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Abstract. In order to deeply study the non-smooth dynamic mechanism of self-excited vibration, 

the friction self-excited vibration system model containing the Stribeck friction model is 

established, which is a nonlinear dynamical mass-spring-belt model. For the established model, 

the critical instability speed is solved by the first approximate stability criterion of Lyapunov 

theory, and the stability of limit cycle is determined on the basis of curvature coefficient. Secondly, 

the bifurcation characteristics and system behaviors under different parameters are analyzed by 

using numerical simulation method. The results show that the theoretical analysis is feasible. Feed 

speed, damping coefficient and ratio of dynamic-static friction coefficient are the main factors that 

affect the system motion state. Thirdly, the Washout filter method is designed to control the 

bifurcation characteristics. By comparing the pre and post phase diagrams, results show that the 

amplitude of controlled system is reduced and the topology is improved after introducing the 

Washout filter. All the researches above prove that adding Washout filter into the system to control 

the bifurcation phenomenon is a more effective method.  

Keywords: self-excited vibration, friction model, bifurcation control, stability.  

1. Introduction 

The friction-induced vibration phenomenon exists widely in the engineering field and daily 

life, and affects the performance of the mechanical system in various ways. The friction-induced 

vibration problems usually cause mechanical parts to wear and then reduce the precision and 

quality of workpiece. Besides they can also reduce the precision of control system. So many 

scholars have carried out a lot of studies on the modeling of friction system and system dynamics. 

On the aspect of modeling, people have established a series of friction models, such as Coulomb 

friction model [1], Stribeck friction model [2], Karnopp friction model [3], Dahl friction model 

[4] and Lu Gre friction model [5]. On the aspect of system dynamics, Feeny [6] studied the chaotic 

behavior of oscillator containing dry friction by the comparison of experiment and simulation. 

Ding [7] investigated the nonlinear dynamic characteristics of a vibration system affected by dry 

friction. In order to capture dividing points accurately, the theoretical method about the points 

which separate slip phases from stick phases is expounded. The stick-slip vibration is analyzed 

and the Lyapunov exponent is used to investigate the stability of the system. Gdaniec [8] 

researched single-freedom friction oscillator by using Lu Gre friction model. He found different 

feed speeds and friction coefficients could cause the friction-induced bifurcation and chaotic 

phenomenon. Madeleine [9] studied the frictional excitation characteristics of single-freedom 

mass-damping-spring system under the condition of interval load. 

While researches considering the friction of mechanical system dynamics have a long history, 

but so far the mechanism of the non-smooth dynamics including the self-excited vibration has not 

yet been deeply understood, the research theory of the self-excited vibration lacks of systemic. 

The damping of high-speed train [10], flutter of aircraft wing [11], vibration of high-speed cutting 

[12] and oil whipping of turbogenerator [13] are all related to self-excited vibration. So studies on 

dynamic characteristics of self-excited vibration have important significance on theoretical and 

practical applications. Therefore this paper takes the representative machine tool cutting system 

and feed system as the research object, the dynamics and bifurcation control of friction self-excited 
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vibration phenomenon are deeply researched. All the work in this paper has certain reference value 

on the dynamic characteristics of friction self-excited vibration system. 

2. Stability analysis of friction self-excited vibration system 

Modeling accurately for the important friction phenomenon is a familiar research method. For 

the self-excitation vibration mechanism, scholars at home and abroad have established some 

models, which can explain the phenomenon to some extent. But the application situations of these 

models are different from each other and these models have many disadvantages themselves:  

(1) It is uneasy to construct the mathematical model, which brings difficulties to do the 

mathematical analysis of crawling; 

(2) It is difficult to realize the dynamic numerical simulation analysis; 

(3) The previous studies are just concentrated on the experiment and mainly study the effect 

of feed speed on the dynamic system. While the effects of damping coefficient, transmission 

stiffness and dynamic and static friction coefficients are merely concerned; 

(4) Normal load is often hypothesized as a constant in the completed researches. However 

actually, because of the surface roughness and waviness, the moving parts often make system up 

and down in the vertical direction. So vibration exists in the vertical direction of coordinate system. 

