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Abstract. The classical time domain and frequency domain methods of damping identification 

are not be suitable to the structures with nonlinear stiffness. Therefore, on the basis of modifying 

the classical half-power bandwidth method, this study presented a method to identify the damping 

of nonlinear stiffness structure. Based on the movement equation of structure, the identifying 

damping formulas were derived respectively for the structure with weak and strong stiffness 

nonlinearity. Furthermore, the correctness of the proposed formulas was verified with a numerical 

simulation example. Then, the test damping procedure was proposed for the above mentioned 

nonlinear stiffness system. At last, this procedure has been demonstrated using a hard coating 

specimen with soft nonlinearity and the damping parameters of structure were obtained under 

different exciting levels. 

Keywords: damping identification, nonlinear stiffness structure, modified half-power bandwidth 

method, test damping procedure. 

1. Introduction 

The damping parameters not only can be used to create the model of structural dynamics, but 

also to evaluate and verify the effect of vibration reduction. So the damping measurement is very 

important in the structure dynamics and become more essential with the wide application of the 

damping technology [1-2]. 

There are a large number of mechanical structures, whose natural frequency will vary with the 

exciting levels and the frequency response function of these structures will not be symmetric about 

the resonant frequency. These structures can be named as the nonlinear stiffness structure, such as 

the bolted joint structure [3], the linear guideway system [4], the bonded single lap-joints structure 

in vehicle bodies [5] and some composite laminated plate structure [6], etc. For these nonlinear 

stiffness structures, the classical time and frequency domain methods will not be suitable for 

identifying damping, because these methods assume a linear energy dissipation mechanism and a 

constant resonant frequency. For the half-power bandwidth method, it also cannot be applied 

because the nonlinear jump phenomenon in the frequency response function can lead to erroneous 

observations of bandwidth frequencies. Thus, a new method should be proposed to identify the 

damping of the nonlinear stiffness structures. 

Some researchers have paid considerable attention to this problem and presented the modified 

time domain method to identify the damping of nonlinear stiffness structures. Reed [7] offered a 

method based upon further processing of the free decay response. The free decay response signal 

was divided into several segments and each signal segment includes a certain amount of oscillation 

peaks. Then, the damping ratio and the system stiffness corresponding to the different vibration 

amplitude can be extracted simultaneously from all these signal segments. Patsias [8] and Pearson 

[9] also adopted the similar approach to identify the damping for the coating structure with 

nonlinear stiffness. But, usually, a high signal-to-noise ratio signal is needed for identifying the 

system damping by time domain method, so, the identified damping is often not accurate due to 

the noise interference. 

Therefore, this study focuses on the development of the frequency domain method of 

identifying damping for the nonlinear stiffness structure. In section 2, the stiffness nonlinear 

system was divided into the weak nonlinear stiffness system and strong nonlinear stiffness system, 
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and the relative damping identification formulas were derived respectively. In section 3, the 

correctness of the proposed formulas was verified with a numerical simulation example. In 

section 4, the test procedure of the proposed method was presented for the above mentioned 

nonlinear structures. Because the frequency sweep is the kernel of the test, the effects of the sweep 

direction and sweep speed to the test results were also discussed. At last, the method has been 

demonstrated by using a hard-coating specimen with soft nonlinearity. The damping parameters 

of the structure were identified under different exciting levels. Vibration reduction used the hard 

coating has received more and more attention in recent years [8-11], and the hard-coating 

composite structure usually display nonlinear stiffness behavior [8, 9, 12], so the proposed 

damping identification method can provide the reference for the study of vibration reduction used 

the hard coating. 

2. Damping identification theory for the nonlinear stiffness structure 

Fig. 1 shows the frequency response curves for systems with weak and strong nonlinear 

stiffness. For the weak nonlinear stiffness system shown in Fig. 1(a), there is a steeper slop in one 

side of the response curve. With the increase of exciting level, the steeper slope will become the 

vertical line shown in Fig. 1(b), and then the system is called strong stiffness nonlinear system. 

