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Abstract. This paper is concerned with the identification problem of a certain mechanism’s 

dynamic parameters in its operation. This mechanism can be simplified as three rigid body 

structure joined by a prismatic pair, a revolute pair and a fixed constraint. The unrestraint dynamic 

equations of the mechanism can be obtained by using multi-rigid-body theory. In order to acquire 

unknown dynamic parameters, such as displacement, velocity and acceleration, a field experiment 

was designed. Then by choosing limited memory least square method and using the experiment 

results, one mass of rigid body could be identified. Finally, the calculative mass was compared to 

the “real” mass which was consulted in the specification book of this mechanism. The whole 

process shows that the rigid dynamic model of this mechanism and the method of identification 

are both effective. 
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1. Introduction 

The structure of machinery is becoming more and more complex. As a result that the mass 

matrix and the stiffness matrix of the whole system is also complex presenting time-varying. So, 

it’s difficult for researchers to describe the dynamic model of some machinery accurately. 

At present, research field is mainly divided into two direction, forward problem and inverse 

problem. Based on mathematical model, forward problem is concerned with the structure’s 

dynamic response under different excitation. Q. Chen analyzed a certain mechanism dynamic 

response by using the wavelet transform method [1]. By means of multi-body transfer matrix 

method, X. Rui obtained the model function’s accurate expression [2]. Inverse problem, namely, 

dynamic parameter identification problem, uses some model class to find an equivalent model 

upon input and output. X. Liu, D. Jing and W. Zhuang provide many identifying methods of 

time-varying parameters in their papers [3-5]. Because of least square method’s simple principle 

and fast convergence, it is widely used in identifying system parameters. As one of least square 

method’s improved algorithms, limited memory least square method can effectively overcome 

“data saturation” phenomenon when it is applied to time-varying identification. X. Chen and 

C. Chen proved its effect in their work [6]. But, most of inverse problem dynamic equations lack 

physical significance and it’s hard to examine the result of identification intuitively. 

In this paper, taking a certain mechanism as the research object, we can identify the 

time-varying mass effectively when combining mechanism dynamic model with limited memory 

least square method. Because the mass has physical significance, the result of identification can 

be compared to the static measurement in order to examine the method’s effect on time-varying 

parameters. 

2. Problem formulation 

2.1. Dynamic model 

It is supposed that the mechanical system is moving in the vertical plane of symmetry during 

being operated and consists of three rigid parts [7], namely, recoiling part 𝐵3, tipping part 𝐵2 and 
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carriage part 𝐵1. Recoiling part moves linear relative to tipping part expressed as 𝑥 while tipping 

part rotates relative to carriage part expressed as 𝜃 + 𝛽 . The whole mechanism’s motion is 

expressed as the horizontal motion 𝜉, the vertical movement 𝜂 and the rotation 𝛼. The external 

force is made up of the gravity acting on each rigid-body, the breech force 𝑃𝐾𝐻 working on 𝐵3 

and the constraining force coming from 𝐶 and 𝐷 points on the ground. The internal force consists 

of the 𝑅𝑓  between 𝐵3  and 𝐵2 , the 𝑀𝐶  between 𝐵2  and 𝐵1 . So, the dynamic model can be 

simplified into three-rigid-body structure and is shown in Fig. 1. 

 
Fig. 1. The dynamic model of the mechanism 

In Fig. 1, 𝑜𝜉𝜂 is chosen as the inertial reference frame; the points 𝐶1, 𝐶2, 𝐶3 are center of mass 

on the rigid body 𝐵1, 𝐵2, 𝐵3; the points 𝐶, 𝐴, 𝐴1 are the base points; the coordinate system 𝐶𝑋𝑌, 

𝐴𝑋𝑌, 𝐴1𝑋𝑌 is built on these base points; the unit base vector is expressed as 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6 

and 𝑒7, where 𝑒7 is established by right hand rule; 𝑚1, 𝑚2, 𝑚3  represents each rigid body’s mass; 

𝑚1, 𝑚2, 𝑚3 is the rotational inertia relative to 𝐶, 𝐴, 𝐴1; the force 𝑁𝐶𝜉 and 𝑁𝐶𝜂 is the constraining 

force coming from the ground [8-10]. 