So a simple model is needed to make deep study. Considering systematic changes have direct 

relationships with the mass, stiffness, damping, friction coefficient and normal vibration, the 

mass-spring-belt self-excited vibration system model is established in Figure 1. 

Drived part 

m

Equivalent stiffness k

Equivalent damping c

Friction F

Normal force F0

Normal force tF sin1

Feed speed v
 

Fig. 1. The mechanical model of the mass-spring-belt system 

The dynamic equation of the system is: 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑐

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 − 𝐹 = 0. (1) 

Then the dimensionless expression is: 

𝑋̈ + 2𝛽𝑋̇ + 𝑋 − 𝜇 = 0, (2) 

where 𝐹 = 𝑁𝜇, 𝜔0 = √𝑘 𝑚⁄ , 𝜏 = 𝜔0𝑡, 𝑋 = 𝑥𝑘/𝑁, 2𝛽 = 𝑐𝜔/𝑘, 𝑣0 =
𝑣0

𝜔0𝐿
, 𝛺 =

𝛺̃

𝜔0
. 

The Stribeck friction model is introduced in this paper. This model is very classical and can 

describe the general friction behavior of joint surfaces of mechanical movement of parts. The 

expression of the model is: 

𝜇 = −𝜇𝑠𝑠𝑔𝑛 (
𝑑𝑋

𝑑𝜏
− 𝑣0) +

3(𝜇𝑠 − 𝜇𝑚)

2𝑣𝑚
(
𝑑𝑋

𝑑𝜏
− 𝑣0) −

(𝜇𝑠 − 𝜇𝑚)

2𝑣𝑚
3

(
𝑑𝑋

𝑑𝜏
− 𝑣0)

3

, (3) 

where 𝑋̇ = 𝑑𝑋/𝑑𝜏  is the non-dimensional speed, 𝜈0  is the belt speed, 𝑣𝑚  is the speed that 
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corresponds to the minimum dynamic friction, 𝜇𝑠 is dynamic friction coefficient, 𝜇𝑚 is the static 

friction coefficient. 

Based on the theory of ordinary differential equations, the higher order differential equation 

can be transformed into first order differential equations. The equivalent transformation is made 

as: 

{

𝑋 = 𝑋1,
𝑑𝑋

𝑑𝜏
= 𝑋2.

 (4) 

Then the Equation (3) can be transformed into first order differential equations: 

{
 

 
𝑑𝑋1

𝑑𝜏
= 𝑋2,

𝑑𝑋2
𝑑𝜏

= −2𝛽𝑋2 − 𝑋1 − 𝜇𝑠sgn (
𝑑𝑋

𝑑𝜏
− 𝑣0) +

3(𝜇𝑠 − 𝜇𝑚)

2𝑣𝑚
(
𝑑𝑋

𝑑𝜏
− 𝑣0) −

𝜇𝑠 − 𝜇𝑚
2𝑣𝑚

3
(
𝑑𝑋

𝑑𝜏
− 𝑣0)

3

.

 (5) 

Based on the reference [14], when the input speed of the system is very fast, the mass block is 

in the condition of static balance under the effect of friction force and spring force. In this 

condition 𝑋̈ = 0, 𝑋̇ = 0, sgn(𝑣𝑟) = –1. When 𝜇𝑠 = 0.4, 𝜇𝑚 = 0.25, 𝑣𝑚 = 0.5, the stability of 

balance point can be analysed by Lyapunov stability theory. 