Corresponding to the different nonlinear type, the identifying damping formulas will be derived 

in this section. 

 
a) The weak nonlinear stiffness system 

 
b) The strong nonlinear stiffness system 

Fig. 1. Frequency response curves of weak and strong nonlinear stiffness system 

2.1. Derivation of damping identification formula for the weak nonlinear stiffness system 

For the nonlinear stiffness structure, the movement equation can be expressed as: 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘(1 + 𝜀Φ{𝑋})𝑥 = 𝐹0sin𝜔𝑡, (1) 

where 𝑚 is the mass, 𝑐 is the equivalent viscous damping coefficient, 𝑘 is the linear stiffness, 𝜀 is 

a small parameter, 𝐹0 is exciting level, 𝜔 is exciting angular frequency. Φ{𝑋} is a monotonic 

function of the response amplitude 𝑋 and when 𝑋 is equal to 0, Φ{𝑋} = 0. 

Eq. (1) can be converted into: 

𝑥̈ + 2𝜉𝜔0𝑥̇ + 𝜔0
2(1 + 𝜀Φ{𝑋})𝑥 = (

𝐹0

𝑚
) sin𝜔𝑡. (2) 

In this equation, 𝜔0=√𝑘 𝑚⁄  is the resonant frequency at infinitesimal exciting level, 𝜉  is 

damping ratio and expressed as 𝜉 =
𝑐

2√𝑘𝑚
. 

The linear system corresponding to the Eq. (2) can be expressed as: 
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𝑥̈ + 2𝜉𝜔0𝑥̇ + 𝜔0
2𝑥 = (

𝐹0

𝑚
) sin𝜔𝑡. (3) 

And the response amplitude of the linear system is: 

𝑋 =
𝐹0 𝑘⁄

√[1 − (
𝜔
𝜔0

)
2

]
2

+ (
2𝜉𝜔
𝜔0

)
2

 . 
(4) 

Referring to the linear system, the response amplitude of the nonlinear system of Eq. (2) can 

be expressed as: 

𝑋=
𝐹0 𝑘⁄

√[1 + 𝜀Φ{𝑋} −
𝜔2

𝜔0
2]

2

+ (2𝜉𝜔/𝜔0)2

 . 
(5) 

It is assumed that the response amplitude reaches the maximum when the sweep frequency is 

𝜔𝑅 under the exciting level 𝐹0. For the light damping system, the 𝜔𝑅 can be shown as: 

𝜔𝑅
 ≈ 𝜔0√1 + 𝜀Φ{𝑋max}, (6) 

where 𝑋max is the maximum response amplitude. 

From the Eq. (6), the monotonic function 𝜀Φ{𝑋max}  can be determined by testing the 

maximum response amplitude 𝑋max  and the relative resonance frequency 𝜔𝑅  under different 

exiting levels 𝐹0. The identifying formula is: 

𝜀Φ{𝑋max} = 𝜔𝑅
2 /𝜔0

2 − 1. (7) 

According to the Eq. (7), inputting a maximum response amplitude 𝑋max, a value of function 

𝜀Φ{𝑋max} can be obtained. Using these data points, the expression of function 𝜀Φ{𝑋max} can be 

fitted by polynomial. 

Furthermore, from the Eq. (5), a dimensionless response amplitude 𝐴 can be gotten: 

𝐴=
𝑋

𝐹0 𝑘⁄

1

√[1 + 𝜀Φ{𝑋} −
𝜔2

𝜔0
2]

2

+ (2𝜉𝜔/𝜔0)2

 . 
(8) 

Substituting the Eq. (6) into the Eq. (8), the maximum dimensionless response amplitude 𝐴max 

can be yielded: 

𝐴max ≈
1

2𝜉
. (9) 

For the weak nonlinear structure system, there exist two exciting frequencies 𝜔𝑚  and 𝜔𝑛 

(𝜔𝑚 > 𝜔𝑛) on the both sides of the resonant frequency, at which the response is some fraction 𝑟 

(0 < 𝑟 < 1) of the dimensionless response amplitude, that is 𝐴𝑚 = 𝐴𝑛 = 𝑟𝐴max. Accordingly, 

for the real response amplitudes corresponding to the two exciting frequencies 𝜔𝑚 and 𝜔𝑛, there 

also exist the expression 𝑋𝑚 = 𝑋𝑛 = 𝑟𝑋max. Then the 𝜔𝑚
2  and 𝜔𝑛

2 can be regarded as the solutions 
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of the Eq. (8), solving Eq. (8), can yield: 

𝜔𝑚
2 = 𝜔0

2 (1 + 𝜀Φ{𝑟𝑋max} + 2𝜉√
1

𝑟2
− 1), (10) 

