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Abstract. This study deals with a method to identify multiple cracks in a beam. The novelty of 

this study is the use of a hierarchical genetic algorithm to detect the number, location, and the 

extent of multiple cracks. To demonstrate the feasibility of the present method, this algorithm is 

applied to the identification of double or triple cracks in a beam as well as four cracks. The detected 

crack locations and sizes are in excellent agreement with the actual ones. The numerical simulation 

reveal the HGA substantially reduces the total number of FE computation required and they are 

many orders smaller compared to conventional GA. The results also demonstrate the advantages 

of HGA from the viewpoints of its ability to avoid premature convergence. 

Keywords: multi-damage detection, hierarchical genetic algorithms. 

1. Introduction 

Many load carrying systems and structures may experience some local damage or accumulate 

cracks during their functional service. It is well known that cracks are a main cause of structural 

failure. Sudden failure during high load operation may be catastrophic in terms of human life and 

property damage. In order to avoid failure caused by cracks, it is desirable to detect cracks before 

they cause more serious damage and eventual system failure. Therefore, the damage identification 

problem has recently attracted significant attention [1-3]. There has been numerous of research 

focusing on model-based methods for damage detection in structures during recent years. Among 

these efforts, it is believed that the use of vibration data provides the most desirable alternative to 

actually dismantling structures [1]. In the study of nonlinear mapping relationships between the 

structural damage indices and various damage statuses, various soft computing techniques, such 

as the neural networks and genetic algorithm (GA), have been increasingly utilized owing to their 

excellent pattern recognition capability [1-6]. 

Among them, GA attracts our attention because it is not necessary to have much data in 

advance. This is an advantage as compared to the natural frequency-based neural network methods 

which requires a priori knowledge on both the modal frequencies and the modal shapes to train 

the neural network and to detect the structural damage. This advantage to genetic algorithms, over 

the conventional techniques, makes them (GAs) more promising in dealing with complicated, 

nonlinear, discrete, and multimodal optimization and search problems, such as those considered 

in this paper. 

For example, Liu and Chen [7] employed GA and finite element method (FEM) to detect the 

location, area and degree of the flaw in core layer of sandwich plates from time-harmonic response 

of the plate to harmonic excitation. Ling et al. [8] used the GA to identify a delamination in 

composite beams by minimizing an objective function based on the changes in natural frequencies 

of the delaminated beams measured using embedded FBG sensors and calculated using a 

theoretical constrained beam model. Krawczuk [9] presented the use of the wave propagation 

approach combined with a genetic algorithm and the gradient technique for damage detection in 

beam-like structures. Mares and Surace [10] proposed a procedure for locating and quantification 
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of damage in structural systems by means of the concept of residual force vectors and GA. 

The majority of state-of-arts studies concerning crack identification in a beam dealt with a 

single crack case [7-11]. In many cases there is more than one crack on a beam. Then the solutions, 

or the combinations of parameters characterising the cracks are more and the problem becomes 

much more complicated. Lee [12] iteratively solved inverse problem for the locations and sizes of 

the cracks using the Newton-Raphson method as well as the assumption that the number of cracks 

is known a priori. Friswell et al. [13] used the GA to optimize a discrete weighted objective 

function to identify the damage located and the eigensensitivity is used to identify the damage 

extent. Damages at one and two sites have been successfully located in the simulated example of 

a cantilever beam. During the first phase in Au et al. [14] an elemental energy quotient difference 

is used to locate the damage. In the second phase a procedure using the so-called micro-GA is 

implemented to quantify the damage extension by minimizing the error between the measured 

data (that include frequencies and mode shapes) and numerical results obtained by the finite 

element method. Lee and Wooh [15] used a coarse searching algorithm to estimate a first-cut 

location of multiple damages, and then the GA is applied to find the fine location of the damaged 

elements within the predetermined zone. He and Hwang [16] used a grey relation analysis to 

exclude impossible damage locations such that the number of design variables could be reduced 

and then applied a real-parameter genetic algorithm to identify the actual damage. 

Other than the aforementioned two-stage method of identifying the location and extent of 

multiple structural damages [12-17], Borges et al. [18] proposed several improvements over the 

standard genetic algorithm to identify the location and extent of multiple damages simultaneously, 

i.e. two new specialized mutation operators, new forms for fitness function calculation, use of 

heuristics for initial population generation, and the adoption of discrete values for damage. 

