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Abstract. Semi-active suspensions that dissipate energy through controllable dampers have been 

used in trains, tractors and off-road vehicles in the last decades. Magneto-rheological (MR) fluids 

have been widely applied as a new material in the field of vibration control. Magneto-rheological 

(MR) damper is an extremely ideal semi-active control device compared with traditional semi-

active damping control device for its superiorities of rapid response (in millisecond), far less 

response time than sampling time, and almost no time lag caused by the control devices. However, 

its complicated dynamic hysteresis characteristics vary with the currents imposed on it, resulting 

in the difficulty in establishing the mathematical model which can truly describe its dynamic 

behavior. Besides, an effective and precision mathematical model can be of help for constructing 

the semi-active control law. In this paper, the system identification method based on the theory of 

fuzzy neural network (FNN) is employed to identify the mathematical model that can accurately 

reflect the dynamic hysteresis characteristics of magneto-rheological (MR) damper. Under the 

semi-active control law, the structure on the damper can be stabilized at the fastest rate with an 

optimal current calculated by the identified mathematical model imposed on magneto-rheological 

(MR) damper. Consequently, vibration reduction can be effectively realized.  

Keywords: magneto-rheological damper, system identification, fuzzy neural network, 

semi-active control, vibration control.  

1. Introduction 

The mechanical systems involved in many engineering applications are often subject to 

mechanical excitations that cause unwanted vibrations. In the case of vehicle suspensions, for 

example, passive dampers could not automatically adjust performances according to the stability 

for operation or desired human comfort. The semi-active suspensions that dissipate energy through 

controllable dampers have been used in trains, tractors and off-road vehicles in the last decades 

[1-2]. In the automotive industry, semi-active suspensions with magneto-rheological (MR) 

dampers are currently a reality. Such vehicle evolution, from passive suspension to semi-active 

suspension was achieved as a result of several scientific studies conducted at major research 

centers [3]. 

Semi-active control technology has been paid widely attention to and been regarded as one of 

the most promising technologies for structural vibration reduction in recent years [4]. Both 

reliability and simplicity are ensured by this technique because it can simultaneously in real time 

change the structural intrinsic characteristics and achieve state tracking for optimal response by 

using additional adjustable damping device without huge energy supply. It is better than active 

control for its excellent fail-safe performance; it can still maintain significant control effect under 

the condition of energy interruption. Semi-active control systems mainly consist of 

magneto-rheological (MR) and electro-rheological (ER) damper control systems, active variable 

stiffness control systems [5], and semi-active fluid damper control systems [6].  

The original purpose for researches on magneto-rheological (MR) dampers was to overcome 

many insurmountable technical bottlenecks of the electro-rheological (ER) dampers, such as low 

yield shear strength, sensitive to temperature and impurities, and high operating voltage up to 
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several kilovolts. Electro-rheological (ER) fluids and magneto-rheological (MR) fluids were 

found by Winslow in 1947 [7] and 1949 [8] respectively. Previous researches mainly focused on 

electro-rheological (ER) fluids, but the semi-active control devices with electro-rheological (ER) 

fluids have not got practical popularization and application because of its drawbacks mentioned 

above. However, magneto-rheological (MR) fluids have the following advantages in comparison 

with the electro-rheological (ER) fluids: (1) Low operating voltage, less energy dependence and 

better safety; (2) Relatively less environment limitations on machining dampers and applications 

because it is insensitive to temperature and impurities. (3) The peak yield shear stress of magneto-

rheological (MR) fluid’s is one or two orders of magnitude higher than that of electro-rheological 

(ER) fluid’s, so the device with high damping force peak for vibration reduction and energy 

dissipation can be produced within limited geometry size. And magneto-rheological (MR) damper 

has been widely recognized as one of the most promising semi-active control devices by the 

advantages of large damping force, rapid response, and continuous adjustment in damping force, 

simple structure, and wide applicability. 