When 
𝑑𝑋𝑖

𝑑𝜏
= 0 in Equation (5), the equilibrium point of the system is solved as: 

{
𝑋20 = 0,

𝑋10 = 𝜇 = 0.4 − 0.45𝑣0 + 0.6𝑣0
3 ,

 (6) 

where {
𝑋1 = 𝑋̅1 + 𝑋10,

𝑋2 = 𝑋̅2 + 𝑋20,
 {
𝐹1 = 0,

𝐹2 = −0.45𝑋̅2 + 0.6(𝑋̅2
3 + 3𝑋̅2𝑣𝑟

2 − 3𝑋̅2
2).

 

The first approximate equation is obtained after expanding the Equation (5) into Taylor series 

and dropping the quadratic term. For the first approximate equation, the jacobian matrix of 

variables 𝑋1 and 𝑋2 can be expressed as Equation (7) when 𝑋1 = 0 and 𝑋2 = 0: 

𝐴 = [
0 1
𝑎21 𝑎22

] = 0. (7) 

When dimensionless damping coefficient 𝛽 = 0.01, the characteristic equation of matrix 𝐴 is: 

|𝜆𝐸 − 𝐴| = |
𝜆 1
−1 𝜆 − (0.45 − 𝛽 − 1.8𝑣0

2)
| = 𝜆2 − (0.44 − 1.8𝑣0

2)𝜆 + 1 = 0. (8) 

For the certain driving velocity 𝑣0, the equilibrium point and its corresponding eigenvalue can 

be obtained by the Equation (6) and Equation (8). Based on the Hurwits law, the critical instability 

speed of system can be solved by 𝑝 = 0.44 − 1.8𝑣0
2 = 0. In this condition 𝑣𝑏1 = 0.4944 is the 

supercritical Hopf bifurcation point. 

The amplitude approximate solution of limit cycle in multi-dimensional system has pointed 

that curvature coefficient is an important basis to determine the stability of limit cycle. Regarding 

the Hopf bifurcation characteristics as the starting point, this paper gets the Jordan standard form 

by proper linear transform and deduces the expression of curvature coefficient of limit cycle by 

centre manifold theory [14]. So in order to judge the stability of limit cycle, the linear 

transformation is taken into the standard form in Equation (5): 
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𝑌̇ = 𝐴𝑌 + 𝑄, (9) 

where 𝐴 = [
0 1
−1 0.44 − 1.8𝑣0

2], 𝑄 = {
𝑄1,
𝑄2,

= {
0,

1.8𝑣0𝑦2
2 − 0.6𝑦2

3.
 

Based on the Equation (6), the equilibrium point is (𝑦, 𝑦̇) = (0,0.4 − 0.45𝑣0 + 0.6𝑣0
3). And 

the eigenvalues of Equation (7) are: 

𝜆1,2 = 𝛼(𝑣0) ± 𝛽(𝑣0), (10) 

where 𝛼(𝑣0) = (0.44 − 1.8𝑣0
2)/2, 𝛽(𝑣0) = √(0.44 − 1.8𝑣0

2)2 − 4/2. 

When 𝛼(𝑣0) = (0.44 − 1.8𝑣0
2)/2 = 0: 

𝛼′(0) = ((0.44 − 1.8𝑣0
2) 2⁄ )′|𝑣0=𝑣𝑏1 = −3.6 × 0.4944 = −1.7798 < 0, (11) 

𝑔20 =
1

4
(
𝜕2𝑄1

𝜕𝑦1
2 −

𝜕2𝑄1

𝜕𝑦2
2 + 2

𝜕2𝑄1
𝜕𝑦1𝜕𝑦2

+ 𝑖 (
𝜕2𝑄2

𝜕𝑦1
2 −

𝜕2𝑄2

𝜕𝑦2
2 − 2

𝜕2𝑄1
𝜕𝑦1𝜕𝑦2

)) = −
1.7788

4
𝑖, (12) 

𝑔11 =
1

4
(
𝜕2𝑄1

𝜕𝑦1
2 +

𝜕2𝑄1

𝜕𝑦2
2 + 𝑖 (

𝜕2𝑄2

𝜕𝑦1
2 +

𝜕2𝑄2

𝜕𝑦2
2 )) =

1.7788

4
𝑖, (13) 