𝜔𝑛
2 = 𝜔0

2 (1 + 𝜀Φ{𝑟𝑋max} − 2𝜉√
1

𝑟2
− 1). (11) 

Eq. (10) subtracting Eq. (11) can yield: 

𝜉=
𝜔𝑚

2 − 𝜔𝑛
2

4𝜔0
2√1 𝑟2⁄ − 1

. (12) 

Conversely, Eq. (10) adding Eq. (11) can yield: 

𝜔𝑚
2 + 𝜔𝑛

2 = 2𝜔0
2(1+𝜀Φ{𝑟𝑋max}). (13) 

Eq. (12) can be considered as the formula of identifying damping. However, 𝜔0 is the resonant 

frequency at infinitesimal exciting amplitude, it can not be determined exactly by experiment. 

Thus, 𝜔0 needs to be substituted by Eq. (13). So, for the weak nonlinear stiffness system, the final 

damping identification formula is: 

𝜉=
𝜔𝑚

2 − 𝜔𝑛
2

𝜔𝑚
2 + 𝜔𝑛

2

1+𝜀Φ{𝑟𝑋max}

2√1 𝑟2⁄ − 1
. (14) 

It is noted that, in the Eq. (14), if the values of two exciting frequencies 𝜔𝑚 and 𝜔𝑛 can be 

found from the frequency response data and the weak nonlinear stiffness can be described, that is 

the expression 𝜀Φ{𝑟𝑋max}  can be determined exactly, then the damping of weak nonlinear 

stiffness system can be obtained accurately. 

2.2. Derivation of damping identification formula for the strong nonlinear stiffness system 

Due to a sufficient strength of nonlinearity, the response function of Eq. (8) will not be a single-

valued function of frequency 𝜔 . Then, the specific frequency 𝜔𝑚  or 𝜔𝑛  used to identify the 

damping of the system may cannot be found from the frequency response function obtained from 

the experiment simultaneously. For the strong soft nonlinear system shown in Fig. 2(a), the 

frequency 𝜔𝑛 can not be determined, and the frequency 𝜔𝑚 can not be gotten for the strong hard 

nonlinear system shown in Fig. 2(b). Thus, new damping identification formulas need be derived 

for these strong nonlinear stiffness systems. 

For the strong soft nonlinear system, from the Eq. (6) and Eq. (13), 𝜔𝑛  can be solved and 

expressed by 𝜔𝑅 and 𝜔𝑚: 

𝜔𝑛
2 = 2𝜔0

2(1+𝜀Φ{𝑟𝑋max}) − 𝜔𝑚
2 =

2𝜔𝑅
2 (1+𝜀Φ{𝑟𝑋max})

1+𝜀Φ{𝑋max}
− 𝜔𝑚

2 . (15) 

Substituting Eq. (15) into Eq. (14), the formula can be obtained for the strong soft nonlinear 

system and shown as: 
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𝜉 =
2𝜔𝑚

2 −
2𝜔𝑅

2 (1 + 𝜀Φ{𝑟𝑋max})
1 + 𝜀Φ{𝑋max}

2𝜔𝑅
2(1 + 𝜀Φ{𝑟𝑋max})
1 + 𝜀Φ{𝑋max}

1 + 𝜀Φ{𝑟𝑋max}

2√1 𝑟2⁄ − 1

=
𝜔𝑚

2 (1 + 𝜀Φ{𝑋max}) − 𝜔𝑅
2 (1 + 𝜀Φ{𝑟𝑋max})

2𝜔𝑅
2√1 𝑟2⁄ − 1

. 

(16) 

 

Frequency ratio

R
es

p
o

n
se

 a
m

p
li

tu
d

e

R

m

 
a) The strong soft nonlinear system 
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b) The strong hard nonlinear system 

Fig. 2. Frequency response curves of the strong nonlinear stiffness system 

With the similar method, the identifying damping formula can also be obtained for the strong 

hard nonlinear system: 

𝜉 =

2𝜔𝑅
2 (1 + 𝜀Φ{𝑟𝑋max})
1 + 𝜀Φ{𝑋max} − 2𝜔𝑛

2

2𝜔𝑅
2(1 + 𝜀Φ{𝑟𝑋max})
1 + 𝜀Φ{𝑋max}

1 + 𝜀Φ{𝑟𝑋max}

2√1 𝑟2⁄ − 1

=
𝜔𝑅

2 (1 + 𝜀Φ{𝑟𝑋max}) − 𝜔𝑛
2(1 + 𝜀Φ{𝑋max})

2𝜔𝑅
2√1 𝑟2⁄ − 1

. 