2.2. Dynamic equations 

The absolutely velocity and acceleration of each rigid body is illustrated in Eq. (1): 
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{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
𝑣𝑝1 = �̇�𝑒1 + �̇�𝑒2,

𝑎𝑝1 = �̈�𝑒1 + �̈�𝑒2,

𝑣𝑝2
 = �̇�𝑒1 + �̇�𝑒2 − 𝑌𝐴�̇�𝑒3 + 𝑋𝐴�̇�𝑒4,

𝑎𝑝2
 = �̈�𝑒1 + �̈�𝑒2 − (𝑌𝐴�̈� + 𝑋𝐴�̇�

2)𝑒3 + (𝑋𝐴�̈� − 𝑌𝐴�̇�
2)𝑒4,

𝑣𝑝3
 = �̇�𝑒1 + �̇�𝑒2 − 𝑌𝐴�̇�𝑒3 + 𝑋𝐴�̇�𝑒4 − 𝑑(�̇� + �̇�)𝑒5 − �̇�𝑒5 + (𝑏 − 𝑥)(�̇� + �̇�)𝑒6,

𝑎𝑝3
 =

{
 
 

 
 �̈�𝑒1 + �̈�𝑒2 − (𝑌𝐴�̈� + 𝑋𝐴�̇�

2)𝑒3 + (𝑋𝐴�̈� − 𝑌𝐴�̇�
2)𝑒4

−[�̈� + 𝑑(�̈� + �̈�) + (𝑏 − 𝑥)(�̇� + �̇�)
2
] 𝑒5

+[(𝑏 − 𝑥)(�̈� + �̈�) − 𝑑(�̇� + �̇�)
2
− 2�̇�(�̇� + �̇�)] 𝑒6}

 
 

 
 

,

𝑣𝐶1
 = �̇�𝑒1 + �̇�𝑒2 − 𝑌1�̇�𝑒3 + 𝑋1�̇�𝑒4,

𝑎𝐶1
 = �̈�𝑒1 + �̈�𝑒2 − (𝑌1�̈� + 𝑋1�̇�

2)𝑒3 + (𝑋1�̈� − 𝑌1�̇�
2)𝑒4,

𝑣𝐶2
 = �̇�𝑒1 + �̇�𝑒2 − 𝑌𝐴�̇�𝑒3 + 𝑋𝐴�̇�𝑒4 − 𝑑2(�̇� + �̇�)𝑒5 + 𝑠2(�̇� + �̇�)𝑒6,

𝑎𝐶2
 = {

�̈�𝑒1 + �̈�𝑒2 − (𝑌𝐴�̈� + 𝑋𝐴�̇�
2)𝑒3 + (𝑋𝐴�̈� − 𝑌𝐴�̇�

2)𝑒4

− [𝑑2(�̈� + �̈�) + 𝑠2(�̇� + �̇�)
2
] 𝑒5 + [𝑠2(�̈� + �̈�) − 𝑑2(�̇� + �̇�)

2
] 𝑒6

} ,

𝑣𝐶3
 = 𝑣𝑝3

 ,
𝑎𝐶3
 = 𝑎𝑝3

 .

 (1) 

According to Eq. 1, the base vector is expressed in Eq. (2): 

𝑒𝑝
𝑣 = [

𝑒1𝑒2
𝑒1𝑒2
𝑒1𝑒2

0
𝑋𝐴𝑒4 − 𝑌𝐴𝑒3

−𝑌𝐴𝑒3 + 𝑋𝐴𝑒4 − 𝑑𝑒5 + (𝑏 − 𝑥)𝑒6

0
0

−𝑑𝑒5 + (𝑏 − 𝑥)𝑒6

0
0
−𝑒5

]. (2) 

The absolutely angular velocity and angular acceleration of each rigid body is obtained in 

Eq. (3): 

{
 
 
 

 
 
 
𝜔1
 = �̇�𝑒7,

�̇�1
 = �̈�𝑒7,

𝜔2
 = (�̇� + �̇�)𝑒7,

�̇�2 = (�̈� + �̈�)𝑒7,

𝜔3
 = (�̇� + �̇�)𝑒7,

�̇�3 = (�̈� + �̈�)𝑒7.