𝐺21 =
1

8
(
𝜕3𝑄1

𝜕𝑦1
3 +

𝜕3𝑄1

𝜕𝑦1𝜕𝑦2
2 +

𝜕3𝑄2

𝜕𝑦1
2𝜕𝑦2

+
𝜕3𝑄2

𝜕𝑦2
3 + 𝑖 (

𝜕3𝑄2

𝜕𝑦1
3 −

𝜕3𝑄2

𝜕𝑦1𝜕𝑦2
2 − 2

𝜕3𝑄1

𝜕𝑦1
2𝜕𝑦2

))

= −
3.6

8
. 

(14) 

Based on the Equation (12), Equation (13) and Equation (14), the curvature coefficient of limit 

cycle is: 

𝜎1 = Re {
𝑔20𝑔11
2𝜔0

} Re {−
3.6

16
+
1.77882

16
𝑖} = −

3.6

16
< 0. (15) 

When 𝜎1 < 0 and 𝛼′(0) < 0, the bifurcation of system is generated in the point of 𝑣 = 𝑣𝑏1. 

In the direction of 𝑣 < 𝑣𝑏1 the limit cycle is in a stable status, while the equilibrium point is in an 

unstable state. 

When the feed speed 𝑣0 = 0.45 < 𝑣𝑏1,  the criterion conditions of stability are:  
𝛥 = 𝑝2 − 4𝑞 < 0, 𝑝 > 0. Then the eigenvalues of the equation do not have negative real parts. 

The equilibrium point is an unstable focus and produces the limit cycle which tends to be stable. 

So the ultimate motion is periodic motion and can be divided into two types: the pure sliding 

vibration where the stick-slip vibration of the mass block never occurred and the stick-slip 

vibration where the mass block is viscous on the belt on occasion. 

When the feed speed 𝑣0 = 0.495 > 𝑣𝑏1,  the criterion conditions of stability are:  

𝛥 = 𝑝2 − 4𝑞 < 0, 𝑝 < 0. Then the eigenvalues of the equation have negative real parts. The 

equilibrium point is a stable focus and the solution of equation is gradually attenuating to zero. So 

the ultimate motion is stable. 

3. Numerical simulation of friction self-excited vibration system 

3.1. Bifurcation numerical simulation 

Hopf bifurcation is that the equilibrium point changes from stable focus into unstable focus 

when the parameters pass by the critical point. It is an important dynamic bifurcation problem and 

has a close relation with the generation of self-excited vibration in engineering.  
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When 𝜇𝑠 = 0.4, 𝜇𝑚 = 0.25, 𝑣𝑚 = 0.5 and 𝛾 = 1, the bifurcation diagram can be studied with 

feed speed, damping coefficient, transmission stiffness and ratio of dynamic and static friction 

coefficients as bifurcation parameters. The results are shown in Figures 2-5. 

From the Figure 2, in the system begins to appear bifurcation phenomenon and the equilibrium 

point changes from stable focus into unstable focus when the feed speed reaches 0.4944. Then 

the limit cycle disappears and the system tends to be stable. The bifurcation diagram can be 

divided into quasi-periodic motion area ( 0 < 𝑣0 < 0.4944 ) and single-value curves area 

(0.4944 < 𝑣0 < 1). The results show that when 𝑣0 reaches the critical velocity 𝑣𝑏1, the stable 

limit cycle produced by self-excited vibration is changed into stable state. That is to say the system 

is in the quasi-periodic motion state at a low feed speed and tends to be stable when the speed is 

high to a certain degree. All the research above verify the feasibility of the stability analysis. 
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Fig. 2. The system bifurcation diagram with the feed speed as the bifurcation parameter 
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Fig. 3. The system bifurcation diagram with the damping coefficient as the bifurcation parameter 
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Fig. 4. The system bifurcation diagram with the transmission stiffness as the bifurcation parameter 

