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Abstract. In past studies, the elastic effects of a workpiece were usually ignored or a workpiece 

was just expressed with Euler-Bernoulli beam theory in turning process, which made the stability 

of cutting process less accurate. This paper considers the deformation of the workpiece expressed 

with a more accurate Timoshenko beam model in analysis for chatter of cutting process. The 

cutting stability of the turning process is analyzed by combining both the elastic effects of the tool 

and the workpiece with regenerative chatter mechanisms and compared with the stability analysis 

results that the deflection of workpiece is ignored. Besides, the influences of workpiece length, 

radius, the cutting tool damping and stiffness on the analytical model are also studied. At last, the 

present model is compared with those obtained from Euler-Bernoulli theory. It is found that the 

critical chip width when we consider workpiece as a Timoshenko beam is greater than the other 

two cases.  

Keywords: regenerative chatter, turning, Timoshenko beam, stability.  

1. Introduction 

Machine tool chatter is a self-excited vibration problem occurring in large rates of material 

removal, resulting from the unavoidable flexibility between the cutting tool and workpiece [1]. 

When chatter occurs, it causes poor surface finishing, premature damage and breakage of cutting 

tools, as well as mechanical system deterioration. In general, chatter is a very important limiting 

factor which needs to be avoided in designing a manufacturing process. In order to obtain 

chatter-free machining process, people can only choose conservative cutting conditions which 

result in lower material removal rate. Therefore, it’s necessary to predict the stability limit to 

enhance material removal rate while maintaining product quality. 

In past studies, the elastic effect of workpiece was usually ignored, and only the tool vibration 

was considered. However, cutting can also produce force on the workpiece which causes its 

deflection, and then the chip thickness gets changed. Therefore, the deflection of workpiece is 

equally important as the tool vibration. In view of its importance, some scholars did related 

research on the deflection of workpiece. Carrino et al. [2] deduced the dimensional deviations 

caused by workpiece deflections, vibrations of tool as well as material spring back. Luciano et al. 

[3] and L. Vela-Martínez et al. [4] established a multiple degrees of freedom model based on the 

compliance between the cutting tool and the workpiece to predict chatter in turning. M. Eynian 

et al. [5] considered the tool wear and process damping between the cutting tool and the workpiece. 

Dornfeld D. A. et al. [6] represented several features of the interaction between tool and workpiece 

related to instant depth of cut distribution. Based on variable stiffness in boring bars, Wang et al. 

[7] proposed a new method to suppress chatter, that is, continuously varying the natural frequency 

of the over a range to avoid self-excited vibration. Chen and Tsao presented two dynamic models 

of cutting tool with [8] and without [9] tailstock-supported workpiece based on beam theory. Sekar 

et al. [10] proposed a compliant two degrees of freedom dynamic cutting force model by 

considering the relative motion of workpiece with cutting tool, and they considered tool and 

workpiece as two separate single degree of freedom spring-mass-damper systems.  

While some recent results of the vibration of the cutting tool are used to control and to improve 

the cutting surface. According to Zahia Hessainia et al. [11], one of the most important aims of 

experiments related to manufacturing was to achieve the desired surface roughness with the 
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optimal cutting tool vibration. The goal was to minimize surface roughness, the exploitation of 

the response surface methodology optimization seemed to be a helpful technique. Antic A. et al. 

[12] thought tool wear was correlated to surface quality of the workpiece. The cutting parameters 

were altered to improve the surface quality while monitoring spindle vibration to show that process 

control of the process was possible. 

Though someone considered the deflection of workpiece, they just regarded the workpiece as 

an Euler-Bernoulli beam which neglected the transverse shear as well as the rotary inertia. 

Although it is simple and can provide reasonable engineering approximations in many cases, it 

tends to slightly overestimate the natural frequencies. This problem is exacerbated for the natural 

frequencies of the higher modes. Besides, the prediction is better for slender beams than non-

slender beams. However, Timoshenko beam can solve this problem. To do more accurate 

estimation, this paper is based on the theory of Chen C. K. et al. [9] and analyses the deflection of 

workpiece with the help of Timoshenko beam theory, and then goes on with stability analysis. 

Finally, we compare them with the results which ignore the elastic effects of workpiece. 