 (3) 

According to Eq. (3), the angular base vector is expressed in Eq. (4): 

𝑒 
𝜔 = [

0
0
0

0
0
0

𝑒7
𝑒7
𝑒7

0
𝑒7
𝑒7

0
0
0
]. (4) 

The principal vector and principal moment of the external force is shown in Eq. (5) and Eq. (7): 

𝑅′ = [
𝑅1
𝑅2
𝑅3

], (5) 

where: 
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{
 
 

 
 𝑅1 = {

−(𝑁𝐶𝜉cos𝜙1 + 𝑁𝐶𝜂sin𝜙1 + 𝑓𝑁𝐷𝜂cos𝜙1 +𝑁𝐷𝜂sin𝜙1 +𝑚1𝑔sin𝜙1)𝑒3

+(𝑁𝐶𝜉sin𝜙1 − 𝑁𝐶𝜂cos𝜙1 + 𝑓𝑁𝐷𝜂sin𝜙1 −𝑁𝐷𝜂cos𝜙1 −𝑚1𝑔cos𝜙1)𝑒4
} ,

𝑅2 = −𝑅𝑓𝑒5 −𝑚2𝑔sin𝜙2𝑒5 −𝑚2𝑔cos𝜙2𝑒6,

𝑅3 = −(𝑃𝐾𝐻 − 𝑅𝑓)𝑒5 −𝑚3𝑔sin𝜙2𝑒5 −𝑚3𝑔cos𝜙2𝑒6.

 (6) 

𝐿𝑝
′ = [

𝐿𝑝1
𝐿𝑝2
𝐿𝑝3

], (7) 

where: 

{

𝐿𝑝1 = (𝑀𝐶 −𝑁𝐷𝜂𝐿cos𝜙1 + 𝑓𝑁𝐷𝜂𝐿sin𝜙1 −𝑚1𝑔𝑋1cos𝜙1 +𝑚1𝑔𝑌1sin𝜙1)𝑒7,

𝐿𝑝2 = (−𝑀𝐶 + 𝑅𝑓𝑑1 −𝑚2𝑔𝑠2cos𝜙2 +𝑚2𝑔𝑠2sin𝜙2)𝑒7,

𝐿𝑝1 = (𝑃𝐾𝐻𝑒)𝑒7.

 (8) 

The principal vector and principal moment of the inertia force is shown in Eq. (9) and Eq. (11): 

𝑅∗ = −𝑀𝑎𝐶 = −[
𝑚1 0 0
0 𝑚2 0
0 0 𝑚3

] [

𝑎𝐶1
𝑎𝐶2
𝑎𝐶3

] = [

−𝑚1𝑎𝐶1
−𝑚2𝑎𝐶2
−𝑚3𝑎𝐶3

] = [

𝑅1
∗

𝑅2
∗

𝑅3
∗
], (9) 

where: 

{
 
 
 
 

 
 
 
 
𝑅1
∗ = −𝑚1[�̈�𝑒1 + �̈�𝑒2 − (𝑌1�̈� + 𝑋1�̇�

2)𝑒3 + (𝑋1�̈� − 𝑌1�̇�
2)𝑒4],

𝑅2
∗ = −𝑚2 {

�̈�𝑒1 + �̈�𝑒2 − (𝑌𝐴�̈� + 𝑋𝐴�̇�
2)𝑒3 + (𝑋𝐴�̈� − 𝑌𝐴�̇�

2)𝑒4

− [𝑑2(�̈� + �̈�) + 𝑠2(�̇� + �̇�)
2
] 𝑒5 + [𝑠2(�̈� + �̈�) − 𝑑2(�̇� + �̇�)

2
] 𝑒6

} ,

𝑅3
∗ = −𝑚3

{
 
 

 
 �̈�𝑒1 + �̈�𝑒2 − (𝑌𝐴�̈� + 𝑋𝐴�̇�

2)𝑒3 + (𝑋𝐴�̈� − 𝑌𝐴�̇�
2)𝑒4

− [�̈� + 𝑑(�̈� + �̈�) + (𝑏 − 𝑥)(�̇� + �̇�)
2
] 𝑒5

+[(𝑏 − 𝑥)(�̈� + �̈�) − 𝑑(�̇� + �̇�)
2
− 2�̇�(�̇� + �̇�)] 𝑒6}

 
 

 
 

.

 (10) 

𝐿𝑝
∗ = −𝜌𝐶 ×𝑀𝑎𝑝 − �̇�𝑝 = −[

𝜌𝐶1 0 0
0 𝜌𝐶2 0
0 0 𝜌𝐶3

] × [
𝑚1 0 0
0 𝑚2 0
0 0 𝑚3

] [

𝑎𝑝1
𝑎𝑝2
𝑎𝑝3

] − [

�̇�𝑝1

�̇�𝑝2

�̇�𝑝3

]