(17) 

The Eq. (14), Eq. (16) and Eq. (17) are the damping identification formulas for the nonlinear 

stiffness system proposed in this study. Although based on the single-degree-of-freedom system, 

the proposed method is also suitable to the multiple-degree-of-freedom systems if the resonant 

peaks are so sufficiently well separated that the observed response is that of a single mode. 

3. A numerical case 

In this section, a Duffing system was chosen to illustrate the method presented in this work. 

The movement equation of Duffing system can be expressed as: 

𝑥̈ + 2𝜉𝜔0𝑥̇ + 𝜔0
2𝑥 + 𝑏𝑥3 = 𝐹0sin(𝜔𝑡), (18) 

where 𝑏 is the cubic stiffness coefficient. The relevant parameter values of Eq. (18) are set and 

listed in Table 1. 

Table 1. Parameter values of Duffing system 

𝜉 𝜔0 𝑏 𝐹0 

0.05 1 –0.001 0.5, 1, 2, 3 

According to the multiple scale method, the frequency response under exciting levels from 0.5 

to 3 can be obtained and shown in the Fig. 3. 
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It can be seen from the Fig. 3 that when the exciting level 𝐹0 = 0.5 or 1, the Duffing system is 

weakly nonlinear. The exciting frequencies 𝜔𝑚 and 𝜔𝑛 can be got from the sweeping test. Then, 

the damping ratio can be calculated by the Eq. (14) or the classical half-power bandwidth method. 

However, as is shown in the Fig. 3, when the exciting level 𝐹0 = 2 or 3, the Duffing system 

becomes a strong nonlinear system. Because of the strong soft nonlinearity of the system, the 

smaller exciting frequency 𝜔𝑛  used to identify damping can not be obtained from the real 

vibration test, then the formula Eq. (16) should be adopted. 

If set 𝑟 = 1 √2⁄ , the resonance frequency 𝜔𝑅, the maximum response amplitude 𝑋max and the 

specific exciting frequencies 𝜔𝑚  and 𝜔𝑛  under the different exciting levels can be determined 

from the frequency response curve. These values are listed in Table 2. 

F0=0.5
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F0=3.0
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Fig. 3. Frequency response curves of the Duffing system 

Table 2. The relevant parameters of the system under different exciting levels 

𝐹0 𝜔𝑅 𝑋max 𝜔𝑚 𝜔𝑛 

0.5 0.9991 5 1.0046 0.9944 

1 0.9963 10 1.0033 0.9931 

2 0.9850 20 0.9976 – 

3 0.9662 30 0.9882 – 

Substituting the resonance frequency 𝜔𝑅 and the maximum response amplitude 𝑋max into the 

Eq. (7), the corresponding values of monotonic function 𝜀Φ{𝑋} under different exciting levels can 

be solved. Further, by polynomial fitting, the expression of 𝜀Φ{𝑋} can be determined as: 

𝜀Φ{𝑋} = −0.000074𝑋2. (19) 

Finally, the damping ratios of the system under different exciting levels are identified by the 

method in section 2. Besides, the classical half-power bandwidths method is also adopted to 

compare. The results are listed in Table 3. 

Table 3. The identifying damping ratios under different exciting levels 

Exciting 
level 

𝐹0 

Half-power bandwidths 
method 

Identifying damping formula 
for the weak stiffness 

nonlinear system 

Identifying damping formula 
for the strong stiffness 

nonlinear system 

Identifying 

value 𝐵1 

Difference 

|(𝐵1 − 𝜉)| 𝜉⁄  

Identifying 

value 𝐵2 

Difference 

|(𝐵2 − 𝜉)| 𝜉⁄  

Identifying 

value 𝐵3 

Difference 

|(𝐵3 − 𝜉)| 𝜉⁄  

0.5 0.05105 2.10 % 0.05097 1.94 % 0.05047 0.94 % 

1 0.05118 2.36 % 0.05090 1.8 % 0.05148 2.96 % 

2 – – – – 0.05092 1.84 % 

3 – – – – 0.04945 1.1 % 
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When the exciting level is 0.5 or 1, the system is a weakly nonlinear system. The identification 

results of the proposed method in this work are more accurate than that of the half-power 

bandwidths method. When the exciting level is 2 or 3, the system is a strong nonlinear system. 

