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Abstract. According to the walking character of lower extremity power-assisted exoskeleton that 

was designed by our Robotics Laboratory, D-H convention was applied to the kinematics analysis 

of this exoskeleton model. Lagrangian dynamics was used to analyzing dynamics for the 

single-foot support model, double-feet support model and double-feet support with one 

redundancy model respectively. The kinematical equation was obtained and MATLAB was used 

to verify its validity. Meanwhile, the kinetic equations and torque of each joint were obtained by 

virtue of ADAMS. Our study provided a theoretical foundation for the control strategies, and 

optimization design of the mechanical structure and promoted the practical application of this 

lower extremity power-assisted exoskeleton in further research.  

Keywords: lower exoskeleton, dynamic, kinematics, simulation. 

1. Introduction 

Lower extremity power-assisted exoskeleton is a kind of robot which is defined as an 

electromechanical device in overall or a frame that worn by a human operator. The lower extremity 

power-assisted exoskeleton is developed mainly to help human perform difficult tasks due to 

either their physical limitations or muscles’ fatigues. In addition, exoskeletons can increase the 

endurance, traveling speed, and even balance of the wearer in extremely difficult terrains [1]. With 

the development of science and technology, the research on lower extremity exoskeleton has 

gradually extended to the field of mechanics, robotics, bionics, control theory, information 

processing, and communication technology etc. 

As early as in 1960s, our pioneers have started to research on the exoskeleton. A master-slave 

system named the Hardiman was developed by General Electric in 1968. Furthermore some 

successful and remarkable examples of lower extremity power-assisted exoskeleton such as 

BLEEX and HAL, were designed for military missions and power enhancement respectively in 

the 21st century [2]. 

The Berkeley Lower Extremity Exoskeleton (BLEEX) project funded by the Defense 

Advanced Research Project Agency (DARPA), USA, was first unveiled in 2004, at the University 

of California, Berkeley’s Human Engineering and Robotics Laboratory [3]. It was a 

field-operational robotic system worn by an operator, which could provide the wearer with the 

ability of undertaking significant loads on the back with minimal effort when negotiating any 

terrain. BLEEX featured seven DOFs per leg, and the exoskeleton was actuated via bidirectional 

linear hydraulic cylinders mounted in a triangular configuration with the rotary joints, resulting in 

an effective moment arm varying with joint angles [4]. 

Hybrid Assistive Limb (HAL) was successfully developed in Tsukuba University of Japan 

which was a lightweight power assist device. The latest model, HAL-5, was a full-body suit unit 

designed to aid people who had degenerated muscles and paraplegics from brain or spinal injuries. 

It was connected to thighs and shanks of the patient and moved the patient’s legs as a function of 

the EMG (electromyogram) signals measured from the wearer [4]. Through the use of DC motors 

integrated with harmonic drives, each leg of HAL-5 powers the flexion/extension motion at the 

hip and knee in the sagittal plane. 

The lower extremity power-assisted exoskeleton system (LEPES) designed by our Robotics 
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Laboratory is a kind of wearable mechanical legs, which contains mechanical systems, sensors 

and control systems. The mechanical system includes waist, hip, knee, leg and foot. In regardless 

of complex activities such as jumping and going-upstairs, the main purpose of LEPES is providing 

power assistance for wearers when they walk hard. Thus, in the aspect of DOFs’ distribution, the 

LEPES features three DOFs at the hip, one at the knee, and three at the ankle per leg. Of these, 

two DOFs are actuated by Maxon DC motors: hip flexion/extension and knee flexion/extension 

in the sagittal plane. The mechanical structure built in our Robotics Laboratory is shown in Fig. 1. 

As a wearable biped exoskeleton system, LEPES should be programmed to walk naturally to 

provide intimacy to human. However, the human gait is a complex dynamic activity. Therefore, 

in order to get accurate control strategies and conduct the optimization design of mechanical 

structure, it is very important and necessary to build the dynamic and kinematics model and gain 

the kinematical and dynamic equation for LEPES. 