Nobahari and Seyedpoor [19] established a modified genetic algorithm (MGA) with two new 

operators (health and simulator operators) to identify the locations and extent of multiple damages. 

An efficient correlation-based index (ECBI) as the objective function for the optimization 

algorithm is also introduced. 

In spite of the broad scope of applications, the traditional genetic algorithm usually requires a 

very large number of iterations, and thus high computational cost. To solve the inverse problem 

of crack detection by means of a GA, it is essential to perform iterative forward computations for 

each individual. Therefore, the total iteration in resolving the forward problem could be time 

consuming. Another notable problem is that the objective function of GA usually has many good 

local optimum solutions which have significantly different damage distributions in comparison 

with the exact one. This deficiency becomes much more evident for the problem of multiple 

damages detection. In this study, a hierarchical genetic algorithm (HGA) combined with the 

forward analysis using the finite element method and the massless rotational spring model for the 

crack is introduced to identify multiple structural cracks. One illustrative test example is 

considered to show the performance of the present method. It can be demonstrated that the present 

hierarchical genetic algorithm (HGA) can avoid premature convergence and trapping into the local 

optimal solution so that it can provide faster convergence to the near-optimal solution than that of 

a simple GA. 

The organization of the paper is as follows: The next Section illustrates the effect of cracks on 

natural frequencies. In Section 3, a method of multiple cracks identification using hierarchical 

genetic algorithm is explained. The simulation and experimental results are presented in Section 4. 

Section 5 presents conclusions. 

2. Finite element simulation of cracked beam 

For completeness of presentation the formulation is briefly given here. Figure 1 shows the 

geometry of a cantilever beam with multiple cracks. The cracks are represented by rotational 

springs (Figure 2). Parameter 𝛽𝑘 =
𝑆𝑘

𝐿
 and 𝜒𝑘 = 𝛼𝑘 ℎ⁄ , (𝑘 = 1, 2, … , 𝑛)  denote the normalized 
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crack location and the normalized crack depth, respectively. 
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Fig. 1. Cantilever beam with multiple cracks 
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Fig. 2. Representation of multiple cracks by rotational spring 

The element stiffness matrix and mass matrix of the 𝑖th element based on the Euler-Bernoulli 

theory of length Δ𝐿 that does not include the crack node are expressed as Eqs. (1)-(2): 

𝐊𝑒 =
𝐸𝐼

(Δ𝐿)3
[

12 6Δ𝐿 −12 6Δ𝐿
4(Δ𝐿)2 −6Δ𝐿 2(Δ𝐿)2

12 −6Δ𝐿
𝑆𝑌𝑀 4(Δ𝐿)2

], (1) 

𝐌𝑒 =
𝜌𝐴Δ𝐿

420
[

156 22Δ𝐿 54 −13Δ𝐿
4(Δ𝐿)2 13Δ𝐿 −3(Δ𝐿)2

156 −22Δ𝐿
𝑆𝑌𝑀 4(Δ𝐿)2

], (2) 

where 𝐸, 𝐼, 𝐴 and 𝜌 are Young’smodulus, the second moment of area, the cross sectional area and 

the density, respectively. 

In the cracked-beam model, a crack on a beam is modeled by placing a torsional spring in the 

position of the crack. A beam with double cracks and its finite element model are shown in 

Figure 3, where the crack nodes with three degrees of freedom (𝑤𝑗; 𝜃𝑗𝐿; 𝜃𝑗𝑅) are placed at the 

crack locations and two degrees of freedom (𝑤𝑗; 𝜃𝑗) are allocated to the other nodes. The element 

variable vector of the 𝑖th  element that does not include the crack node is  

𝐖𝑒 = {𝑤𝑖 𝜃𝑖 𝑤𝑖+1 𝜃𝑖+1}𝑇,  while the element variable vectors  
𝐖𝑒 = {𝑤𝑗−1 𝜃𝑗−1 𝑤𝑗 𝜃𝑗𝐿}𝑇 and 𝐖𝑒 = {𝑤𝑗 𝜃𝑗𝑅 𝑤𝑗+1 𝜃𝑗+1}𝑇are used to describe the motion 

of the beam on the left and right sides of the crack, respectively. The rotations 𝑗𝐿 and 𝑗𝑅 are 

connected through the cracked stiffness matrix as Eq. (3): 