The classical half-power bandwidths method cannot be used any more. But the method proposed 

above can identify the damping ratio well and maintain higher accuracy. So, it can be known from 

the Table 3 that the presented damping identification formulas is suitable for the system with 

weakly nonlinear stiffness and strong nonlinear stiffness, and is better than the classical half-

power bandwidth method. 

4. Test procedure and method 

Using the proposed method in this work, the damping of nonlinear stiffness system can be 

obtained according to the procedure listed in Table 4. 

Table 4. The procedure of identifying the damping of nonlinear stiffness system 

1. Testing the nature frequencies of system, 𝜔0 
2. Detemining the sine sweep intervals corresponding to each order nature frequency 

3. Determining the nonlinear type of system, soften or hard nonlinear stiffness system 

4. Determining the sweeping direction and rate, 𝑆 

5. Obtaining the frequency domain response curves under diffrent exciting levels and recording the 

maximum response amplitude and resonant frequency, 𝑋max, 𝜔𝑅 

6. Fitting the expression of monotonic function 𝜀Φ{𝑋} according to Eq. (7) 

7. Identifying the damping of nonlinear stiffness system used the Eq. (14), Eq. (16) or Eq. (17) 

Some of the key steps need be illustrated as follow: 

Dynamic ping test is an easy and applied method to get the nature frequencies of structure 

system. Furthermore, a small frequency range which consist a certain order nature frequency value 

can be chosen as a sine sweep interval. For the light damping system, dozens of Hz will be enough 

to satisfy the need of damping identification. 

Sweeping can be done by electromagnetic shaker. Sweeping direction is an important 

influencing factor to identify the damping of system. For the different nonlinear type of system, 

the sweeping direction is also distinct. It will be demonstrated by another example of soften 

nonlinear stiffness system shown in Fig. 4. 
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Fig. 4. Frequency response of a strong soften stiffness nonlinear system 

It can be seen, if frequency is swept from low to high, the observed values of response 

amplitude will jump from point B to point D, then the actual maximum response amplitude 𝑋max 

and the resonant frequency 𝜔𝑅  will not be observed and the damping of system can not be 

identified accurately. On the contrary, if the sweeping is performed from high frequency to low 

frequency, both the actual maximum response amplitude 𝑋max and the resonant frequency 𝜔𝑅 can 
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be observed, the specific frequency 𝜔𝑚 used to identify damping can also be obtained, but the 

other frequency 𝜔𝑛 can not be determined because of the jump of the observed values of response 

amplitude from point C to point A. In spite of this, the Eq. (16) shows that as long as the 𝜔𝑅, 𝜔𝑚 

and 𝑋max  are obtained, the damping can be identified accurately for the strong soft nonlinear 

system. So, to test damping effectively, the sweeping direction should be from high to low for the 

soft nonlinear system and from low to high for the hard nonlinear system. 

Sweeping rate is also important for damping identification. Because the damping identification 

method is based on the steady state response of system, and the decay of transient response is 

affected by the sweep rate directly, so an appropriate sweep rate should be determined. According 

to the literature [13], the constraint condition of sweep rate is: 

𝑆 < 𝑆𝑚 =
𝜂2𝑓𝑖

2

4
,   (𝑟 ≤ 0.8), (20) 

where 𝑆 is the permitted sweep rate and the unit is Hz/s, 𝑆𝑚 is the maximum sweep rate, 𝑓𝑖 is the 

𝑖-order nature frequency of structure and unit is Hz. By limiting the sweep rate, the transient 

response has an opportunity to decay and only the force response used to identify damping is left. 

5. A study case 

To illustrate the effectiveness of damping identification method proposed in this paper, the 

4-order and 5-order modal damping ratios of cantilever thin plate coated 𝑀𝑔𝑂 + 𝐴𝑙2𝑂3  are 

identified accordance to the key steps described in section 4. This kind of composite structure has 

stiffness nonlinear characteristics [8, 9, 12]. It is necessary to determine the damping parameters 

of such structures for the study of vibration used hard coating. 

5.1. Test specimen and test system 

A titanium alloy thin plate was chosen as test specimen in this work and the finished 

dimensions of the plate are 152 mm × 110 mm × 1.5 mm. The plate was in cantilevered state 

during testing and a 40 mm section to be mounted in the clamping device. The coating was 

prepared by air plasma spraying (APS ) and fully covered the plate with a uniform thickness 84 μm. 