Likewise, from the Figure 3 the quasi-periodic motion (0 < 𝛽 < 0.02) has occurred mainly in 
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small damping coefficient region. The system will be stable when the damping coefficient is high 

to a certain degree. From the Figure 4 the influence of transmission stiffness on the system 

characteristics is not so great. Only increasing transmission stiffness will not inhibit the 

self-excited vibration. From the Figure 5 larger ratio of dynamic and static friction coefficients 

leads to the phenomenon of self-excited vibration. Inversely, the stable state occurs in a small ratio 

of dynamic and static friction coefficients.  
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Fig. 5. The system bifurcation diagram with the ratio of dynamic and  

static friction coefficients as the bifurcation parameter 

3.2. Numerical simulation under different feed speeds 

When 𝛽 = 0.01, 𝜇𝑠 = 0.4, 𝜇𝑚 = 0.25, 𝑣𝑚 = 0.5, 𝛾 = 1 and the initial conditions are 𝑋 = 0, 

𝑋̇ = 0,  the phase diagrams under different feed speeds are shown in Figure 6, where  
𝑣𝑏1 = 0.4944, 𝑣𝑏0 = 0.4372. 
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Fig. 6. The phase diagrams under the action of different feed speeds 

From the Figure 6, system motion can be divided into three stages when feed speed changes 

between critical velocities. When the feed speed is 𝑣0 > 𝑣𝑏1 = 0.4944 , the system will be 

stabilized at the equilibrium point. Then the relative velocity is the feed speed. The time tending 

to be stable decreased with the feed speed increased. That is to say, the bigger the feed speed the 

better stability it has. In the equilibrium point of system occurs instability and it begins to cause 
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self-excited vibration when the feed speed is 𝑣0 < 𝑣𝑏1. The process can be further divided into 

pure slip (𝑣𝑏0 < 𝑣0 < 𝑣𝑏1) where in the phase diagram does not exist limit cycle and the minimum 

relative speed between mass block and belt is not zero, and stick slip (𝑣0 < 𝑣𝑏0 = 0.4372) where 

the limit cycle has obvious viscous stage and the minimum relative speed between mass block and 

belt is zero. When the minimum relative speed is zero, the input speed is the demarcation point 

translated from pure slip into stick slip. 

3.3. Numerical simulation under different damping coefficients 

System damping has important influence on the whole motion. And it can prevent the 

occurrence of vibration when the damping satisfies certain conditions. Based on the Equation (8), 

the critical velocity can be solved by 𝑝 = 0 for the specific damping coefficient 𝛽. 

When 𝜇𝑠 = 0.4, 𝜇𝑚 = 0.25, 𝑣𝑚 = 0.5, 𝛾 = 1 and the initial conditions are 𝑋 = 0, 𝑋̇ = 0, the 

phase diagrams under different damping coefficients are shown in Figure 7. Changing the Stribeck 

friction model as Coulomb friction model, the phase diagrams under different damping 

coefficients are shown in Figure 8. Likewise, when the friction model is linear friction model  

(𝜇 = −𝜇𝑠sgn𝑣𝑟 + 3(𝜇𝑠 − 𝜇𝑚)𝑣𝑟/𝑣𝑚), the phase diagrams under different damping coefficients 

are shown in Figure 9. 
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Fig. 7. The phase diagrams under different damping coefficients 
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Fig. 8. The phase diagrams under different damping coefficients 
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Fig. 9. The phase diagrams under different damping coefficients 
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From the Figure 7, the proportion of viscous stage decreased with the increase of damping. 

When the damping is great to a certain degree, the viscous stage disappears and the system begins 

stable pure slip motion. Continuing increase of the damping to the critical value, the system will 

be stable at the equilibrium point. So increasing damping to a certain extent can inhibit the 

self-excited vibration and improve the stability of the system. Comparing the Figure 8 with 

Figure 9, when the friction model is linear friction model where the relationship between friction 

and speed is with negative slope, self-induced vibration occurs in the system. And the proportion 

of viscous stage decreased with the increase of damping. The results show that negative friction-

speed slope is the main cause of self-induced vibration. 