= [

𝜌𝐶1 × (−𝑚1𝑎𝑝1) − �̇�𝑝1

𝜌𝐶2 × (−𝑚2𝑎𝑝2) − �̇�𝑝2

𝜌𝐶3 × (−𝑚3𝑎𝑝3) − �̇�𝑝3

] = − [

−𝜌𝐶1 × (−𝑚1𝑎𝑝1) + �̇�𝑝1

−𝜌𝐶2 × (−𝑚2𝑎𝑝2) + �̇�𝑝2

−𝜌𝐶3 × (−𝑚3𝑎𝑝3) + �̇�𝑝3

] = [

𝐿𝑝1
∗

𝐿𝑝2
∗

𝐿𝑝3
∗

], 

(11) 

where: 

{
 
 

 
 
𝐿𝑝1
∗ = {𝑚1(𝑋1sin𝜙1 + 𝑌1cos𝜙1)�̈� − 𝑚1(𝑋1cos𝜙1 − 𝑌1sin𝜙1)�̈� − 𝐽1�̈�}𝑒7,

𝐿𝑝2
∗ = {

𝑚2(𝑠2sin𝜙2 + 𝑑2cos𝜙2)�̈� − 𝑚2(𝑠2cos𝜙2 − 𝑑2sin𝜙2)�̈�

−[𝐽2 +𝑚2(𝑠2𝑋𝐴 + 𝑑2𝑌𝐴)cos(𝜙2 − 𝜙1) + 𝑚2(𝑠2𝑌𝐴 − 𝑑2𝑋𝐴) × sin(𝜙2 − 𝜙1)]�̈�

−𝐽2�̈� − 𝑚2[(𝑠2𝑋𝐴 + 𝑑2𝑌𝐴)sin(𝜙2 − 𝜙1) − (𝑠2𝑌𝐴 − 𝑑2𝑋𝐴)cos(𝜙2 − 𝜙1)�̇�
2]

} 𝑒7,

𝐿𝑝3
∗ = −{𝐽3𝐶�̈� + 𝐽3𝐶�̈�}𝑒7.

 (12) 

The generalized force and the generalized moment of force in the whole dynamic model can 
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be expressed in Eq. (13) and Eq. (14): 

(𝑒𝑝
𝑣)
𝑇
 ⋅ 𝑅′ =

[
 
 
 
 
𝑒1
𝑒2
0
0
0

𝑒1
𝑒2

𝑋𝐴𝑒4 − 𝑌𝐴𝑒3
0
0

𝑒1
𝑒2

−𝑌𝐴𝑒3 + 𝑋𝐴𝑒4 − 𝑑𝑒5 + (𝑏 − 𝑥)𝑒6
−𝑑𝑒5 + (𝑏 − 𝑥)𝑒6

−𝑒5 ]
 
 
 
 

⋅ [
𝑅1
𝑅2
𝑅3

]

=

[
 
 
 
 

𝑒1 ⋅ (𝑅1 + 𝑅2 + 𝑅3)

𝑒2 ⋅ (𝑅1 + 𝑅2 + 𝑅3)

(𝑋𝐴𝑒4 − 𝑌𝐴𝑒3) ⋅ 𝑅2 + [−𝑌𝐴𝑒3 + 𝑋𝐴𝑒4 − 𝑑𝑒5 + (𝑏 − 𝑥)𝑒6] ⋅ 𝑅3
[−𝑑𝑒5 + (𝑏 − 𝑥)𝑒6] ⋅ 𝑅3

−𝑒5 ⋅ 𝑅3 ]
 
 
 
 

, 

(13) 

(𝑒𝜔)𝑇 ⋅ 𝐿𝑝
′ =

[
 
 
 
 
0
0
𝑒7
0
0

0
0
𝑒7
𝑒7
0

0
0
𝑒7
𝑒7
0 ]
 
 
 
 

⋅ [

𝐿𝑝1
𝐿𝑝2
𝐿𝑝3

] =

[
 
 
 
 

0
0

𝑒7 ⋅ (𝐿𝑝1 + 𝐿𝑝2 + 𝐿𝑝3)

𝑒7 ⋅ (𝐿𝑝2 + 𝐿𝑝3)

0 ]
 
 
 
 

. (14) 

The generalized inertia force and the generalized inertia moment of force is obtained in a 

similar way. 