The intrinsic strong non-linearity of magneto-rheological (MR) dampers makes it difficult to 

establish dynamic hysteresis model and to design an effective control algorithm to realize real-

time control [9-13]. Although many dynamic hysteresis models have been proposed to describe 

its intrinsic strong non-linear behavior, the results were not good enough. Stanway [14] introduced 

the Bingham model which can well simulate the relationship between the damping force and the 

relative displacement of the piston rod, while the relationship between the damping force and the 

relative velocity of the piston rod could not be well simulated. Dyke and Spencer [15] put forward 

a phenomenological model for a magneto-rheological (MR) damper based on the vibration 

experimental apparatus in 1996 and achieved excellent effect, while the disadvantages still remain 

for too many identification parameters and complicated calculations in this model. Fuzzy neural 

system which incorporates the advantages of fuzzy inference and neuron-learning has become 

popular issues in modeling problems. Combining neural networks with fuzzy set have the 

advantages of both symbolic and numerical processing. In this paper, fuzzy neural network is 

employed to identify the dynamic hysteresis model of magneto-rheological (MR) damper under 

varying currents. The fuzzy neural network was taken as the system identification tool to establish 

the intelligent identification model, which can truly reflect its complex dynamic hysteresis 

characteristics from the experimental data by considering all kinds of influential factors. It has 

high identification precision and is insensitive to noise. 

Many scholars have put forward various control algorithms: Dyke [19] put forward 

clipped-optimal control algorithm; Yi [20] studied the magneto-rheological (MR) damper control 

algorithm based on the Lyapunov-stability theory; Shiraishi [21] proposed an adaptive neural 

network algorithm; Guo and Yi [22] established the indirect adaptive control strategy based on 

neural network. However, many scholars chose the optimal control force calculated by active 

control algorithm when magneto-rheological damper was imposed on two extreme currents as the 

damping force [16-18]. The magneto-rheological (MR) damper was treated as a traditional 

semi-active control device, so it could not make full use of the energy-dissipating capacity of 

magneto-rheological (MR) damper under varying currents. In this paper, the Bang-Bang control 

law based on Lyapunov-stability theory was applied to calculate the optimal current on the basis 

of the intelligent identification model. It can in real time stabilize the structure on the damper at 

the fastest rate and effectively realize vibration reduction. 

2. Theoretical model of fuzzy neural network 

Fuzzy logic can be used to describe human experience and knowledge for controller design, 

but it is short of learning for its fuzzy rule must be provided by experts. Neural network has the 

ability of learning and memory while it does not guarantee to avoid being trapped in local minima. 

In addition, the low speed of training and the insignificant weights are still the issues that remain 
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to be solved. Based on the above-mentioned properties, fuzzy neural network (FNN) that 

combines the advantages of both fuzzy logic and neural network and overcomes their respective 

deficiencies is adopted to identify the nonlinear behavior of complex systems [23]. In this paper, 

the T-S fuzzy inference system shown in Fig. 1 can approach any nonlinear system. It is used as 

a tool to identify the dynamic hysteresis model of MR damper. Neural network is adopted to 

express and learn this fuzzy inference system. According to the structure of fuzzy inference system 

shown in Fig. 1, the FNN architecture is designed shown in Fig. 2. 

 
Fig. 1. Structure of T-S fuzzy inference system 

 
Fig. 2. FNN architecture 

The FNN shown in Fig. 2 has five layers. This is a multiple-input-single-output (MISO) system 

that owns 𝑛 input linguistic variables 𝑥1, 𝑥2 … , 𝑥𝑛 and single output 𝑦. Accordingly, FNN has 𝑛 

nodes in layer A and one node in layer E. The input/output mapping is performed by means of 

fuzzy IF-THEN rules. Each rule consists of a premise part (IF part), comprising the IF 

precondition which the input variables should fulfill, and the consequent part (THEN part), 

comprising the inferred outputs. The T-S fuzzy rule of a MISO system can be written as the 

following form:  

𝐿𝑖: If 𝑥1 is 𝐴𝑖(𝑥1) and 𝑥2 is 𝐴𝑖(𝑥2) and ⋯ 𝑥𝑛 is 𝐴𝑖(𝑥𝑛): 
Then: 𝑦𝑖 = 𝑐𝑖 , 

(1) 
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where 𝑖 = 1,2, … , 𝑚, 𝑚 is the number of T-S fuzzy rules. 𝐿𝑖 is the 𝑖th rule. 𝐴𝑖(𝑥𝑗) is fuzzy set,  

𝑗 = 1,2, … , 𝑛, 𝑛 is the number of input linguistic variables. 𝑐𝑖 is fuzzy singleton value functioned 

as the consequent parameters for inference output 𝑦𝑖 . Fig. 2 shows a network constructed by the 

above 𝑚 rules. To give a clear understanding of mathematical function of each node, functions of 

FNN are described layer by layer below. 