3.4. Numerical simulation under different transmission stiffness 

Transmission stiffness has important influence on the whole motion. Based on the stability 

theoretical analysis above, transmission stiffness has the function of improving the stability of 

system. When 𝜇𝑠 = 0.4,  𝜇𝑚 = 0.25,  𝑣𝑚 = 0.5,  𝛾 = 1,  𝛽 = 0.01,  𝑣0 = 0.2  and the initial 

conditions are 𝑋 = 0,  𝑋̇ = 0,  the phase diagrams under different transmission stiffnesses are 

shown in Figure 10. 

Displacement X

V
el

o
ci

ty
 d

X
/d
τ

 
(a) 𝐾 = 1 

Displacement X

V
el

o
ci

ty
 d

X
/d
τ

 
(b) 𝐾 = 2 

Displacement X
V

el
o

ci
ty

 d
X

/d
τ

 
(c) 𝐾 = 4 

Displacement X

V
el

o
ci

ty
 d

X
/d
τ

 
(d) 𝐾 = 20 

Displacement X

V
el

o
ci

ty
 d

X
/d
τ

 
(e) 𝐾 = 100 

Displacement X

V
el

o
ci

ty
 d

X
/d
τ

 
(f) 𝐾 = 300 

Fig. 10. The phase diagrams under different transmission stiffnesses 

From the Figure 10, the proportion of viscous stage decreased with the increase of transmission 

stiffness. When the transmission stiffness is great to a certain degree, the viscous stage disappears 

and the system begins stable pure slip motion. And the limit cycle decreased with the increase of 

stiffness. So increasing stiffness to a certain extent can shorten viscous stage and improve the 

stability of the system. 

3.5. Numerical simulation under different dynamic and static friction coefficients 

When 𝛽 = 0.01, 𝜇𝑠 = 0.4, 𝜇𝑚 = 0.25, 𝑣𝑚 = 0.5, 𝛾 = 1 and the initial conditions are 𝑋 = 0, 

𝑋̇ = 0, the phase diagrams under different dynamic and static friction coefficients are shown in 

Figure 11. 

From the Figure 11, vibration amplitude of the system and the proportion of viscous stage 

increased with the increase of gap of dynamic and static friction coefficients. When the gap of 

dynamic and static friction coefficients is decreased to a certain degree, the viscous stage 
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disappears and the system begins stable pure slip motion. Continuing decrease of the gap, the 

system will be stable and no longer performing vibration. 
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Fig. 11. The phase diagrams under the difference of dynamic and static friction coefficients 

4. Bifurcation control of friction self-excited vibration system 

4.1. Design of Washout filter and the stability analysis 

When the feed speed is 0.48, 0.49 and 0.492, the dynamic characteristics of friction self-excited 

vibration can be obtained and the phase diagrams are shown in Figure 12. 
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Fig. 12. The phase diagrams under the action of different feed speeds 

From the Figure 12, when the feed speed is greater than or equal to 0.49, amplitude of the limit 

cycle becomes suddenly decreased and the equilibrium point is in an unstable state. In the process 

of decreasing the feed speed, the limit cycle changed from stable into unstable and the equilibrium 

point changed from unstable into stable. Based on the stability analysis, in the system occurs the 

subcritical bifurcation when speed passes by the point of 0.49. To decrease the amplitude, 

Washout filter is introduced to control the bifurcation [15]. 