Then, by substituting Eq. (1)-(14) into Eq. (15)-(16), the generalized force and the generalized 

inertia force is established in Eq. (17)-(27): 

𝑄 = 𝑒𝑇 ⋅ [
𝑅′

𝐿𝑝
′ ] = (𝑒𝑝

𝑣)
𝑇
⋅ 𝑅′ + (𝑒 

𝜔)𝑇 ⋅ 𝐿𝑝
′ , (15) 

𝑄∗ = 𝑒𝑇 ⋅ [
−𝑀𝑎𝑐

−𝜌𝑐 ×𝑀𝑎𝑐 − �̇�𝑝
] = (𝑒𝑝

𝑣)
𝑇
⋅ (−𝑀𝑎𝑐) − (𝑒 

𝜔)𝑇 ⋅ (−𝜌𝑐 ×𝑀𝑎𝑐 − �̇�𝑝)

= (𝑒𝑝
𝑣)
𝑇
⋅ 𝑅∗ + (𝑒 

𝜔)𝑇 ⋅ 𝐿𝑝
∗ , 

(16) 

{
 
 
 

 
 
 
𝑄1 = −𝑃𝐾𝐻cos𝜙2 −𝑁𝐶𝜉 − 𝑓𝑁𝐷𝜂 ,

𝑄2 = −𝑃𝐾𝐻sin𝜙2 − (𝑚1 +𝑚2 +𝑚3)𝑔 − 𝑁𝐶𝜉 − 𝑁𝐷𝜂 ,

𝑄3 = {

𝑃𝐾𝐻[𝑒 + 𝑑 − 𝑋𝐴sin(𝜙2 − 𝜙1) + 𝑌𝐴cos(𝜙2 − 𝜙1)] − 𝑚1𝑔(𝑋1cos𝜙1 − 𝑌1sin𝜙1)
−(𝑚2 +𝑚3)𝑔(𝑋𝐴cos𝜙1 − 𝑌𝐴sin𝜙1)  − 𝑚2𝑔(𝑠2cos𝜙2 − 𝑑2sin𝜙2)

−𝑚3𝑔[(𝑏 − 𝑥)cos𝜙2 − 𝑑sin𝜙1] − 𝑁𝐷𝜂𝐿cos𝜙1 + 𝑓𝑁𝐷𝜂𝐿sin𝜙
} ,

𝑄4 = 𝑃𝐾𝐻(𝑒 + 𝑑) − 𝑚2𝑔(𝑠2cos𝜙2 − 𝑑2sin𝜙2) − 𝑚3𝑔[(𝑏 − 𝑥)cos𝜙2 − 𝑑sin𝜙1] − 𝑀𝐶 ,
𝑄5 = 𝑃𝐾𝐻 − 𝑅𝑓 +𝑚3𝑔sin𝜙2,

 (17) 

𝑄1
∗ = −(𝑚1 +𝑚2 +𝑚3)�̈� + (𝑚1𝑋1 +𝑚2𝑋𝐴 +𝑚3𝑋𝐴)sin𝜙1 + (𝑚1𝑌1 +𝑚2𝑌𝐴
+𝑚3𝑌𝐴)cos𝜙1 + [𝑚2𝑠2 +𝑚3(𝑏 − 𝑥)]sin𝜙2 + (𝑚2𝑑2 +𝑚3𝑑2)cos𝜙2}�̈�

+ {[𝑚2𝑠2 +𝑚3(𝑏 − 𝑥)]sin𝜙2 + (𝑚2𝑑2 +𝑚3𝑑2)cos𝜙2}�̈� + 𝑚3cos𝜙2�̈� + 𝑓1
= 𝑎22�̈� + 𝑎13�̈� + 𝑎14�̈� + 𝑎15�̈� + 𝑓1, 

(18) 

where: 

𝑓1
 = {(𝑚1𝑋1 +𝑚2𝑋𝐴 +𝑚3𝑋𝐴)cos𝜙1 − (𝑚1𝑌1 +𝑚2𝑌𝐴 +𝑚3𝑌𝐴)sin𝜙1
+ [𝑚2𝑠2 +𝑚3(𝑏 − 𝑥)]cos𝜙2 − (𝑚2𝑑2 +𝑚3𝑑)sin𝜙2}�̇�

2

+ {[𝑚2𝑠2 +𝑚3(𝑏 − 𝑥)]cos𝜙2 − (𝑚2𝑑2 +𝑚3𝑑)sin𝜙2}(�̇�
2 + 2�̇��̇�)

− 2𝑚3�̇�(�̇� + �̇�)sin𝜙2, 

(19) 
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𝑄2
∗ = −(𝑚1 +𝑚2 +𝑚3)�̈�
− {(𝑚1𝑋1 +𝑚2𝑋𝐴 +𝑚3𝑋𝐴)cos𝜙1 − (𝑚1𝑌1 +𝑚2𝑌𝐴 +𝑚3𝑌𝐴)sin𝜙1
+ [𝑚2𝑠2 +𝑚3(𝑏 − 𝑥)]cos𝜙2 − (𝑚2𝑑2 +𝑚3𝑑)sin𝜙2}�̈�

