis required in different applications. It involves 
double-layer stochastic processes: the stochastic transition from one state to another and the 
stochastic output symbol generated at each state. All of the hidden states comprise a Markov chain 
through a set of transition probabilities between two states. The observation is assumed to be 
drawn from the state chain by the observation probability called emission probability. Thus, the 
actual sequence of states is hidden and not directly observable, whereas the observation sequence 
provides evidence to infer and determine the actual sequence of the states [5]. The complete 
specification of an HMM consists of the following elements: 

1) a set of hidden states ܵ = { ଵܵ, ܵଶ, … , ܵே} and initial state probability distribution expressed 
as: ߨ = ,ଵߨ} ,ଶߨ … , ே}; (2)ߨ

2) transition probability distribution ܣ = {ܽ௜௝} expressed as: ܽ௜௝ = ܲ(ܵ௧ାଵ = ݆|ܵ௧ = ݅); (3)

3) observation sequence ܱ = { ଵܱ, ܱଶ, … , ܱே},  which defines the individual observation 
sequence;  

4) emission probability distribution ܤ = { ௝ܾ(݇)} expressed as: 

௝ܾ(݇) = ܲ൫ܱ௧หݍ௧ = ௝ܵ൯, (4)

which defines the distribution in state ௝ܵ, and ܱ௧ is the observation at time ݐ. 
An HMM can be represented by the following compact notation to describe the complete 

parameter set of the model: ߣ = ,ܣ} ,ܤ (5) .{ߨ

Numerous structures, such as ergodic HMM and left-right HMM, adapt to the specific problem 
[11]. From a physical point of view, we choose the left-right HMM to describe the milling process 
and set the HMM with three states: entry, in-progress, and exit. 

In our case, the observation features extracted from the signals are continuous and the structure 
of HMM is designed to model the cutting process. Gaussian mixtures (GM) are typically used in 
continuous HMM (CHMM) to model the feature vectors that correspond to a state because of its 
variability and accuracy. The observation { ௜ܱ} is modeled as GMM and expressed as: 
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௜ܱ = ෍ ܿ௜௝ܰ(ߤ௜௝, ௜௝)௄ߑ
௝ୀଵ , (6)

where ܭ is the number of Gaussian functions, ߤ௜௝ and Σ௜௝ are the mean and covariance matrix of 
each density function, and the weights ܿ௜௝ are all positive and has a sum of one. The number of 
mixture components controls the accuracy of the emission matrix ܤ, and in turn influences the 
model. The Bayesian information criterion helps to determine the number based on the 
observations. However, selecting this number should consider the computation and efficiency. 
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P(S2|S1) P(S3|S2)

P(S1) P(S2) P(S3)

P(O1|S1) P(O2|S2) P(O3|S3)

 
Fig. 2. A 3-state left-right HMM tool state assessment model 

2.3. HMM algorithms 

Three main problems are involved in implementing the HMM applications [12]. The issues 
we have to address in this study concerning the condition monitoring of tool wear are as follows: 

1) estimation of the model ߣ = ,ܣ} ,ܤ ܱ given the observation sequence ,(ߣ|ܱ)ܲ to maximize {ߨ = { ଵܱ, ܱଶ, … , ்ܱ}. 
2) evaluation of the probability of observation sequence ܲ(ܱ|ߣ) , given the observation 

sequence ܱ = { ଵܱ, ܱଶ, … , ்ܱ} and the model parameters ߣ = ,ܣ} ,ܤ  .{ߨ
The following two basic algorithms are proposed to solve the corresponding problems: the 

Baum-Welch algorithm and forward-backward algorithm. The former solves the problem of 
HMM training. This algorithm uses the observation sequence ܱ and adjusts the model parameters 
to maximize the probability ܲ(ܱ|ߣ), given an initialization of the model. The latter efficiently 
computes ܲ(ܱ|ߣ),  given a trained model ߣ = ,ܣ} ,ܤ {ߨ  and input observation  ܱ = { ଵܱ, ܱଶ, … , ்ܱ}. 