When the friction is linear, the friction self-excited vibration system can be expressed as: 

{
𝑥̇ = 𝑦,
𝑦̇ = −𝐹 − 𝐶𝑦 − 𝐾𝑥,

 (16) 

where 𝐹 = −0.45𝑋̅2 + 0.6(𝑋̅2
3 + 3𝑋̅2𝑣𝑟

2 − 3𝑋̅2
2). 
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To control 𝑦 with Washout filter, the control system can be expressed as: 

{

𝑥̇ = 𝑦,
𝑦̇ = −𝐹 − 𝐶𝑦 − 𝐾𝑥,
𝜔̇ = 𝑦 − 𝑑𝜔.

 (17) 

The controller can be designed as the form of: 

𝑢 = 𝑔(𝑣; 𝐾) = 𝑘1𝑣 + 𝑘2𝑣
3, (18) 

where 𝐾 = (𝑘1, 𝑘2) is the control vector, 𝑘1 is the linear gain, 𝑘2 is non-linear gain. The linear 

part can control the production of Hopf bifurcation, the cubic term can control the amplitude of 

the limit cycle. 

Taking Equation (17) into Equation (18), the system can be expressed as Equation (19): 

{

𝑥̇ = 𝑦,

𝑦̇ = −𝐹 − 𝐶𝑦 − 𝐾𝑥 + 𝑘1(𝑦 − 𝑑𝜔) + 𝑘2(𝑦 − 𝑑𝜔)
3,

𝜔̇ = 𝑦 − 𝑑𝜔.
 (19) 

The Jacobian matrix of the linear part of the system is: 

𝐽 = [
0 1 0
−1 0.0078 + 𝑘1 −2𝑘1
0 1 −2

]. (20) 

The characteristic equation of the Jacobian matrix is: 

𝜆3 + 𝑐1𝜆
2 + 𝑐2𝜆 + 𝑐3 = 0, (21) 

where 𝑐1 = 2 − (0.44 − 1.8𝑣0
2 + 𝑘1), 𝑐2 = 2𝑘1 − (0.44 − 1.8𝑣0

2 + 1), 𝑐3 = 2. 

Based on the Routh-Hurwits criterion 𝑐1𝑐2 = 𝑐3, that is to say 𝑘1 = −0.0395 is the condition 

of Hopf bifurcation. The amplitude of limit cycle can be regulated by changing the value of 𝑘2. 

The characteristic roots of Equation (21) are 𝜆1,2 = 𝛼(𝑣0) ± 𝛽(𝑣0)  and 𝜆3 = 𝑐,  where  

𝛼(𝑣0) = −(1.5995 + 1.8𝑣0
2) + 𝛰(𝑣0

2) and: 

𝛼′(0) = (−(1.5995 + 1.8𝑣0
2))

′
|
𝑣0=0.49

= −3.6 × 0.49 = −1.764 < 0. (22) 

When 𝑣0 = 0.49, the characteristic quantities are: 

𝑔20 =
1

4
(
𝜕2𝑄1

𝜕𝑦1
2 −

𝜕2𝑄1

𝜕𝑦2
2 + 2

𝜕2𝑄1
𝜕𝑦1𝜕𝑦2

+ 𝑖 (
𝜕2𝑄2

𝜕𝑦1
2 −

𝜕2𝑄2

𝜕𝑦2
2 − 2

𝜕2𝑄1
𝜕𝑦1𝜕𝑦2

)) = −
1.764

4
𝑖, (23) 

𝑔11 =
1

4
(
𝜕2𝑄1

𝜕𝑦1
2 +

𝜕2𝑄1

𝜕𝑦2
2 + 𝑖 (

𝜕2𝑄2

𝜕𝑦1
2 +

𝜕2𝑄2

𝜕𝑦2
2 )) =

1.764

4
𝑖, (24) 

𝐺110 =
1

2
(
𝜕2𝑄1
𝜕𝑦1𝜕𝑦3

+
𝜕2𝑄2
𝜕𝑦1𝜕𝑦3

+ 𝑖 (
𝜕2𝑄2
𝜕𝑦1𝜕𝑦3

−
𝜕2𝑄1
𝜕𝑦1𝜕𝑦3

)) = 0, (25) 