  
Fig. 1. The lower extremity power-

assisted exoskeleton system 
Fig. 2. Kinematical model of LEPES 

2. Kinematical model of LEPES 

The kinematic analysis of LEPES can be facilitated by using the Denavt-Hartenberg (D-H) 

convention because of its well-established analysis procedures. 

In order to simplify the calculation of the kinematical model, the waist (actually the projection 

of waist in the sagittal plane), the legs and the feet are regarded as the rigid links; the hip, knee 

and ankle are simplified as the revolute pair in the sagittal plane. Thus, the whole kinematical 

model is a five-link biped model, and the link frames {0} through {6} of the LEPES can be 

established, as shown in Fig. 2. Here, frame {0} represents the world reference frame, where 𝑥0 is 

horizontal axis, 𝑦0 is vertical axis and 𝑧0 is perpendicular to the surface with the outward direction 

as the positive direction. 

Based on the D-H rules and the five-link biped model, parameters of LEPES can be deduced 

as shown in Table 1. It should be noted that the parameters in Table 1 can be selected in different 

ways because the D-H notation is not unique. 

According to the D-H convention, D-H homogeneous matrix representation is used to describe 

the spatial displacement between neighboring link coordinate frames to obtain the information 

related to kinematics of each link [5]. 

Assuming 𝑀𝑖 
𝑖−1  is the homogeneous transformation matrix describing the relative translation 

and rotation between 𝑙𝑖−1 and 𝑙𝑖 coordinate systems, then we can obtain: 
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𝑀 
0

1 = [

c𝜃1 −s𝜃1 0 0
s𝜃1 c𝜃1 0 0
0 0 1 0
0 0 0 1

], (1) 

𝑀 
1

2 = [

c𝜃2 −s𝜃2 0 𝑙1
s𝜃2 c𝜃2 0 0
0 0 1 0
0 0 0 1

], (2) 

𝑀 
2

3 = [

c𝜃3 −s𝜃3 0 𝑙2
s𝜃3 c𝜃3 0 0
0 0 1 0
0 0 0 1

], (3) 

𝑀 
3

4 = [

c𝜃4 −s𝜃4 0 𝑙3
s𝜃4 c𝜃4 0 0
0 0 1 0
0 0 0 1

], (4) 

𝑀 
4

5 = [

c𝜃5 −s𝜃5 0 𝑙4
s𝜃5 c𝜃5 0 0
0 0 1 0
0 0 0 1

], (5) 

𝑀 
5

6 = [

c𝜃6 −s𝜃6 0 𝑙5
s𝜃6 c𝜃6 0 0
0 0 1 0
0 0 0 1

], (6) 

where sin and cos are represented by s and c, respectively. 

Table 1. D-H parameters for LEPES 

𝑖 𝑙𝑖−1 𝛼𝑖−1 𝑑𝑖−1 𝜃𝑖−1 𝑞𝑖  
0 0 0 0 𝜃1 𝜃1 

1 𝑙1 0 0 𝜃2 𝜃2 

2 𝑙2 0 0 𝜃3 𝜃3 

3 𝑙3 0 0 𝜃4 𝜃3 

4 𝑙4 0 0 𝜃5 𝜃5 

5 𝑙5 0 0 𝜃6 𝜃6 

Note: 𝑖 is the link number, 

𝑙𝑖−1 is the distance between 𝑧𝑖−1 and 𝑧𝑖 along 𝑥𝑖, 
𝛼𝑖−1 is the angle between 𝑧𝑖−1 and 𝑧𝑖 about 𝑥𝑖, 
𝑑𝑖−1 is the distance between 𝑥𝑖−1 and 𝑥𝑖 along 𝑧𝑖−1, 

𝜃𝑖  is the angle between 𝑥𝑖−1 and 𝑥𝑖 about 𝑧𝑖−1, 

𝑞𝑖  is the joint variable about 𝑙𝑖 . 