𝐊𝑐 = [
𝐾𝑡 −𝐾𝑡

−𝐾𝑡 𝐾𝑡
], (3) 

where 𝐾𝑡, the torsional stiffness per unit width at the crack, is given by Nandwann and Maiti [20] 

by Eq. (4): 

𝐾𝑡 =
𝑏ℎ2𝐸

72𝜋𝜒𝑘
2𝑓(𝜒𝑘)

, (4) 
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where 𝑏 is the width of the beam, and: 

𝑓(𝜒𝑘) = 0.6384 − 1.035𝜒𝑘 + 3.7201𝜒𝑘
2 − 5.1773𝜒𝑘

3 + 7.553𝜒𝑘
4 − 7.332𝜒𝑘

5 + 2.4909𝜒𝑘
6. (5) 
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Fig. 3. Cantilever beam with two cracks and its finite element model 

For frequency analysis, the elemental mass and stiffness matrices are derived and then 

assembled to form the global mass and stiffness matrix. Note that all external forces are zero in 

the eigenvalue analysis and in the particular case of zero damping, a standard eigenvalue equation 

can then be written as Eq. (6): 

(𝐊 − 𝜔2𝐌)𝐮 = 0, (6) 

where 𝐌 and 𝐊 are the global mass and stiffness matrices. 

3. Identification of multiple cracks using genetic algorithm 

In order to address crack identification in terms of an optimization problem with the genetic 

algorithms, it is necessary to specify an objective function to be minimized. The cost function to 

be minimized is defined as Eq. (7): 

min
𝜒𝑒,min≤𝜒𝑘<1

𝑓 = ∑{𝜒𝑘(1 − 𝜒𝑘)}

𝑛

𝑘=1

+ 𝜂 ∗ √∑ (1 −
𝑓𝑟𝑒𝑖

𝑐

𝑓𝑟𝑒𝑖
𝑚)

210

𝑖=1

. (7) 

The first term on the right-hand side of Eq. (7), that is symmetric with respect to 𝜒𝑘 = 0.5, is 

used to suppress intermediate design variables at the end of the optimization. The second term on 

the right-hand side of Eq. (7), imply that the first 10 resonant frequencies 𝑓𝑟𝑒𝑖
𝑚,  

𝑖 = 1, 2, … , 10 of the optimized structure should be equal to the known resonant frequencies 𝑓𝑟𝑒𝑖
𝑐, 

𝑖 = 1, 2, … , 10 of the damaged structure within the error tolerance. 𝜂 is the weighting coefficient. 

3.1. Introduction to the hierarchical genetic algorithm 

To implement the genetic algorithm for the damage identification problem considered here, it 

is necessary first to define a chromosome for the representation of the design variables, whose 

values are to be optimized. In this paper, the chromosome has two variables, the normalized crack 

location 𝛽𝑘 and the normalized crack depth 𝜒𝑘 associated with the 𝑘th element in the structural 

model. The objective function shown in Eq. (7) creates an output from the set of input variables 

of a chromosome. The goal is to revise the output in some appropriate style by finding the desirable 

values of input variables. 

In this study, an initial study was made on the performance of the conventional genetic 
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algorithm as a solver to Eq. (7), and for the sake of brevity only the final outcomes are provided. 

The simulation demonstrates that it is considerably probable that the present method may find a 

healthy element as a damaged one. Therefore, in this study a new hierarchical genetic algorithm 

(HGA) having a high sensitivity to healthy elements is presented. 

4 7 1 3 8 91  0  1  0  0   1

control genes parametric genes

XA=(4,1,9)

Chromosome A

4 7 1 3 8 90  0  1  0  1   0

control genes parametric genes

XB=(1,8)