2. Nomenclature 

𝐴 cross-sectional area, m2 

𝑎, 𝑏 wave numbers, 1/m 

𝑏 chip width, m 

𝑐 the equivalent damping of the cutting tool and tool holder, kg/s 

𝐶 cutting coefficient, N/m2 

𝐷 diameter of workpiece, m 

𝐸 Young’s modulus, N/m2 

𝐹 transverse force normal to the structure per length, N/m 

𝐺 shear modulus, N/m2 

𝐼 mass moment of inertia of the cross-section about the neutral axis, m4 

𝐿 length of the beam, m 

𝑀 the equivalent mass of the cutting tool and tool holder, kg 

𝑘 the equivalent stiffness of the cutting tool and tool holder, N/m 

𝑘′ shape factor 
𝑟𝑖 𝑖th root of the characteristic equation, 1/m 

𝑡 time, s 

𝑇 the rotation period of the spindle, s 

𝑥 axial co-ordinate of the beam, m 

𝑣(𝑥, 𝑡) transverse displacement of the beam, m 

𝛼 angle of rotation due to bending, rad 

𝜈 Poisson’s ratio 

𝜌 density of the beam, kg/m3 
𝜔𝑖 𝑖th natural frequency of the beam, rad/s 
𝜔𝑐 chatter frequency of the cutting tool, rad/s 

3. Dynamic cutting model 

3.1. Determine the deflection of the workpiece with Timoshenko beam theory 

Timoshenko (1921, 1922) [13, 14] proposed the Timoshenko beam theory which considered 

the effect of shear as well as the effect of rotation relative to the Euler-Bernoulli beam. It is a great 

improvement for non-slender beams and for high-frequency responses where shear or rotary 

effects can play an important role and can’t be neglected. Besides, several authors have obtained 

the frequency equations and the mode shapes corresponding to various boundary conditions based 
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on Timoshenko beam theory [15-18]. 

Now, workpiece is considered as a cantilever beam which is shown in Fig. 1. When there is a 

force performed at the free end of the workpiece, it will generate deflection. Next, we can obtain 

the deflection mainly with the knowledge of the literature [19].  

 
Fig. 1. Deflection of workpiece which is considered as a Timoshenko beam 

Through the combination of Lagrangian and Hamilton principle, we can get the equations of 

motion: 

𝜌𝐴
𝜕2𝑣(𝑥, 𝑡)

𝜕t2
− 𝑘′𝐺𝐴 (

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
−

𝜕𝛼(𝑥, 𝑡)

𝜕𝑥
) = 𝑓(𝑥, 𝑡), 

𝜌𝐼
𝜕2𝛼(𝑥, 𝑡)

𝜕t2
− 𝐸𝐼

𝜕2𝛼(𝑥, 𝑡)

𝜕𝑥2
− 𝑘′𝐺𝐴 (

𝜕𝑣(𝑥, 𝑡)

𝜕𝑥
− 𝛼(𝑥, 𝑡)) = 0 , 

(1) 

as well as the boundary conditions: 

𝜕𝛼

𝜕𝑥
𝛿𝛼|

0

𝐿

= 0,           𝑘′𝐺𝐴 (
𝜕𝑣

𝜕𝑥
− 𝛼) 𝛿𝑣|

0

𝐿

= 0 , (2) 

where 𝜌 is the density of the beam, 𝐴 the cross-sectional area, 𝐼 the area moment of inertia of the 

cross-section about the neutral axis, 𝑥  the axial location, 𝑡  the time, 𝑣(𝑥, 𝑡)  the transverse 

deflection at the axial location 𝑥 and time 𝑡, 𝛼(𝑥, 𝑡) the angle of rotation of the cross-section due 

to the bending moment at the axial location x and time 𝑡, 𝑘′ the shape factor, 𝐺 the shear modulus, 

𝑓(𝑥, 𝑡) the non-conservative transverse force per unit length.  

As the forms of 𝑣(𝑥, 𝑡) and 𝛼(𝑥, 𝑡) are identical, we assume that they share the same time 

solution 𝑇(𝑡). Then the solution can be writen as the combination of time solution and spatial 

solution through separation of variable: 

[
𝑣(𝑥, 𝑡)

𝛼(𝑥, 𝑡)
] = 𝑇(𝑡)   [

𝑊(𝑥)

𝜓(𝑥)
]. (3) 

Substituting (3) into (1) without the term 𝑓(𝑥, 𝑡), we can get: 

𝑇′′(𝑡) + 𝜔2𝑇(𝑡) = 0 , (4) 

0 = [
𝑘′𝐺𝐴 0

0 𝐸𝐼
] [

𝑊′′(𝑥)

𝜓′′(𝑥)
] + [

0 −𝑘′𝐺𝐴
𝑘′𝐺𝐴 0

] [
𝑊′(𝑥)

𝜓′(𝑥)
] + [

𝜌𝐴𝜔2 0

0 𝜌𝐼𝜔2 − 𝑘′𝐺𝐴
] [

𝑊(𝑥)

𝜓(𝑥)
]. (5) 

As 𝑊(𝑥) and 𝜓(𝑥) also have the same form, we can write them as following forms which 

only differ by a constant: 

[
𝑊(𝑥)

𝜓(𝑥)
] = 𝑑𝐮e𝑟𝑥  , (6) 
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where 𝑑  is the constant coefficient, 𝐮  a vector of constant numbers and the wave number. 