Thus, the ankle reference frame {6} can be expressed in the world reference frame {0}, as 

given in Eq. (7): 

𝑀 
0

6 = 𝑀 
0

1 𝑀 
1

2 𝑀 
2

3 𝑀 
3

4 𝑀 
4

5 𝑀 
5

6

=

[
 
 
 
 
 
 
 
c∑𝜃𝑗

6

𝑗=1

−s∑𝜃𝑗

6

𝑗=1

0 𝑙5c∑𝜃𝑗

5

𝑗=1

+ 𝑙4c∑𝜃𝑗

4

𝑗=1

+ 𝑙3c∑𝜃𝑗

3

𝑗=1

+ 𝑙2c∑𝜃𝑗

2

𝑗=1

+ 𝑙1c𝜃1

s∑𝜃𝑗

6

𝑗=1

c∑𝜃𝑗

6

𝑗=1

0 𝑙5s∑𝜃𝑗

5

𝑗=1

+ 𝑙4s∑𝜃𝑗

4

𝑗=1

+ 𝑙3s∑𝜃𝑗

3

𝑗=1

+ 𝑙2s∑𝜃𝑗

2

𝑗=1

+ 𝑙1s𝜃1

0 0 1 0
0 0 0 1 ]

 
 
 
 
 
 
 

. 
(7) 



1192. DYNAMICS AND KINEMATICS ANALYSIS AND SIMULATION OF LOWER EXTREMITY POWER-ASSISTED EXOSKELETON.  

YANBEI LI, LEI YAN, HUA QIAN, JIAN WU, SEN MEN, NA LI 

784 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MARCH 2014. VOLUME 16, ISSUE 2. ISSN 1392-8716  

According to D-H convention, Eq. (7) can be transformed as follows: 

[

𝑛𝑥 𝑜𝑥 𝑎𝑥 𝑝𝑥
𝑛𝑦 𝑜𝑦 𝑎𝑦 𝑝𝑦
𝑛𝑧 𝑜𝑧 𝑎𝑧 𝑝𝑧
0 0 0 1

] =

[
 
 
 
 
 
 
 
c∑𝜃𝑗

6

𝑗=1

−s∑𝜃𝑗

6

𝑗=1

0 𝑙5c∑𝜃𝑗

5

𝑗=1

+ 𝑙4c∑𝜃𝑗

4

𝑗=1

+ 𝑙3c∑𝜃𝑗

3

𝑗=1

+ 𝑙2c∑𝜃𝑗

2

𝑗=1

+ 𝑙1c𝜃1

s∑𝜃𝑗

6

𝑗=1

c∑𝜃𝑗

6

𝑗=1

0 𝑙5s∑𝜃𝑗

5

𝑗=1

+ 𝑙4s∑𝜃𝑗

4

𝑗=1

+ 𝑙3s∑𝜃𝑗

3

𝑗=1

+ 𝑙2s∑𝜃𝑗

2

𝑗=1

+ 𝑙1s𝜃1

0 0 1 0
0 0 0 1 ]

 
 
 
 
 
 
 

. (8) 

Thus, the position of the ankle 𝑝6 
0  can be determined as Eq. (9) with respect to the world 

reference frame {0}: 

𝑝 
0
6 =

[
 
 
 
 
 
 
𝑙5c∑𝜃𝑗

5

𝑗=1

+ 𝑙4c∑𝜃𝑗

4

𝑗=1

+ 𝑙3c∑𝜃𝑗

3

𝑗=1

+ 𝑙2c∑𝜃𝑗

2

𝑗=1

+ 𝑙1c𝜃1

𝑙5s∑𝜃𝑗

5

𝑗=1

+ 𝑙4s∑𝜃𝑗

4

𝑗=1

+ 𝑙3s∑𝜃𝑗

3

𝑗=1

+ 𝑙2s∑𝜃𝑗

2

𝑗=1

+ 𝑙1s𝜃1

0 ]
 
 
 
 
 
 

. (9) 

The posture of the ankle 𝑅6 
0  can be determined as Eq. (10): 

𝑅 
0

6 =

[
 
 
 
 
 
 
c∑𝜃𝑗

6

𝑗=1

−s∑𝜃𝑗

6

𝑗=1

0

s∑𝜃𝑗

6

𝑗=1

c∑𝜃𝑗

6

𝑗=1

0

0 0 1]
 
 
 
 
 
 

. (10) 

3. Dynamic models of LEPES 

A human walking gait cycle can be divided into three gait patterns [6]: the single-foot support 

model(one foot stance, the other swing), double-feet support model(double feet whole stance) and 

double-feet support with one redundancy model(one foot whole stance while the heel or the toes 

of the other kicks the ground). 