Chromosome B
 

Fig. 4. Chromosome 

The use of the hierarchical genetic algorithm (HGA) is particularly important for the structure 

or topology as well as the parametric optimization. Unlike the set-up of the conventional GA 

optimization, where the chromosome and the phenotype structure are assumed to be fixed or pre-

defined, HGA operates without these constraints. The hierarchical genetic algorithm was proposed 

to emulate the formulation of a biological DNA structure. The genes of a complete chromosome 

are arranged in a hierarchical manner as illustrated in Figure 4, in which there are some parametric 

genes and control genes. To indicate the activation of the control gene, an integer “1” is assigned 

for each control gene that is being ignited where “0” is for turning off. When “1” is signaled, the 

associated parameter genes due to that particular active control gene are activated in the lower 

level structure. To throw further light on this concept, the following example is used to illustrate 

the aforementioned functionality of the HGA. A chromosome formed with 6-bit control genes and 

6-integer parametric genes is indicated by Figure 4, the corresponding length of chromosome 𝑋𝐴 

and 𝑋𝐵  are three and two, respectively, which indicates that the phenotype in various lengths 

within the same chromosome formulation. Coding aims to build the relationship between the 

problem and the individual in genetic algorithms. If the problems are expressed by coding strings, 

these strings are called an individual or a chromosome. Each individual represents a variable or a 

part of the problem which is needed to be optimized. In this paper, the locations of cracks and 

their depth are needed to be optimized by the GA. So these individuals represent the number and 

location of crack and the corresponding crack depth. For the present method, each control gene is 

encoded into a binary bit and the activation of the parametric gene is governed by the value of the 

first-level control genes. While the parametric part represents the depth of crack. Therefore, the 

standard methods of mutation and crossover may apply independently to each level of genes or 

even for the whole chromosome if this homogenous. However, the genetic operations that affect 

the high-level genes can result in changes within the active genes which eventually lead to a 

change in the lower level genes. By using this encoding technique, the total number of candidate 

crack elements is significantly reduced. Thus that the genetic operators can be applied only in the 

‘active’ elements (damaged) leaving the ‘inactive’ ones (undamaged) unchanged. This is the 

precise reason why the HGA is not only able to obtain a good set of system parameters, but can 

also determine a minimized system topology for the crack detection. In this paper, we introduce 

for each spring element a binary variable which can assume either an ‘active’ or ‘inactive’ state, 

while each normalized crack depth was denoted as a 10-bit binary number.  
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3.2. Initial population 

A population contains a number of individuals. As regards the specification, there is a higher 

probability that a larger population will require fewer generations to evolve, i. e. fewer steps in 

the optimization process before arriving at the optimal solution, although with the increased 

population size the total processing computer overhead is not necessarily reduced as a 

consequence. Generally, the population size 𝑛 is chosen from 30 to 100. In order to save the 

running time, here, the size 𝑁 is chosen 400 for traditional GA while the size 𝑁 is set as 40 for 

HGA. Because too many uncertain parameters of crack depth would make encoding and evolution 

too difficult, so we assume that all the crack depth parameters are normalized and chosen on the 

interval [0, 1]. 

3.3. Genetic operators 

There are mainly three genetic operations, including, selection, crossover and mutation 

operations. These genetic operations have key effects on the performances of the genetic algorithm. 

3.3.1. Reproduction 

In this study, we use the roulette-wheel selection method – a simulated roulette is spun – for 

this selection process. The response fitness value of every individual is 𝑝𝑖 (𝑖 = 1, 2, … , 𝑁) . 

According to the 𝑝𝑖 , a roulette wheel is divided into 𝑁 parts. Here, 𝑛 is the population size. In the 

selection operation, spinning the roulette wheel, if a consulted point lies in the ith sector, we will 

choose the 𝑖th individual. Obviously the area of the sector is larger, and then the probability that 

the consulted point lies in the sector, is more. This indicates that the better an individual’s fitness 

is, the more likely it is to be selected. An individual is probabilistically selected from the 

population on the basis of its fitness and the selected individual is then copied into the next 

generation of the population without any change. 

In this paper, a so-called elitist version of the genetic algorithm was employed whereby the 

best individual in the current generation is promoted directly to the next generation without 

undergoing any alteration or mutation. This variation ensures that the fittest member of each 

successive generation must be either equal or represent an improvement on the currently best 

candidate. Thus in this application the parameters of crack location and depth will always 

converge through successive iterations. 

3.3.2. Crossover and mutation 

In order to facilitate the GA evolution cycle, the Crossover and Mutation operators are required. 