− {[𝑚2𝑠2 +𝑚3(𝑏 − 𝑥)]cos𝜙2 − (𝑚2𝑑2 +𝑚3𝑑)sin𝜙2}�̈� + 𝑚3sin𝜙2�̈� + 𝑓2
= 𝑎22�̈� + 𝑎23�̈� + 𝑎24�̈� + 𝑎25�̈� + 𝑓, 

(20) 

where: 

𝑓2
 = {(𝑚1𝑋1 +𝑚2𝑋𝐴 +𝑚3𝑋𝐴)sin𝜙1 − (𝑚1𝑌1 +𝑚2𝑌𝐴 +𝑚3𝑌𝐴)cos𝜙1
+ [𝑚2𝑠2 +𝑚3(𝑏 − 𝑥)]sin𝜙2 − (𝑚2𝑑2 +𝑚3𝑑)cos𝜙2}�̇�

2

+ {[𝑚2𝑠2 +𝑚3(𝑏 − 𝑥)]sin𝜙2 − (𝑚2𝑑2 +𝑚3𝑑)cos𝜙2}(�̇�
2 + 2�̇��̇�)

− 2𝑚3�̇�(�̇� + �̇�)cos𝜙2, 

(21) 

𝑄3
∗ = {(𝑚1𝑋1 +𝑚2𝑋𝐴 +𝑚3𝑋𝐴)sin𝜙1 + (𝑚1𝑌1 +𝑚2𝑌𝐴 +𝑚3𝑌𝐴)cos𝜙1
+ [𝑚2𝑠2 +𝑚3(𝑏 − 𝑥)]sin𝜙2 + (𝑚2𝑑2 +𝑚3𝑑)cos𝜙2}�̈�
− {(𝑚1𝑋1 +𝑚2𝑋𝐴 +𝑚3𝑋𝐴)cos𝜙1 − (𝑚1𝑌1 +𝑚2𝑌𝐴 +𝑚3𝑌𝐴)sin𝜙1
+ [𝑚2𝑠2 +𝑚3(𝑏 − 𝑥)]cos𝜙2 − (𝑚2𝑑2 +𝑚3𝑑)sin𝜙2}�̈�
− {𝐽1 + 𝐽2 + 𝐽3𝐶 + (𝑚2 +𝑚3)(𝑋𝐴

2 + 𝑌𝐴
2) + 𝑚3[(𝑏 − 𝑥)

2 + 𝑑2]
+ 2[𝑚2𝑠2 +𝑚3(𝑏 − 𝑥)][𝑋𝐴 cos(𝜙2 − 𝜙1) + 𝑌𝐴 sin(𝜙2 − 𝜙1)]
− 2(𝑚2𝑑2 +𝑚3𝑑)[𝑋𝐴 sin(𝜙2 − 𝜙1) − 𝑌𝐴 cos(𝜙2 − 𝜙1)]}�̈�
− {𝐽2 + 𝐽3𝐶 +𝑚3[(𝑏 − 𝑥)

2 + 𝑑2] + [𝑚2𝑠2 +𝑚3(𝑏 − 𝑥)]
× [𝑋𝐴 cos(𝜙2 − 𝜙1) + 𝑌𝐴 sin(𝜙2 − 𝜙1)] − (𝑚2𝑑2 +𝑚3𝑑)

× [𝑋𝐴 sin(𝜙2 − 𝜙1) − 𝑌𝐴 cos(𝜙2 − 𝜙1)]}�̈�
+ {𝑚3[𝑋𝐴 sin(𝜙2 − 𝜙1) − 𝑌𝐴 cos(𝜙2 − 𝜙1)] − 𝑚3𝑑}�̈� + 𝑓3
= 𝑎31�̈� + 𝑎32�̈� + 𝑎33�̈� + 𝑎34�̈� + 𝑎35�̈� + 𝑓, 

(22) 

where: 

𝑓3
 = {[𝑚2𝑠2 +𝑚3(𝑏 − 𝑥)][𝑋𝐴sin(𝜙2 − 𝜙1) − 𝑌𝐴cos(𝜙2 − 𝜙1)]

+ (𝑚2𝑑2 +𝑚3𝑑)[𝑋𝐴cos(𝜙2 − 𝜙1) + 𝑌𝐴sin(𝜙2 − 𝜙1)]}(�̇�
2 + 2�̇��̇�)