Since the force and the position of center of mass for each leg and each joint are different in 

each gait pattern, this paper decides to use Lagrangian method to analyze the three gait patterns 

respectively. 

In order to simplify the calculation of the dynamic model, the waist (actually the projection of 

waist in the sagittal plane), the legs and the feet are regarded as the rigid links; the hip, knee and 

ankle is simplified as the revolute pair in the sagittal plane. 

3.1. The double-feet support model 

The double-feet support dynamic model of LEPES is illustrated in Fig. 3, where 𝛼𝑖 stands for 

the distance between the center of mass of link 𝑖 and the ends of link 𝑖; 𝜃𝑖 represents the angle 

between link 𝑖 and link 𝑖 − 1; 𝑙𝑖  is the length of each link; and 𝑚𝑖  is the mass of each link 𝑖,  
𝑖 = 1,2,…,6; 𝐵1 and 𝐵2 represent the DC motors of knee, 𝐹1 and 𝐹2 stands for the DC motors of 

hip. Coordinate system {𝑥𝑜𝑦} is the world reference frame. 
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Thus, 𝐺𝑖(𝑥𝑖, 𝑦𝑖) (the center of mass of link 𝑖) can be obtained according to the geometric 

relationships in Fig. 3: 

{
 
 
 
 

 
 
 
 
𝑥0 = 𝑎0,
𝑥1 = 𝑎1s𝜃1,

𝑥2 = 𝑙1s𝜃1 + 𝑎2s(𝜃1 − 𝜃2),

𝑥3 = 𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑎3s(𝜃3 − 𝜃1 + 𝜃2),

𝑥4 = 𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑙3s(𝜃3 − 𝜃1 + 𝜃2) + 𝑎4s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4),

𝑥5 = {
𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑙3s(𝜃3 − 𝜃1 + 𝜃2) +
+𝑙4s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4) + 𝑎5s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5)

} ,

𝑥6 = {
𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑙3s(𝜃3 − 𝜃1 + 𝜃2) +
+𝑙4s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4) + 𝑙5s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5) + 𝑎6

} ,

 (11) 

{
 
 
 

 
 
 
𝑦0 = 0,
𝑦1 = 𝑎1c𝜃1,

𝑦2 = 𝑙1c𝜃1 + 𝑎2c(𝜃1 − 𝜃2),

𝑦3 = 𝑙1c𝜃1 + 𝑙2c(𝜃1 − 𝜃2) − 𝑎3c(𝜃3 − 𝜃1 + 𝜃2),

𝑦4 = 𝑙4c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4) − 𝑎4c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4) + 𝑙5c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5),
𝑦5 = 𝑙5c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5) − 𝑎5c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5),
𝑦6 = 0.

 (12) 

The coordinate of each actuated motor 𝐷𝑖(𝑥𝑖, 𝑦𝑖) is: 

{
 
 

 
 
𝑥𝐵1 = 𝑙1s𝜃1,

𝑥𝐹1 = 𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2),

𝑥𝐹2 = 𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑙3s(𝜃3 − 𝜃1 + 𝜃2),

𝑥𝐵2 = 𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑙3s(𝜃3 − 𝜃1 + 𝜃2) + 𝑙4s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4),

 (13) 

{
 
 

 
 
𝑦𝐵1 = 𝑙1c𝜃1,

𝑦𝐹1 = 𝑙1c𝜃1 + 𝑙2c(𝜃1 − 𝜃2),

𝑦𝐹2 = 𝑙4c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4) + 𝑙5c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5),

𝑦𝐵2 = 𝑙5c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5).