Substituting (6) into (5) yields: 

[
𝑘′𝐺𝐴𝑟2 + 𝜌𝐴𝜔2 −𝑘′𝐺𝐴𝑟

𝑘′𝐺𝐴𝑟 𝐸𝐼𝑟2 + 𝜌𝐼𝜔2 − 𝑘′𝐺𝐴
]𝐮 = 0 . (7) 

To have a non-trivial solution, the determinant of the above matrix has to be zero: 

𝐸𝐼𝑟4 + 𝜌𝐼 (1 +
𝐸

𝑘′𝐺
)𝜔2𝑟2 − 𝜌𝐴𝜔2 +

𝜌2𝐼

𝑘′𝐺
𝜔4 = 0  . (8) 

Then we get the form of eigenvalues: 

𝑟 = ±√−(1 +
𝐸

𝑘′𝐺
)  
𝜌𝜔2

2𝐸
± √(1 −

𝐸

𝑘′𝐺
)2

𝜌2𝜔4

4𝐸2
+

𝜌𝐴𝜔2

𝐸𝐼
 . (9) 

When the frequency is less than √𝑘′𝐺𝐴/𝜌𝐼, the spatial solution is written in terms of both 

sinusoidal and hyperbolic terms: 

[
𝑊(𝑥)

𝜓(𝑥)
] = [

𝐶1

𝐷1
] sin𝑎𝑥 + [

𝐶2

𝐷2
] cos𝑎𝑥 + [

𝐶3

𝐷3
] sinh𝑑𝑥 + [

𝐶4

𝐷4
] cosh𝑑𝑥 , (10) 

where: 

𝑎 = √(1 +
𝐸

𝑘′𝐺
)   

𝜌𝜔2

2𝐸
+ √(1 −

𝐸

𝑘′𝐺
)

2 𝜌2𝜔4

4𝐸2
+

𝜌𝐴𝜔2

𝐸𝐼
, 

𝑑 = √−(1 +
𝐸

𝑘′𝐺
)  

𝜌𝜔2

2𝐸
+ √(1 −

𝐸

𝑘′𝐺
)2

𝜌2𝜔4

4𝐸2
+

𝜌𝐴𝜔2

𝐸𝐼
 . 

(11) 

Besides, 𝐶𝑖 and 𝐷𝑖  have the following relationships: 

𝐷1 = −
𝑎2 + 𝛾2𝑑2

(1 + 𝛾2)𝑎
𝐶2, 𝐷2 =

𝑎2 + 𝛾2𝑑2

(1 + 𝛾2)𝑎
𝐶1, 

𝐷3 =
𝑑2 + 𝛾2𝑎2

(1 + 𝛾2)𝑑
𝐶4, 𝐷4 =

𝑑2 + 𝛾2𝑎2

(1 + 𝛾2)𝑑
𝐶3, 

(12) 

where 𝛾 is a constant given by: 

𝛾2 =
2(1 + 𝜈)

𝑘′
 , (13) 

𝜈 stands for Poisson’s ratio. 

Next, we can apply a set of boundary conditions to obtain the four unknown coefficients in the 

spatial solution. For cantilever beam, boundary conditions are as follows: 
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𝛼 = 0, 𝑣 = 0 for clamped end; 
𝜕𝛼

𝜕𝑥
= 0, 𝑘′𝐺𝐴 (

𝜕𝑣

𝜕𝑥
− 𝛼) = 0 for free end. (14a) 

They can also be written in terms of spatial solutions, that is: 

𝜓(𝑥) = 0,𝑊(𝑥) = 0 for clamped end; 
𝑑𝜓

𝑑𝑥
= 0, 𝑘′𝐺𝐴 (

𝑑𝑊

𝑑𝑥
− 𝜓) = 0 for free end. (14b) 

Substituting (14) into (11), we can get the frequency equations as well as the spatial solution 

which only including one unknown: 

(𝑎2 − 𝑑2)sin𝑎𝐿sinh𝑑𝐿 − 𝑎𝑑
(𝑎4 + 𝑎4𝛾4 + 4𝛾2𝑎2𝑑2 + 𝑑4𝛾4 + 𝑑4)

(𝑑2 + 𝛾2𝑎2)(𝑎2 + 𝛾2𝑑2)
cos𝑎𝐿cosh𝑑𝐿 − 2𝑎𝑑 = 0, (15) 