3. Case study 

3.1. Experimental setup 

Given that the CHMM has the capability to model the dynamic character of the sequence, we 
train a single CHMM using the observations sampled in the normal pattern of the tool, and then 
send the observation sequence under an unknown wearing status into the normal-trained CHMM 
to compute the log-likelihood probability [10]. 

We used a mill dataset to test this condition monitoring methodology under one working 
condition which is accomplished by Kai Goebel (NASA Ames) and Alice Agogino (UC Berkeley) 
[13]. The data in this set represents experiments from runs on a milling machine under various 
operating conditions. In particular, tool wear was investigated in a regular cut as well as entry cut 
and exit cut. Data sampled by three different types of sensors (AE sensor, vibration sensor, current 
sensor) were acquired at several positions [13]. The setup of the experiment is as depicted in Fig. 3 
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and the layout of the sensors on the clamping device is shown in Fig. 4. An AE sensor and a 
vibration sensor are mounted to the table and the spindle of the machining center, respectively. 
The signals from all sensors are filtered and fed through two RMS before the data acquisition. The 
details of the experiment can be found in ref [14]. 

 
Fig. 3. Experimental setup 

 
Fig. 4. Clamping device with mounted sensors 

To verify the proposed model of tool health status monitoring, we chose a test data set with 
long lifetime, its condition includes: speed run at 200 m/min, depth of cut at 1.5 mm, feed taken 
at 0.5 mm/rev, and material is cast iron. In this case, 17 runs are done with 9,000 samples in each 
cut. 

3.2. Feature extraction 
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Fig. 5. The observation sequence and feature vectors 
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Signal preprocessing was performed to extract the features. We chose the signals of table 
vibration, spindle vibration, AE on the table, and AE on the spindle in one cut pass and extracted 
the features in frequency domain. The entire signal is sliced into 36 pieces with 250 samples in 
each piece. For each piece, a 3-level wavelet packet method was used to filter the noise and 
decompose these signals into three levels and obtain a vector consisting of the energy information 
in each frequency band, the structure of WPT is shown in Fig. 5 and Fig. 6. Different frequency 
bands had been proven to represent the effect of the force on different wear levels. Therefore each 
observation vector has eight wavelet packet energy values on each frequency band and the features 
are a sequence of 36 vectors, just like a fingerprint of the milling process. 

 
a) Tree decomposition 

 
b) Data for node (0,0) 

Fig. 6. A 3-level WPT of the signal 

3.3. Construction of CHMM 

The “fingerprint” of one process is constructed by wavelet-packet energy vectors. That is the 
observation sequence. To model this time series and recognize the state of this “fingerprint”, we 
chose a left-right CHMM and set the number of hidden states at three to represent the cutting pass 
with three successive states: entry, in-progress, and exit. The topology of the three-state left-right 
HMM is shown in Fig. 2. The transition matrix and the initial state of the left-right HMM are 
initialized as: 

ܣ = ൥ܽଵଵ ܽଵଶ 00 ܽଶଶ ܽଶଷ0 0 ܽଷଷ൩ , ߨ = ሾ1 0 0ሿ. (7)

We assume that this online condition monitoring methodology can be implemented in a 
situation where the data are hard or expensive to acquire. The data from the first three run passes 
at the beginning are extracted to the feature vectors using wavelet packets transform as the  
“normal” dataset for model training. The emission probability distribution can be estimated 
through ݇-means algorithm and GMM based on the training features. The CHMM is trained by 
the Baum-Welch algorithm. This algorithm uses expectation maximum to update the transition 
matrix A and emission distribution parameters base on the initial values in Eq. (7) by maximizing ැ ܲ(ܱ௞|ߣ)௄௞ୀଵ  where ܭ is the number of training “fingerprints”. Here we use the first 4 cuts at 
the early stage of the lifetime in case 1 to train HMM and estimate the parameters of the model 
until the algorithm converges. 
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3.4. Online condition monitoring 