 (14) 

 

  
Fig. 3. The double-feet support model Fig. 4. The double-feet support with one 

redundancy (toes of one foot kicking the ground) 
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3.2. The double-feet support with one redundancy model 

As mentioned above, there are two situations of the double-feet support with one redundancy 

model, and this study just analyzes the model that one foot whole stances while the toes of the 

other kick the ground because of the same theories, as shown in Fig. 4. 

𝛼𝑖  stands for the distance between the center of mass of link 𝑖  and the ends of link 𝑖; 𝜃𝑖 
represents the angle between link i and link 𝑖 − 1; 𝑙𝑖 is the length of each link; 𝑚𝑖 is the mass of 

each link 𝑖, 𝑖 = 1, 2,…, 6; 𝐵1 and 𝐵2 represent the DC motors of knee, 𝐹1 and 𝐹2 stands for the 

DC motors of hip. Coordinate system {𝑥𝑜𝑦} is the world reference frame. 

Therefore, 𝐺𝑖(𝑥𝑖, 𝑦𝑖) (the center of mass of link 𝑖) can be obtained according to the geometric 

relationships: 

{
 
 
 
 

 
 
 
 
𝑥0 = 𝑙0s𝜃0 − 𝑎0s𝜃0,
𝑥1 = 𝑎1s𝜃1,

𝑥2 = 𝑙1s𝜃1 + 𝑎2s(𝜃1 − 𝜃2),

𝑥3 = 𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑎3s(𝜃3 − 𝜃1 + 𝜃2),

𝑥4 = 𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑙3s(𝜃3 − 𝜃1 + 𝜃2) + 𝑎4s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4),

𝑥5 = {
𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑙3s(𝜃3 − 𝜃1 + 𝜃2) + 𝑙4s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4) +
+𝑎5s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5)

} ,

𝑥6 = {
𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑙3s(𝜃3 − 𝜃1 + 𝜃2) + 𝑙4s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4) +
+𝑙5s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5) + 𝑎6

} ,

 (15) 

{
 
 
 

 
 
 
𝑦0 = 𝑎0c𝜃0,
𝑦1 = 𝑎1c𝜃1 + 𝑙0c𝜃0,

𝑦2 = 𝑙1c𝜃1 + 𝑎2c(𝜃1 − 𝜃2) + 𝑙0c𝜃0,

𝑦3 = 𝑙1c𝜃1 + 𝑙2c(𝜃1 − 𝜃2) − 𝑎3c(𝜃3 − 𝜃1 + 𝜃2) + 𝑙0c𝜃0,

𝑦4 = 𝑙4c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4) − 𝑎4c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4) + 𝑙5c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5),

𝑦5 = 𝑙5c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5) − 𝑎5c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5),
𝑦6 = 0.

 (16) 

The coordinate of each actuated motor 𝐷𝑖(𝑥𝑖, 𝑦𝑖) is: 

{
 
 

 
 
𝑥𝐵1 = 𝑙1s𝜃,

𝑥𝐹1 = 𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2),

𝑥𝐹2 = 𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑙3s(𝜃3 − 𝜃1 + 𝜃2),

𝑥𝐵2 = 𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑙3s(𝜃3 − 𝜃1 + 𝜃2) + 𝑙4s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4),

 (17) 

{
 
 

 
 
𝑦𝐵1 = 𝑙1c𝜃1 + 𝑙0c𝜃0,

𝑦𝐹1 = 𝑙1c𝜃1 + 𝑙2c(𝜃1 − 𝜃2) + 𝑙0c𝜃0,

𝑦𝐹2 = 𝑙4c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4) + 𝑙5c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5),

𝑦𝐵2 = 𝑙5c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5).

 (18) 

3.3. The single-foot support model 

Fig. 5 shows the single-foot support dynamic model of LEPES. 𝛼𝑖  stands for the distance 

between the center of mass of link 𝑖 and the ends of link 𝑖; 𝜃𝑖 represents the angle between link 𝑖 
and link 𝑖 − 1; 𝑙𝑖 is the length of each link; 𝑚𝑖 is the mass of each link 𝑖, 𝑖 = 1, 2,…, 6; 𝐵1 and 𝐵2 

represent the DC motors of knee, 𝐹1 and 𝐹2 stands for the DC motors of hip. Coordinate system 

{𝑥𝑜𝑦} is the world reference frame. 