𝐺101 =
1

2
(
𝜕2𝑄1
𝜕𝑦1𝜕𝑦3

−
𝜕2𝑄2
𝜕𝑦1𝜕𝑦3

+ 𝑖 (
𝜕2𝑄2
𝜕𝑦1𝜕𝑦3

+
𝜕2𝑄1
𝜕𝑦1𝜕𝑦3

)) = 0, (26) 
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𝑤20 =
1

4 (2𝑖𝜔(𝜇0 − 𝜆3(𝜇0)))
(
𝜕2𝑄3

𝜕𝑦1
2 −

𝜕2𝑄3

𝜕𝑦2
2 − 2𝑖

𝜕2𝑄3
𝜕𝑦1𝜕𝑦3

) = 0, (27) 

𝑤11 =
1

4𝜆3(𝜇0)
(
𝜕2𝑄3

𝜕𝑦1
2 +

𝜕2𝑄3

𝜕𝑦2
2 ) = 0, (28) 

𝐺21 =
1

8
(
𝜕3𝑄2

𝜕𝑦2
3 ) =

1

8
(6𝑘3 − 3.6). (29) 

According to the Equation (23) to Equation (29), the curvature coefficient of limit cycle is: 

𝜎1 = Re {
𝑔20𝑔11
2𝜔0

+
𝐺21 + 𝐺101𝑔20

2
} = Re {

1

8
(6𝑘3 − 3.6) +

3.62

16
𝑖} =

1

8
(6𝑘3 − 3.6). (30) 

It can be seen obviously 𝜎1 < 0  when 𝑘3 < 0.6 . Based on 𝜎1 < 0  and 𝛼′(0) < 0 , in the 

system will occur Hopf bifurcation at the point of 𝑣 = 0.49  and the bifurcation direction is  

𝑣 < 0.49. 

4.2. Simulation analysis verification of bifurcation control 

Before introducing the Washout filter, the Hopf supercritical bifurcation happens in the 

equilibrium point. Based on the bifurcation diagram with feed speed as the bifurcation parameter 

given above, the amplitude of the system changes remarkably and increases suddenly when the 

feed speed reduces approximately to 0.49. That is to say the subcritical bifurcation has happened.  

After introducing the Washout filter, the Hopf supercritical bifurcation still happens in the 

equilibrium point. But the amplitude of system decreases when 𝑣0 = 0.49 . This shows that 

subcritical bifurcation is controlled. 

When 𝑣0 = 0.4 , the phase diagrams are obtained after introducing the Washout filter at 

different values of 𝑘1 and 𝑘2, they are shown in Figure 13. 
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Fig. 13. The phase diagrams of the controlled system at different parameters 

From the Figure 13, adjusting the parameters of controller can change the amplitude of 

self-induced vibration and make the limit cycle disappear. The Hopf bifurcation is well controlled. 

The results show that the Washout filter control designed above is reasonable. 

5. Conclusions 

Based on the dynamic characteristics analysis of friction vibration structure, the friction self-

excited vibration system model containing the Stribeck model is established. For the certain feed 

speed, the equilibrium point of the system is solved and the equilibrium stability is analyzed by 

making use of the first approximate stability criterion of Lyapunov theory. 

By the bifurcation numerical simulation and the numerical simulation under different 
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parameters of the system, stability analysis is verified feasible. The simulation results show that 

great feed speed and damping coefficient and low gap of dynamic and static friction coefficients 

can inhibit the self-excited variation to some extent. The research work of this paper has certain 

reference value on the dynamics characteristics of the self-excited vibration system in actual 

production.  

The Washout filter method is introduced to control the Hopf bifurcation of friction self-excited 

vibration. By comparing the pre and post phase diagrams, results show that the amplitude of 

controlled system is reduced and the topology is improved after introducing the Washout filter. 

So the Washout filter control is a comparatively effective method to control the bifurcation of 

friction system. 
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