Once the CHMM is trained, we can use this model to assess the health status of the tool through 
its lifetime. As the tool wears, the “fingerprint” will be more different from the normal one. The 
health status is defined based on the log-likelihood between the normal “fingerprint” and the wear 
ones, which is expressed as follows: log − ݈݈݅݇݁݅ℎ݀݋݋ = logܲ( ଵܱܱଶ … ܱ௧|ߣ), (8)

where ߣ is the “normal” model. We use the log-likelihood of the probability ܲ(ܱ|ߣ) rather than 
the probability because the probability value may be so small that hard to distinguish the different 
health statuses intuitively. This value can be calculated by the forward-backward algorithm 
quickly. Thus, we input the feature sequence { ଵܱܱଶ … ்ܱ} extracted from the data obtained under 
an unknown condition to the CHMM and compute the corresponding log-likelihood value that 
represents the current health status. 

3.5. Experimental results 

Due to friction of the tool on the work piece, the flank wear occurs and the wear VB is 
measured as the distance from the cutting edge to the end of the abrasive wear on the flank face 
of the tool in the experiments, shown in Fig. 7 [13]. As the tool wears, the VB measurement 
increases. All VB measurements of the flank in total 17 runs in this experiment are presented  
in Fig. 8. 

 
Fig. 7. Tool wear VB 

 
Fig. 8. The VB measurements over the lifetime  

of the tool in case 1 

In this paper, two different types of “fingerprints” are generated to train and assess the health 
status. One is the “fingerprint” only extracted from the signals of table vibration and spindle 
vibration, and the other consists of the features from table vibration, spindle vibration, AE on the 
table and spindle, making a mixed “fingerprint”. Then, we choose the “fingerprints” in the first 
three cutting passes as the training data and the subsequent fourteen ones as test data to perform 

0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

cutting pass

VB
 m

ea
su

re
m

en
t



1343. ONLINE MILLING TOOL CONDITION MONITORING WITH A SINGLE CONTINUOUS HIDDEN MARKOV MODELS APPROACH.  
LU CHEN, LI TIEYING, LIU HONGMEI 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUGUST 2014. VOLUME 16, ISSUE 5. ISSN 1392-8716 2455 

health assessment. The log-likelihood value calculated by two different data types through the 
entire lifetime of the tool is shown in Fig. 9 and Fig. 10. 

 
Fig. 9. The entire trend of Log-likelihood obtained using only vibration signals 

 
Fig. 10. The entire trend of Log-likelihood obtained using both vibration and AE signals 

The experiment result indicates that as the flank wear VB increases, the log-likelihood value 
decreases over the entire lifetime of the tool. This finding means that the health status of the tool 
is moving far from the “normal” one. The results in Fig. 9 and Fig. 10 also show that the health 
trend obtained using vibration and AE signals is more reasonable than the health trend obtained 
using only vibration signals. The reason is that the degradation of the wear level is a gradual 
process. Another reason may affect the result is that the information of the vibration signals is not 
sufficient to express the actual health status of the tool. However, the features are not the more the 
better in consideration of the online deployment of the algorithm. It is crucial to find the features 
that could indicate the degradation of the tools. 

4. Conclusion and future work 

This paper presents an online condition monitoring methodology based on CHMM to assess 
the unknown health status of the tool. In the CHMM, the data from the normal status are used to 
train the model instead of the historical data, and the new observation sampled under the same 
case is sent into the model. The output of CHMM, log-likelihood of the probability, is considered 
as the index to quantize the current health status compared with the normal status. The results 
from vibration signals and combined signals are compared and demonstrate the importance of 
sufficiency of signal information. In addition, the improvement of the proposed methodology 
requires special adaptations to specific machining equipment or operating environment, such as 
setting failure thresholds, and the development of a universal and systematic approach is a definite 
objective of future research. 
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