Thus, 𝐺𝑖(𝑥𝑖, 𝑦𝑖) (the center of mass of link 𝑖) can be obtained according to the geometric 

relationships: 
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{
 
 
 
 

 
 
 
 
𝑥0 = 𝑙0s𝜃0 − 𝑎0s𝜃0,
𝑥1 = 𝑎1s𝜃1,

𝑥2 = 𝑙1s𝜃1 + 𝑎2s(𝜃1 − 𝜃2),

𝑥3 = 𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑎3s(𝜃3 − 𝜃1 + 𝜃2),

𝑥4 = 𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑙3s(𝜃3 − 𝜃1 + 𝜃2) + 𝑎4s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4),

𝑥5 = {
𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑙3s(𝜃3 − 𝜃1 + 𝜃2) + 𝑙4s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4) +
+𝑎5s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5)

} ,

𝑥6 = {
𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑙3s(𝜃3 − 𝜃1 + 𝜃2) + 𝑙4s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4) +
+𝑙5s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5) + 𝑎6

} ,

 (19) 

{
 
 
 

 
 
 
𝑦0 = 𝑎0c𝜃0 + ℎ,
𝑦1 = 𝑎1c𝜃1 + 𝑙0c𝜃0 + ℎ,

𝑦2 = 𝑙1c𝜃1 + 𝑎2c(𝜃1 − 𝜃2) + 𝑙0c𝜃0 + ℎ,

𝑦3 = 𝑙1c𝜃1 + 𝑙2c(𝜃1 − 𝜃2) − 𝑎3c(𝜃3 − 𝜃1 + 𝜃2) + 𝑙0c𝜃0 + ℎ,

𝑦4 = 𝑙4c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4) − 𝑎4c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4) + 𝑙5c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5),

𝑦5 = 𝑙5c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5) − 𝑎5c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5),
𝑦6 = 0.

 (20) 

 
Fig. 5. The single-foot support model 

The coordinate of each actuated motor 𝐷𝑖(𝑥𝑖, 𝑦𝑖) is: 

{
 
 

 
 
𝑥𝐵1 = 𝑙1s𝜃,

𝑥𝐹1 = 𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2),

𝑥𝐹2 = 𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑙3s(𝜃3 − 𝜃1 + 𝜃2),

𝑥𝐵2 = 𝑙1s𝜃1 + 𝑙2s(𝜃1 − 𝜃2) + 𝑙3s(𝜃3 − 𝜃1 + 𝜃2) + 𝑙4s(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4),

 (21) 

{
 
 

 
 
𝑦𝐵1 = 𝑙1c𝜃1 + 𝑙0c𝜃0 + ℎ,

𝑦𝐹1 = 𝑙1c𝜃1 + 𝑙2c(𝜃1 − 𝜃2) + 𝑙0c𝜃0 + ℎ,

𝑦𝐹2 = 𝑙4c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4) + 𝑙5c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5),

𝑦𝐵2 = 𝑙5c(𝜃3 − 𝜃1 + 𝜃2 − 𝜃4 − 𝜃5).

 (22) 

3.4. The equation of Lagrangian dynamics 

According to the method of Lagrangian dynamics, the Lagrangian function is defined as the 

difference of the system between kinetic energy 𝐸𝐾  and potential energy 𝐸𝑃, i.e.: 

𝐿 = 𝐸𝐾 − 𝐸𝑃 . (23) 
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The equation of Largrangian dynamics can be obtained according to Eq. (23), as shown in 

Eq. (24): 

𝑄𝑗 =
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑗
) −

𝜕𝐿

𝜕𝑞𝑗
,   𝑗 = 0,1, . . . , 𝑛, (24) 

where 𝑛 is number of generalized coordinate system, 𝑞𝑖 represents the generalized coordinate, �̇�𝑗 

stands for the generalized velocity, 𝑄𝑗 is the generalized force or generalized torque applied to the 

𝑗th coordinate. 