To test the damping characteristic of the cantilever composite structure, the test system was set up 

and shown in the Fig. 5. The main equipments include the data acquisition, exciter and vibration 

sensor, etc. and Table 5 lists the instruments used in this test in detail. Among the instruments, the 

hammer excitation was used to obtain the linear nature frequencies which are independent with 

exciting levels for the composite system. While, the shaker excitation was used to get the 

resonance frequencies and frequency responses under different exciting levels and these data can 

be used to identify the damping of composite structure. Here, LMS SCADAS mobile front-end is 

chosen as the data acquisition and Polytec PDV-100 laser vibrometer is chosen as pick-up 

vibration sensor. 

 

Table 5. The instruments used in this test 

No. Name 

1 LMS SCADAS mobile front-end 

2 PCB 8206-001 54627 modal hammer 

3 KINGDESIGN EM-1000F shaker 

4 Polytec PDV-100 laser vibrometer 

5 High-performance notebook computers 
 

Fig. 5. Test system  
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5.2. Test process and results 

The natural frequencies of cantilever composite thin plate were test by hammer. The values of 

natural frequencies were determined by the obtained frequency response function and shown in 

Table 5. From the Table 5, the frequency range of sweeping used to test each order modal damping 

ratio can be determined. Here, only the 4-order and 5-order modal damping ratios were considered 

and were tested and shown as a study case. The sweeping range used to identify the 4-order modal 

damping ratio is from 830 Hz to 845 Hz (total 15 Hz of frequency bandwidth), and for the 5-order, 

the sweeping range is 1685 Hz to 1705 Hz (total 20 Hz of frequency bandwidth). In additional, 

each frequency value listed in Table 6 was also regarded as the value of relative order resonance 

frequency 𝜔0 corresponding to infinitesimal exciting level in this study, then the frequency values 

can be used to solve the function value of 𝜀Φ{𝑋}. 

Table 6. Nature frequencies of cantilever composite thin plate 

Order 1 2 3 4 5 6 

Nature frequency / Hz 91.9 198.7 559.6 838.1 1695.0 1811.8 

Here, a few sweeping excitation measurements were performed by shaker under the 

determined sweeping intervals. The exciting levels are set as acceleration values of 1 g, 2 g, 3 g, 

4 g, 5 g respectively. From the control soft DACTRON of the shaker, the resonance frequency 

corresponding to different exciting level can be obtained. It can be found from the test, the value 

of resonance frequency (listed in Table 7) of cantilever composite plate reduced with the increase 

of exciting level, no matter forward or backward sweep. This shows that the composite cantilever 

plate has soft nonlinear characteristic. In fact, this phenomenon has been found by many 

experiment studies [8, 9, 12]. 

Table 7. The resonance frequencies of composite cantilever thin plate under different exciting levels / Hz 

Exciting levels 1 g 2 g 3 g 4 g 5 g 

The 4-order resonance frequency 837.6 836.4 835.3 834.2 833.1 

The 5-order resonance frequency 1694.8 1692.8 1691.8 1691.1 1690.7 

For soft nonlinear system, the sweeping should be done from high to low frequency, which 

has been explained in section 4. In this test, the rates of all the sweeps were all set as 0.1 Hz/s. If 

the modal damping ratios of both the 4-order and the 5-order are 0.0005, it is a very small value 

of damping and the actual value of damping should be greater than this. According to the Eq. (20), 

the permitted maximum sweep rate of the measurement 4-order modal damping ratio is 0.19 Hz/s 

and the sweep rate of the 5-order is 0.64 Hz/s. Then, it can be confirmed that the selected sweeping 

rate satisfies the requirement of damping measurement. 

Then, series sweeping measurement were done according to the determined exciting levels and 

sweeping intervals. Because the data obtained by the laser vibrometer are time-domain signals. 

To identify damping by frequency bandwidth method, it is necessary to convert these time-domain 

signals into frequency domain. Here FFT transform based on time division was adopted to process 

the time-dependent data and produce the frequency responses. The procedure of data processing 

is: dividing a time domain signal into several parts, converting each part of the time domain signal 

into frequency domain by FFT and combining each frequency domain signal into the whole 

frequency response. Since the identifying damping formula need the displacement frequency 

response, the velocity measurements by laser vibrometer also need be converted into 

displacements. Fig. 6 is the final frequency response used to identify the 4-order and 5-order 

modal damping ratio.  