Nodes in layer A are input linguistic nodes. The node transmits input variable 𝑥𝑗  (𝑗 = 1, … , 𝑛) 

to layer B. Fuzzification is performed in layer B, so nodes in layer B are called fuzzification nodes 

and act as membership functions to express the input fuzzy linguistic variables. There are 𝑚 types 

of membership functions used in this layer. Membership functions on input variables are 

constructed according to locally spatial mapping property. For input 𝑥𝑗  (𝑗 = 1, … , 𝑛), Gaussian 

membership functions which locally map the input spatial space to the output space are used, and 

the mathematical function is: 

𝐴𝑖(𝑥𝑗) = exp {−
(𝑥𝑖 − 𝑚𝑖𝑗)

2

𝜎𝑖𝑗
2 }, (2) 

where 𝑚𝑖𝑗 and 𝜎𝑖𝑗 are the center and the width of the Gaussian membership function, respectively. 

Each node in layer C is called a rule code; it represents a possible If-part for fuzzy rules. The 

number of rule nodes in this layer is equal to the number of fuzzy sets corresponding to each input 

linguistic variable. For example, in Fig. 2, if there are 𝑚 rule nodes in layer C, then there are also 

𝑚 fuzzy sets in inputs 𝑥1 to 𝑥𝑛. The output of each node in layer C is determined by fuzzy AND 

operation. Here, the product operation is utilized to determine the firing strength of each rule. The 

function of each rule’s firing strength is: 

𝜇
𝑖

= ∏ 𝐴𝑖(𝑥𝑗)

𝑛

𝑗=1

 , 𝑖 = 1,2, … , 𝑚. (3) 

The normalization computing of firing strength of each rule is performed in layer D, so each 

node in this layer is called a normalized node. Each node performs weighted average operation, 

and the function of normalized value of each rule is: 

𝜇
𝑖

=
𝜇

𝑖

∑ 𝜇
𝑖

𝑚
𝑖=1

 , 𝑖 = 1,2, … , 𝑚. (4) 

Layer E is corresponding to the consequent part (THEN part) of T-S fuzzy rules, called the 

defuzzification layer. The node in this layer computes the output signal 𝑦 of the FNN. It acts as a 

defuzzifier together with the links connected to it. In this paper, the centroid method is employed 

as the defuzzification tool. The mathematical function is: 

𝑦 = ∑ 𝜇𝑖 × 𝜔𝑖

𝑚

𝑖=1

, 𝑖 = 1,2, … , 𝑚, (5) 

where 𝜔𝑖 is the optimal parameter of FNN obtained by an effective training algorithm. 

3. Identification of dynamic hysteresis characteristics of MR damper based on FNN 

Making full use of the excellent properties of MR damper and accurately simulating the 

complex dynamic hysteresis characteristics are crucial to the control performance of MR damper. 

In this paper, the system identification method based on the theory of fuzzy neural network is 
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employed to identify the hysteresis characteristics of MR damper. This method can establish high 

precision intelligent identification model which can truly reflect its complex dynamic hysteresis 

characteristics. What’s more, the model is insensitive to noise and considers all kinds of influential 

factors. Experiments were not carried out due to lack of proper experimental conditions, so the 

revised Bouc-Wen dynamic hysteresis model of MR damper proposed by Xinchun Guan and 

Jinping Ou [24] is adopted to generate the data samples for system identification. 

 
Fig. 3. Revised Bouc-Wen model 

The damping force 𝐹 calculated by the revised Bouc-Wen dynamic hysteresis model is as 

following: 

𝐹 = 𝑐0�̇� + 𝛼𝑧. (6) 

The hysteretic variable displacement 𝑧 can be calculated by Eq. (7): 

�̇� = −𝛾|�̇�|𝑧|𝑧|𝑛−1 − 𝛽�̇�|𝑧|𝑛 + 𝑏�̇�. (7) 

The revised Bouc-Wen dynamic hysteresis model was proposed by Xinchun Guan and Jinping 

Ou on the basis of Spencer and Dyke’s work. In this model, the damping force F is regarded as 

the sum of viscous force and Bouc-Wen hysteresis damping force, so it can be used to simulate 

the viscoelasticity of MR fluids under low strain and coulomb characteristics under high strain. 