The total kinetic energy of drive motors in each dynamics model of LEPES is: 

𝐸𝐼 =
1

2
(𝐼𝐵1�̇�𝐵1

2 + 𝐼𝐵2�̇�𝐵2
2 + 𝐼𝐹1 �̇�𝐹1

2 + 𝐼𝐹2�̇�𝐹2
2 ), (25) 

where �̇�𝐵1
2 = �̇�𝐵1

2 + �̇�𝐵1
2 , �̇�𝐵2

2 = �̇�𝐵2
2 + �̇�𝐵2

2 , �̇�𝐹1
2 = �̇�𝐹1

2 + �̇�𝐹1
2 , �̇�𝐹2

2 = �̇�𝐹2
2 + �̇�𝐹2

2 ; and 𝐼𝐵1 , 𝐼𝐵2 , 𝐼𝐹1 , 𝐼𝐹2  

is equivalent moment of inertia of each motor respectively in generalized coordinate system. 

The total kinetic energy of links in each dynamic model of LEPES can be calculated as follows: 

𝐸𝐾 =∑𝐸𝐾𝑖

6

𝑖=0

, (26) 

where 𝐸𝐾𝑖 =
1

2
𝑚𝑖𝑣𝑖

2, 𝑣𝑖
2 = �̇�𝑖

2 + �̇�𝑖
2, 𝑖 = 0,1,...,6, 𝑚𝑖 is equivalent mass of each links, 𝑣𝑖 stands 

for the velocity of each link in the generalized coordinate. 

Thus, the total kinetic energy of each dynamic model of LEPES can be obtained, in accordance 

with the Eq. (25) and Eq. (26): 

𝐸𝐾𝐼 = 𝐸𝐾 + 𝐸𝐼 =
1

2
(∑𝑚𝑖(�̇�𝑖

2 + �̇�𝑖
2)

6

𝑖=0

+ 𝐼𝐵1�̇�𝐵1
2 + 𝐼𝐵2�̇�𝐵2

2 + 𝐼𝐹1�̇�𝐹1
2 + 𝐼𝐹2 �̇�𝐹2

2 ). (27) 

The total potential energy of each dynamic model of LEPES is: 

𝐸𝑃 =∑𝐸𝑃𝑖

6

𝑖=0

, (28) 

where 𝐸𝑃𝑖 = 𝑚𝑖𝑔𝑦𝑖 , 𝑔 is the component of acceleration of gravity along 𝑦-axis. 

The Lagrangian function for each dynamic model can be expressed as below, based on the 

Eq. (27) and Eq. (28): 

𝐿 = 𝐸𝐾𝐼 − 𝐸𝑃 =
1

2
(∑𝑚𝑖(�̇�𝑖

2 + �̇�𝑖
2)

6

𝑖=0

+ 𝐼𝐵1�̇�𝐵1
2 + 𝐼𝐵2�̇�𝐵2

2 + 𝐼𝐹1 �̇�𝐹1
2 + 𝐼𝐹2�̇�𝐹2

2 ) −∑𝑚𝑖𝑔𝑦𝑖

6

𝑖=0

. (29) 

Therefore, according to Eq. (24) and Eq. (29), the Lagrange equation of each dynamic model 

in the 𝑗th generalized coordinate can be obtained: 

𝑄𝑗 =
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑗
) −

𝜕𝐿

𝜕𝜃𝑗
. (30) 

Finally, the entire kinetic equation of each dynamics model can be expressed as: 
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𝑄 = [𝑄0 𝑄1 𝑄2 𝑄3 𝑄4 𝑄5]
𝑇 . (31) 