+ 2𝑚3[𝑋𝐴cos(𝜙2 − 𝜙1) + 𝑌𝐴sin(𝜙2 − 𝜙1) + (𝑏 − 𝑥)]�̇�(�̇� + �̇�), 

(23) 

𝑄4
∗ = {[𝑚2𝑠2 +𝑚3(𝑏 − 𝑥)]sin𝜙2 + (𝑚2𝑑2 +𝑚3𝑑)cos𝜙2}�̈�
− {[𝑚2𝑠2 +𝑚3(𝑏 − 𝑥)]cos𝜙2 − (𝑚2𝑑2 +𝑚3𝑑)sin𝜙2}�̈�
− {𝐽2 + 𝐽3𝐶 +𝑚3[(𝑏 − 𝑥)

2 + 𝑑2] + [𝑚2𝑠2 +𝑚3(𝑏 − 𝑥)]
× [𝑋𝐴cos(𝜙2 − 𝜙1) + 𝑌𝐴sin(𝜙2 − 𝜙1)] − (𝑚2𝑑2 +𝑚3𝑑)

× [𝑋𝐴sin(𝜙2 − 𝜙1) − 𝑌𝐴cos(𝜙2 − 𝜙1)]}�̈� − {𝐽2 + 𝐽3𝐶 +𝑚3[(𝑏 − 𝑥)
2 + 𝑑2]}�̈�

+ 𝑚3𝑑�̈� + 𝑓4 = 𝑎41�̈� + 𝑎42�̈� + 𝑎43�̈� + 𝑎44�̈� + 𝑎45�̈� + 𝑓, 

(24) 

where: 

𝑓4
 = −{[𝑚2𝑠2 +𝑚3(𝑏 − 𝑥)][𝑋𝐴sin(𝜙2 − 𝜙1) − 𝑌𝐴cos(𝜙2 − 𝜙1)]

+ (𝑚2𝑑2 +𝑚3𝑑)[𝑋𝐴cos(𝜙2 − 𝜙1) + 𝑌𝐴sin(𝜙2 − 𝜙1)]}�̇�
2 + 2𝑚3(𝑏 − 𝑥)�̇�(�̇� + �̇�), 

(25) 

𝑄5
∗ = 𝑚3cos𝜙2�̈� + 𝑚3sin𝜙2�̈� + 𝑚3[𝑋𝐴sin(𝜙2 − 𝜙1) − 𝑌𝐴cos(𝜙2 − 𝜙1)]�̈� − 𝑚3𝑑�̈�

− 𝑚3�̈� + 𝑓 = 𝑎51�̈� + 𝑎52�̈� + 𝑎53�̈� + 𝑎54�̈� + 𝑎55�̈� + 𝑓5, 
(26) 

where: 

𝑓5
 = −𝑚3[𝑋𝐴cos(𝜙2 − 𝜙1) + 𝑌𝐴sin(𝜙2 − 𝜙1)]�̇�

2 −𝑚3(𝑏 − 𝑥)(�̇� + �̇�). (27) 

Finally, the whole mechanism dynamic equations are established as Eq. (28): 
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𝐴�̈� = 𝐹, (28) 

where: 

𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎15
𝑎21 𝑎22 ⋯ 𝑎25
⋯ ⋯ ⋯ ⋯
𝑎51 𝑎52 ⋯ 𝑎55

], (29) 

𝑞 = [𝜉 𝜂 𝛼 𝛽 𝑥]𝑇 , (30) 

𝐹 = [−(𝑄1 + 𝑓1) −(𝑄2 + 𝑓2) −(𝑄3 + 𝑓3) −(𝑄4 + 𝑓4) −(𝑄5 + 𝑓5)]
𝑇. (31) 

3. Field experiment 

In order to identify the time-varying system parameters, like time-varying mass, a field 

experiment is designed and conducted. 

3.1. Experimental equipment 

Experiment Equipment mainly consists of two parts, the data collection system and the 

high-speed photography system. 

The data collection system consists of Brüel&Kjær acceleration sensor, Qiwei angular 

acceleration sensor, Lianneng pressure sensor, Kistler charge amplifier, Dewetron data collector, 

Dewetron software and so on. 

The high-speed photography system consists of an IDT Y3-S2 high-speed camera, a high-light 

LED light, a nikkor 50 mm/1.2D camera lens, a nikkor 400 mm/2.8D camera lens, ProAnalyst 

dynamic target capture software and some other ancillary equipment. 