The mathematical functions of dynamic hysteresis model of MR damper shows that damping force 

generated by MR damper is different from traditional viscous damping force; it is not only 

associated with the relative velocity of the piston rod of damper, but also associated with the 

relative displacement of the piston rod. Therefore, the damping force generated by MR damper 

can be expressed as following:  

𝐹 = 𝑓(𝑥, �̇�, 𝐼). (8) 

𝑓( ) is a nonlinear function expressed by T-S fuzzy logic inference system. According to the 

theoretical model of FNN mentioned in the second quarter, a T-S fuzzy rule with 

two-input-single-output is established as following: 

𝐿𝑖: If 𝑥1 is 𝐴𝑖(𝑥1) and 𝑥2 is 𝐴𝑖(𝑥2), 
Then: 𝐹𝑖 = 𝑐𝑖 , 

(9) 

where 𝑥1 and 𝑥2 are the relative displacement and relative velocity of piston rod of MR damper, 

respectively. 𝐹𝑖  is the damping force corresponding to the 𝑖th rule. The function of the output 

damping force generated by FNN is: 

𝐹 = ∑ 𝜇
𝑖

× 𝜔𝑖

𝑚

𝑖=1

 , 𝑖 = 1,2, … , 𝑚. (10) 
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The process of identification of hysteresis characteristics consists of two parts: learning and 

examination. 

First, learning dynamic hysteresis characteristics of MR damper. MR damper is imposed on a 

sine wave excitation with amplitude 1.5 cm and frequency 5 Hz (𝑥(𝑡) = 1.5 sin(10𝜋𝑡)) under a 

constant current 2 A. Taking the relative displacement 𝑥1 and relative velocity 𝑥2 to calculate the 

corresponding damping force 𝐹(𝑡) within 2 s according to Eq. (6) and Eq. (7), then taking 𝑥1, 𝑥2 

and 𝐹(𝑡) as the learning samples for FNN. Each input variable is assigned ten fuzzy sets and 

simultaneously there are ten T-S fuzzy inference rules. BP algorithm is taken to train the FNN. 

Next, after FNN is trained, taking the relative displacement 𝑥1 and relative velocity 𝑥2 as input 

samples to test the FNN identification effect, as shown in Fig. 4 and Fig. 5. 

 
Fig. 4. Identification effect of response damping force of MR damper under a constant current 2 A 

 
Fig. 5. Comparison between the identified and theoretic force under a constant current 2 A 

Fig. 4 shows the identification error of MR damping force under a constant current 2 A. The 

identification error in Fig. 4 is almost zero. Fig. 5 shows the comparison between the identified 

and theoretic force vs. displacement and velocity respectively under the constant current 2 A. 

Fig. 4 indicates that the identified damping force is well coincident with the theoretic damping 

force. Consequently, Fig. 4 and Fig. 5 figure out that the FNN system has mastered the dynamic 

hysteresis characteristics of MR damper.  

FNN is taken as the identification method to identify the dynamic hysteresis characteristics 

under the current 𝐼 = 0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2 A respectively. The examination 
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indicates that the identification model can truly reflect the dynamic hysteresis characteristics under 

the corresponding constant current; consequently the model can be applied to design the 

semi-active control system. The work of this part was conducted off-line. The simulation result 

shows that more fuzzy rules contribute to better identification effect; but with the number of fuzzy 

rules increasing, the training time will be longer. In practice, the balance between learning 

efficiency and training time should be considered. 

4. Design of semi-active control 

Semi-active control algorithm cannot arbitrarily assign system pole like active control does, 

so it can only calculate the equivalent control force to approach the force calculated by active 

control algorithm as much as possible. Only by this means can it achieve the purpose of vibration 

reduction. The identification method proposed in this paper can be used in real-time control. It can 

be stored in computer and hardware to design control algorithm because it exists in the form of 

rule base. The Bang-Bang control law based on Lyapunov-stability theory [25] can be applied to 

calculate the optimal current on the basis of the intelligent identification model. With the optimal 

current imposed on MR damper, it can stabilize the structure at the fastest rate. Supported by this 

technique, the energy-dissipating capacity of MR damper can be completely developed under 

varying currents in real time and eventually vibration reduction can be easily realized. 

Fig. 6 shows a single degree of freedom system which is a quarter of a suspension system 

model. A quarter of the suspension system model should be a two degree of freedom system. In 

order to highlight the technical advantage in the semi-active control, unsprung mass and tyre 

stiffness are ignored and an ideal single degree of freedom system is adopted as the analysis model. 

In Fig. 6, 𝑚  is the sprung mass, 𝑘  is stiffness of the damper spring, 𝑥  is the input of road 

irregularity, and  𝑦 is the response displacement of the sprung mass. 