Selection directs the search toward the best existing individuals but does not create any new 

individuals. In nature, an offspring has two parents and inherits genes from both. The main 

operator working on the parents is the crossover operator, the operation of which occurred for a 

selected pair with a crossover rate 𝑝𝑐. In each new population, there are 𝑝𝑐 × 𝑁 individuals which 

are needed crossover operations. In the crossover step, we also keep the same number of 

chromosomes for each group. After this operation, the individuals with poor performances are 

replaced by the newly produced offspring. 

For selected two chromosomes (parents) from the population, the crossover will be done in 

two steps: (1) the one-bit binary part representing the control genes and the 10-bit binary number 

encoding part string representing the parametric genes will do crossover separately; (2) both the 

control part and the parametric part utilize the uniform crossover. 

The mutation operator is always used to keep the diversity of population. Like the crossover, 

for each selected chromosome from the population, the string of the control neurons and the string 

of the parametric neurons mutate separately. A simple point mutation is used in control part and 
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the operator exchanges with a given probability each term in parametric part with a randomly 

selected term in the corresponding complementary subset of the string. 

3.4. Design variable reduction (DR) strategy 

If we have a priori knowledge about the number of cracks present in a beam, the damage 

element can be easily identified. When the number of cracks is unknown, however, it will be very 

difficult to identify even with an advanced method. In the present genetic algorithm-based method, 

the design variables are assigned to all discretizing nodes, so the number of candidate spring 

elements is large and there are many local optima in optimization aspect. Therefore, many 

intermediate design variables may appear at the end of the optimization process [21]. Thus, a so 

called design variable reduction (DR) strategy is proposed in this paper. DR is based on the idea 

that the spring elements having normalized crack depth below a prescribed threshold are regarded 

as the ‘healthy’ ones at the next evolution process. In order to overcome the difficulty of premature 

of GA, a restart methodology is also adopted. If a few individuals dominate the current generation 

population, the population will be regenerated at random, while the best individual is still kept in 

the next generation. It is also worth to note that the DR technique is unnecessary for HGA. 

4. Numerical case studies 

In order to evaluate the capabilities and effectiveness of the proposed approach for identifying 

multiple structural damages, a 20-element cantilevered beam is considered. The length, height, 

and width of the beam are 0.5, 0.02, and 0.01 m, respectively. The mass density is 7860 kg/m3 and 

the elasticity modulus is 210 GPa. The parameters of the GA are selected here from the experience 

of our previous work and a trial and error method as follows: the probability of crossover 𝑝𝑐 is 

0.5, the probability of mutation pm is 0.02, the maximum number of generations 𝑛𝑔 is 1000. The 

convergence of the algorithm is met when the maximum number of generations is attained. In the 

study, the first ten natural frequencies are used for damage detection and the computational results 

using an FE model with actual crack positions and sizes are input as measurements.  

The conventional genetic algorithm and HGA are applied to the identification of double cracks 

in a cantilever beam for three simulation cases A, B and C, shown in Table 1 and Table 2. In this 

test example, the performance of the HGA for crack identification is assessed in comparison with 

that of the GA. 

As can be seen in Table 1, both GA and HGA can accurately predict the crack location for 

case A and B. The average values of depth prediction errors for GA and HGA are 0.75625 % and 

0.196875 %, respectively. While the maximum error for depth predictions are 1.52 % for the GA 

and 0.39 % for the HGA. It is worth noting that the average and the maximum prediction errors 

for the HGA are less than corresponding values for the GA. It can also be observed that only for 

case C the crack location and depth are not accurately identified by means of GA and the 

uncracked elements were regarded as cracked. This is because the multi-crack identification 

method via genetic algorithm is very sensitive to the changes of natural frequencies. It is worth to 

noting that the hierarchical genetic algorithm can accurately identify the crack location and depth 

for all of cases. 

By comparing the crack identification results of the aforementioned two methods, some 

interesting points can be inferred. It can be concluded that the HGA has better performance when 

compared to the GA. All of the simulation results presented in the tables indicate that the best 

solutions regarding actual crack detection are obtained by using the method of the hierarchical 

genetic algorithm. Moreover, the HGA substantially reduces the total number of FE computation 

required and they are many orders smaller compared to conventional GA. Because of the 

limitation and instability, it is very difficult to use GA to identify more than double cracks. 