From the Fig. 6, both the resonance frequencies and the maximum response amplitudes under 

different exciting levels can be obtained. The resonance frequencies have been listed in Table 7 

and the maximum response amplitudes are listed in Table 8. Furthermore, substituting the 
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resonance frequency 𝜔𝑅 and the frequency 𝜔0 corresponding to infinitesimal exciting level into 

Eq. (8), then the function value of 𝜀Φ{𝑋} can be got and were also listed in Table 8. 

Table 8. Response amplitudes and function values of 𝜀Φ{𝑋} under different exciting level 

Exciting level 1 g 2 g 3 g 4 g 5 g 

The 4 order 
Response amplitude 𝑋max / μm 17.5 31.1 44.8 54.2 58.9 

Function value of 𝜀Φ{𝑋} –0.0012 –0.0041 –0.0067 –0.0093 –0.0119 

The 5 order 
Response amplitude 𝑋max / μm 20.1 36.1 55.9 64.1 78.9 

Function value of 𝜀Φ{𝑋} –0.0002 –0.0026 –0.0038 –0.0046 –0.0051 

According to the data listed in Table 8, the different expressions of monotonic function 𝜀Φ{𝑋} 

for the 4-order and the 5-order can be fitted by polynomial, the final results are: 

𝜀Φ{𝑋}4 = −1.0964 × 10−10𝑋5 + 1.1763 × 10−8𝑋4 − 3.2294 × 10−7𝑋3 

      −3.4719 × 10−6𝑋2 + 3.8735 × 10−5𝑋, 
(21) 

𝜀Φ{𝑋}5 = 8.1215 × 10−11𝑋5 − 1.7434 × 10−8𝑋4 + 1.3589 × 10−6𝑋3 

      −4.551 × 10−5𝑋2  + 4.8229 × 10−4𝑋. 
(22) 

It also can be seen from the Fig. 6, when the exciting level is 4 g or 5 g, the frequency response 

curves of the 4-order resonance frequency display the nonlinear jump phenomenon, so the system 

is strong nonlinear stiffness system under this state and Eq. (16) should be adopted to identify 

damping. In other cases, the structure systems are all weakly nonlinear stiffness system and 

damping identification should be performed by Eq. (14). During the damping identification, the 

value of 𝑟 is set as 𝑟 = 1 √2⁄ . The identified results of the 4-order and 5-order modal damping 

ratios are listed in Table 9. It can be known from the Table 9, both the 4-order and the 5-order 

modal damping ratios increase with the increase of the exciting levels and become constant 

gradually. 

a) The frequency response included the 4-order 

resonance frequency 

 
b) The frequency response included the 5-order 

resonance frequency 
Fig. 6. Frequency response curves used to identify the 4-order and 5-order modal damping ratio  

Table 9. The 4-order and the 5-order modal damping ratios under different exciting levels 

Exciting level 1 g 2 g 3 g 4 g 5 g 

The 4-order modal damping ratio / % 0.25 0.27 0.28 0.31 0.30 

The 5-order modal damping ratio / % 0.31 0.35 0.37 0.42 0.40 

6. Conclusions 

The method of damping identification was proposed for the nonlinear stiffness structure in this 

work. By modified the classical half-power bandwidth method, the identifying damping formulas 
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were derived respectively for the weakly and strong nonlinear stiffness structure. Utilizing these 

identification formulas of strong nonlinear stiffness systems, even if only the resonance frequency 

𝜔𝑅  and one of specific frequencies 𝜔𝑚  and 𝜔𝑛  are known, the damping can be identified 

effectively. The correctness of the proposed method was verified by a Duffing simulation system. 

The results show that for both the weakly nonlinear stiffness system and strong nonlinear stiffness 

system, the proposed method has broader applicability and higher identifying accuracy than the 

classic half-power bandwidth method. 

The test procedure of the proposed method was presented for the nonlinear stiffness structure 

systems. This procedure was demonstrated using a hard coating specimen with soft nonlinear and 

the modal damping ratios of the 4-order and 5-order of the structure were obtained under different 

exciting levels. These results can provide the reference for the study of vibration reduction used 

the hard coating. 
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