3.2. Experiment results 

The angular velocity of the recoiling part is shown in Fig. 2 and the active force of the 

mechanism system is shown in Fig. 3. 

  
Fig. 2. The angular velocity of the recoiling part Fig. 3. The active force of the mechanism system 

4. Numerical calculation 

4.1. Identification method 

The model can be expressed in Eq. (32) [11-13]: 

𝐴(𝑧−1)𝑦(𝑘) = 𝐵(𝑧−1)𝑦(𝑘 − 𝑑) + 𝜉(𝑘), (32) 
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where 𝜉(𝑘) is white noise, and the structure parameters 𝑚, 𝑛, 𝑑 are known. And: 

{
𝐴(𝑧−1) = 1 + 𝑎1𝑧

−1 + 𝑎2𝑧
−2 +    ⋅⋅⋅    + 𝑎𝑚𝑧

−𝑚,

𝐵(𝑧−1) = 𝑏0 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2 +    ⋅⋅⋅    + 𝑎𝑛𝑧
−𝑛.

 (33) 

The target of identification is to establish 𝑚 + 𝑛 + 1 parameters according to the measurable 

input and output. The model can be described in least square method and is expressed in Eq. (34): 

𝑦(𝑘) = −𝑎1𝑦(𝑘 − 1) −⋅⋅⋅ −𝑎𝑛𝑎𝑦(𝑘 − 𝑛𝑎) + 𝑏0𝑢(𝑘 − 𝑑) 

      + ⋅⋅⋅ +𝑏𝑛𝑏𝑢(𝑘 − 𝑑 − 𝑛𝑏) + 𝜉(𝑘) = 𝜑
𝑇(𝑘)𝜃 + 𝜉(𝑘), 

(34) 

where 𝜑(𝑘) is the data vector, 𝜃 is the parameter need to be identified. And: 

{
𝜑(𝑘) = [−𝑦(𝑘 − 1),⋅⋅⋅, −𝑦(𝑘 − 𝑛𝑎), 𝑢(𝑘 − 𝑑),⋅⋅⋅, 𝑢(𝑘 − 𝑑 − 𝑛𝑏)]

𝑇 ∈ 𝑅(𝑛𝑎+𝑛𝑏+1)×1,

𝜃 = [𝑎1,⋅⋅⋅, 𝑎𝑛𝑎 , 𝑏0,⋅⋅⋅, 𝑏𝑛𝑏]
𝑇 ∈ 𝑅(𝑛𝑎+𝑛𝑏+1)×1.

 (35) 

So, the identification equation of the rigid body mechanism model can be expressed in Eq. (36): 

𝑚3�̈�
′ = 𝐹′. (36) 

4.2. Identification results 

The time-varying identified mass of the recoiling part is illustrated in Fig. 4. 

 
Fig. 4. The time-varying identified mass of the recoiling part 

The angular velocity data contains the stress wave noise, as a result that the identified mass of 

the recoiling part consists of calculative deviation. Although, this time-varying identified mass 

can reflect the calculative consequence ignoring physical significance. 

A relative percentage error (RPE) is defined to compare the result of the identification which 

is expressed in Eq. (37): 

𝑅𝑃𝐸 =
𝛴|𝑚𝑡𝑟𝑢𝑒 −𝑚𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦|

𝛴|𝑚𝑡𝑟𝑢𝑒|
× 100%. (37) 

In Fig. 4, the identified mass of the recoiling part is about 740 kg. After comparing with the 

“real” mass which was consulted in mechanism specification book, the RPE is finally established 

at about 5.4 %. 
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5. Conclusions 

In this paper, the multi-rigid-body theory and the limited memory least square method is 

applied to identify the time-varying mass of the recoiling part. 

The mass of the recoiling part has physical significance so that the result of identification can 

be compared to the static measurement which is consulted in mechanism specification book. 

Limited memory least square method can overcome “data saturation” phenomenon effectively and 

it can be applied to time-varying identification in this situation. The result reflects that limited 

memory least square method and the process of establishing the mechanism dynamic equations 

are accurate in identifying the time-varying mass. At the same time, a new kind of identification 

method is provided to make the parameters more intuitive and can be applied in identifying 

dynamic loads which is difficult to measure. 

At the present stage, the dynamic model is described as rigid body model. In the future, this 

model would be instead of flexible multi-body model to make the equations more accurately. And 

more parameters would be identified such as the mass and the stiffness of the structure, the active 

force from the propellant powder, the inertia force of the mechanism. 
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