Therefore, only the predicting results of HGA are given in the subsequent examples. The inverse 
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problem of identifying triple cracks in a cantilever beam is solved for three simulation cases D, E 

and F. The actual and the detected crack parameters are depicted in Table 3. The error in the 

detection of crack depth is less than 1 percent and it is zero in the case of detection of crack 

location.  

Table 1. The actual and predicted crack location and depth for double cracks (cases A and B) 

Case 

Desired value (mm) Prediction (mm) Error () 
FEA 

Data 

format Location Depth Location Depth Location Depth 

A 

Crack1  100 2 
100 

(100) 

2.0206 

(1.9952) 
0. (0.) 

1.03 

(0.24) 
114800 

GA 

(HGA) 
Crack2  200 2 

200 

(200) 

1.9696 

(2.0078) 
0. (0.) 

1.52 

(0.39) 
(36040) 

B 

Crack1 100 8 
100 

(100) 

8.0058 

(8.0058) 
0. (0.) 

0.0725 

(0.0725) 
134800 

GA 

(HGA) 
Crack2 200 8 

200 

(200) 

7.9678 

(7.9932) 
0. (0.) 

0.4025 

(0.085) 
(10720) 

Table 2. The actual and predicted normalized crack location and depth for double cracks (case C) 

Case 
Crack location (Node numbers) 

FEA 
4 5 6 9 12 13 

Actual 0 0.3 0 0.4 0 0 – 

GA 0.31579 0 0.38949 0 0.04765 0.00635 97200 

HGA 0 .29990 0 .40029 0 0 9960 

Table 3. The actual and predicted normalized crack location and depth for triple cracks case 

Case 
Crack location (Node numbers) 

4 7 8 9 11 16 

D 
Actual 0.4 0.1 0 0 0 0.3 

HGA 0.40029 0.09912 0 0 0 0.29990 

E 
Actual 0.4 0 0 0 0.4 0.3 

HGA 0.40029 0 0 0 0.39966 0.29990 

F 
Actual 0 0 0.4 0.4 0 0.3 

HGA 0 0 0.39966 0.40029 0 0.29990 

Table 4. The actual and predicted normalized crack location and depth considering noise 

Case G 
Crack location (Node numbers) 

5 8 9 13 14 15 

Actual 0.3 0 0.4 0 0 0.6 

Noise free 0.29037 0 0.40029 0 0 0.59980 

0.15  0.32532 0.02033 0.37615 0 0 0.60235 

0.2  0.30435 0 0.38568 0 0 0.59917 

0.3 % 0.30435 0 0.37996 0.00254 0 0.60108 

It is assumed in this study that the FE analysis is accurate and any deviations from reality are 

random noise and not systematic modeling error. For applications to real structures some methods 

such as finite element model updating can be used to match the modal predictions of the 

undamaged structure with experimental data. Now the following discussion will be directed to the 

test using noise contaminated simulated data. The additive noise for the natural frequencies 

simulating the uncertainty present in experimental measurements and the modeling process is 

considered here. Table 4 shows the results for four different noise levels: Noise-free, 0.15 , 

0.2  and 0.3  noises. It can be observed that the difference between the results with the different 

low noise levels is negligible. However, the high level noise may induce some adverse effect. The 

tests performed in the presence of noise imply that the existence of noise in the measured data 
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changes the optimization landscape in a way that a spurious set of new solutions (one with better 

values of the objective function than that of the correct response) now exists and the algorithm is 

able to find this solution. The optimization process can be misleading since the optimization 

algorithm may converge to a ‘better’, but mechanically incorrect, damage distribution. 

5. Conclusions 

In this paper, a hierarchical genetic algorithm is used to detect multiple cracks in a beam. An 

integer “1” or “0” is assigned for each control gene which can denote either a damaged or 

undamaged state. The associated parameter genes representing the normalized depth of crack are 

activated in the lower level structure. The hierarchical genetic algorithm is more attractive not 

only because it can avoid premature convergence but also it significantly reduces the total number 

of finite element analyses in comparison with its predecessor (simple GA). It is concluded in this 

study that it may be probable to use the described procedure to characterize multiple cracked 

elements in terms of identifying their numbers, locations, and the level of depth. Numerical results 

for various damage cases demonstrate that the effectiveness of the present technique. The 

technique is also attractive from the practical point of view, because we consider only natural 

frequencies in the objective function. 
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