In accordance with the Eq. (31), in the double-feet support model, 𝑄0 and 𝑄5 represented the 

actuated torque of ankles, 𝑄1 and 𝑄4  stand for the actuated torque of knees, 𝑄2 and 𝑄3 are the 

actuated torque of hips. In the double-feet support with one redundancy model, 𝑄0  and 𝑄5 

represent the actuated torque of ankle that the toes kicking ground and the ankle which the whole 

foot supporting ground respectively, 𝑄1 and 𝑄4 stand for the actuated torque of knee that the toes 

kicking ground and the knee which the whole foot supporting ground respectively, 𝑄2 and 𝑄3 are 

the actuated torque of hip that the toes kicking ground and the hip which the whole foot supporting 

ground respectively. In single-foot support model, 𝑄0 and 𝑄5 represent as the actuated torque of 

ankle that the foot swing and the ankle which the foot supporting ground respectively, 𝑄1 and 𝑄4 

stand for the actuated torque of knee that the foot swing and the knee which the foot supporting 

ground respectively, 𝑄2 and 𝑄3 are the actuated torque of hip that the foot swing and the hip which 

the foot supporting ground respectively. 

4. Simulations verification 

In this Section, MATLAB and ADAMS are used to verify the accuracy of D-H equation of 

kinematics and Lagrange equation of dynamics respectively. 

According to the design principles of exoskeleton mentioned in literature [7], this paper 

assumes the kinematical parameters of LEPES as listed in Table 2. 

Theoretically, according to Eq. (7), the homogeneous transformation matrix can be obtained 

using the parameters in Table 2: 

𝑀 
0

6 = [

0.87 −0.50 0  759.82
0.50 0.87 0 119.98
0 0 1 0
0 0 0 1

]. (32) 

By virtue of MATLAB, the simulation result of the LEPES’s kinematics model is consistent 

with the theoretical result, as illustrated in Fig. 6. 

 

Table 2. The given kinematical parameters of 

LEPES 

Link Length Joint variable Angle 

𝑙1 420 mm 𝑞1 −
𝜋

4
 

𝑙2 419 mm 𝑞2 −
𝜋

6
 

𝑙3 200 mm 𝑞3 
𝜋

2
 

𝑙4 419mm 𝑞4 
𝜋

4
 

𝑙5 420 mm 𝑞5 
𝜋

6
 

  𝑞6
 

−
𝜋

3
 

 

Fig. 6. The simulation result of kinematics model by 

MATLAB 
 

As for the simulation of the dynamic model of LEPES, in order to get the accurate result of 
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dynamics simulation, the data of human gait mentioned in literature [8] and ADAMS are used. 

Fig. 7 shows the virtual prototype of the LEPES’s dynamic model built by ADAMS, and the 

torques of actuated motors can be obtained by the simulation, as shown in Fig. 8. 

According to Fig. 8, the motor torque of the hip joint is the largest, while the torque of ankle 

is the smallest. Thus, there is no need to set motors to drive the ankles; instead, the DOFs of ankles 

can be regarded as the assistant DOFs when designing the structure. 

 
Fig. 7. The virtual prototype of LEPES’s dynamics model 

  

  

  
Fig. 8. The simulation result of dynamic model of LEPES 

5. Conclusions 

In conclusion, from kinematical views of the lower extremity power-assisted exoskeleton 

system which is designed by our Robotic Laboratory, this paper described the kinematical 

characteristics of the lower extremity power-assisted exoskeleton system (LEPES) via 

Denavt-Hartenberg (D-H) convention, and the homogeneous transformation matrix that could 

describe the position and posture of the kinematical model of LEPES was obtained. Thus, the 

precise position and gesture of the end ankle could be obtained according to the kinematical 
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equation and the 𝜃𝑖 (𝑖 = 1, 2,..., 6) given by the further researches which put forward an improved 

control strategies. Therefore, this research on kinematics provided a significant theoretical basis 

for the further study on control strategies and control algorithm of the actuated motors. 

In addition, as for the dynamic analysis, Largrangian dynamics was applied to get the kinetic 

equations of the three dynamic models of LEPES. And the kinetic equation of each model is 

obtained. According to the Largrangian dynamics of LEPES, the theoretical torque of each motor 

in each model could be calculated, which was helpful to choosing the drive motors of LEPES and 

optimizing the whole structure. Therefore, this research on dynamics provided an essential 

theoretical basis for the motor selection and the optimization design of mechanical structure. 
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