 
Fig. 6. A quarter of the suspension system model 

The controlled state function for a quarter of the suspension system model is 𝑧 = 𝐴𝑧 + 𝐵𝑢̇ , 

the Bang-Bang control law based on Lyapunov-stability theory can be designed as following: 

Define the Lyapunov function as: 𝑉 = 0.5𝑧𝑇𝑄𝑧, 𝑄 is a symmetric and positive definite weight 

matrix determined by Eq. (11). 

𝐴𝑇𝑄 + 𝑄𝐴 = −𝐼. (11) 

In Eq. (11) 𝐼 is the identity matrix, then: 

�̇� = 0.5�̇�𝑇𝑄𝑧 + 0.5𝑧𝑇𝑄�̇� = 0.5(𝐴𝑧 + 𝐵𝑢)𝑇𝑄𝑧 + 0.5𝑧𝑇𝑄(𝐴𝑧 + 𝐵𝑢)

= 𝑧𝑇(𝐴𝑇𝑄 + 𝑄𝐴)𝑧 + 𝑧𝑇𝑄𝐵𝑢 = −𝑧𝑇𝐼𝑧 + 𝑧𝑇𝑄𝐵𝑢. 
(12) 

Making Eq. (12) to a minimum, it only requires 𝑢 = −𝑢𝑚𝑎𝑥 ∙ sgn(𝑧𝑇𝑄𝐵), where 𝑢𝑚𝑎𝑥 is the 

maximum control force and sgn(∙)  is the symbolic function. 



1109. SEMI-ACTIVE CONTROL SYSTEM FOR MAGNETO-RHEOLOGICAL DAMPER BASED ON THE IDENTIFICATION MODEL WITH FUZZY NEURAL 

NETWORK. JIANNAN YAO, XINGMING XIAO, YUNJIANG MIAO, CHI MA 

 © VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. DECEMBER 2013. VOLUME 15, ISSUE 4. ISSN 1392-8716 2019 

The Bang-Bang control law proposed in this paper can in real time find out the optimal current 

that is the closest to the current calculated by active control algorithm from the intelligent 

identification model. A magnetic field is generated by imposing the current on MR damper, so as 

to have a damping force exerted on the suspension to reduce vibration. The control flow diagram 

is shown in Fig. 7. 

 
Fig.7. The flow diagram of intelligent semi-active control of MR damper 

5. Control simulation 

The structural motion function is: 

𝑚�̈� = 𝐹 + 𝑘(𝑥 − 𝑦). (13) 

Transform the structural motion function (13) into the state equation: 

�̇� = 𝐴𝑧 + 𝐵𝑢, (14) 

where 𝐴 = [
0 1

−
𝑘

𝑚
0], 𝐵 = [

0 0
1

𝑚

𝑘

𝑚

], 𝑧 = [
𝑦
�̇�], 𝑢 = [

𝐹
𝑥

]. 

At each control moment, the Bang-Bang control force 𝐹𝐵−𝐵 can be calculated according to 

Eq. (11) and Eq. (12). 

𝐹𝐵−𝐵 = −𝑢max 𝑠𝑖𝑔𝑛(𝑧𝑇𝑄𝐵), (15) 

where 𝑢𝑚𝑎𝑥 is the maximum control force of MR damper under a constant current. The optimal 

current that is the closest to the corresponding Bang-Bang control force from the intelligent 

identification model is found out in real-time, and is imposed on the MR damper. 

6. Results 

The simulation results (Fig. 8 and Fig. 9) show that the proposed intelligent semi-active control 

technique for MR damper can effectively control the displacement and acceleration response of 

vehicle suspension. The displacement response can decrease to 18 % and the acceleration response 

can decrease to 33 %. 
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Fig. 8. Displacement vs. time 

 
Fig. 9. Acceleration vs. time 

7. Conclusions 

An intelligent semi-active control for vibration reduction of vehicle suspension is proposed in 

this paper: an intelligent system identification method based on fuzzy neural network is employed 

to establish the dynamic model that can truly reflect the dynamic hysteresis characteristics of MR 

damper. The identification model is characterized by high identification precision and insensitive 

to noise. On the basis of the identification model, an intelligent semi-active control algorithm that 

can approach the effect of Bang-Bang active control algorithm to the maximum extent is employed 

to solve the previous problem that the capacity of MR damper couldn’t be fully developed. The 

proposed method keeps the MR damper on the state of maximum energy-dissipation, which 

effectively decreases the displacement and acceleration response of vehicle suspension under 

external excitation. The simulation results verify the validity and practicability of the proposed 

method. It indicates that the proposed method is a promising semi-active control law for vibration 

reduction of vehicle suspension. 
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