𝑊(𝑥) = 𝐵𝑛

[
 
 
 
 sin𝑎𝑥 −

𝑎(𝑎2 + 𝛾2𝑑2)sin𝑎𝐿 + 𝑑(𝑎2 + 𝛾2𝑑2)sinh𝑑𝐿

𝑎[(𝑎2 + 𝛾2𝑑2)cos𝑎𝐿 + (𝑑2 + 𝛾2𝑎2)cosh𝑑𝐿]
cos𝑎𝑥

−
𝑎2 + 𝛾2𝑑2

𝑑2 + 𝛾2𝑎2

𝑑

𝑎
sinh𝑑𝑥 +

𝑎(𝑎2 + 𝛾2𝑑2)sin𝑎𝐿 + 𝑑(𝑎2 + 𝛾2𝑑2)sinh𝑑𝐿

𝑎[(𝑎2 + 𝛾2𝑑2)cos𝑎𝐿 + (𝑑2 + 𝛾2𝑎2)cosh𝑑𝐿]
cosh𝑑𝑥

]
 
 
 
 

, (16a) 

𝜓(𝑥) = 𝐵𝑛

[
 
 
 
 
 
 

𝑎2 + 𝛾2𝑑2

(1 + 𝛾2)𝑎2

[𝑎(𝑎2 + 𝛾2𝑑2)sin𝑎𝐿 + 𝑑(𝑎2 + 𝛾2𝑑2)sinh𝑑𝐿]

[(𝑎2 + 𝛾2𝑑2)cos𝑎𝐿 + (𝑑2 + 𝛾2𝑎2)cosh𝑑𝐿]
sin𝑎𝑥

+
𝑎2 + 𝛾2𝑑2

(1 + 𝛾2)𝑎
cos𝑎𝑥 +

𝑑2 + 𝛾2𝑎2

(1 + 𝛾2)𝑑

𝑎(𝑎2 + 𝛾2𝑑2)sin𝑎𝐿 + 𝑑(𝑎2 + 𝛾2𝑑2)sinh𝑑𝐿

𝑎[(𝑎2 + 𝛾2𝑑2)cos𝑎𝐿 + (𝑑2 + 𝛾2𝑎2)cosh𝑑𝐿]
sinh𝑑𝑥 −

𝑎2 + 𝛾2𝑑2

𝑎(1 + 𝛾2)
cosh𝑑𝑥

]
 
 
 
 
 
 

, (16b) 

where 𝐵𝑛 is a constant. The corresponding spatial solutions are also referred to as eigenfunctions 

or mode shapes.  

Next we seek the orthogonality conditions through which to obtain the free or forced response 

of the beam. For Timoshenko beam, the spatial Eq. (5) can be written using the operator formalism: 

𝐿(𝐖𝑛)=𝜔𝑛
2𝑀(𝐖𝑛), (17) 

where 𝐖𝑛 stands for the nth vector of eigenfunctions [𝑊𝑛 𝜓𝑛]𝑇 and: 

𝐿(𝐖𝑛) =

[
 
 
 𝑘′𝐺𝐴

𝑑2

𝑑𝑥2
−𝑘′𝐺𝐴

𝑑

𝑑𝑥

𝑘′𝐺𝐴
𝑑

𝑑𝑥
𝐸𝐼

𝑑2

𝑑𝑥2
− 𝑘′𝐺𝐴]

 
 
 

[
𝐖𝑛

𝜓𝑛
] ,   𝑀(𝐖𝑛) = [

𝜌𝐴𝐖𝑛

𝜌𝐼𝜓𝑛
]. (18) 

Now, we can verify the operators 𝐿 and 𝑀 are self-adjoint [20], namely: 

∫ [𝐖𝑛
T𝐿(𝐖𝑚) − 𝐖𝑚

𝑇 𝐿(𝐖𝑛)]
𝐿

0

𝑑𝑥 = 0, (19) 

∫  [𝐖𝑛
𝑇𝑀(𝐖𝑚) − 𝐖𝑚

𝑇 𝑀(𝐖𝑛)]
𝐿

0

𝑑𝑥 = 0. (20) 

First, Eq. (20) is automatically satisfied. Substituting (18) into (19) and integrating twice by 

parts, we obtain: 

0 = 𝑘′𝐺𝐴 [𝑊𝑛 (
𝑑𝑊𝑚

𝑑𝑥
− 𝜓𝑚) − 𝑊𝑚 (

𝑑𝑊𝑛

𝑑𝑥
− 𝜓𝑛)]|

0

𝐿

+ [𝜓𝑛

𝑑𝜓𝑚

𝑑𝑥
− 𝜓𝑚

𝑑𝜓𝑛

𝑑𝑥
]|

0

𝐿

. (21) 



1101. A STABILITY ANALYSIS OF TURNING PROCESS CONSIDERING THE WORKPIECE AS A TIMOSHENKO BEAM.  

HE LI, GUANGYING SONG, JUNFENG HOU, SHUO LI, BANGCHUN WEN 

1932 © VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. DECEMBER 2013. VOLUME 15, ISSUE 4. ISSN 1392-8716  

Note that the boundary conditions obtained from the variational problem (2) satisfy this 

condition, which proves that Eq. (19) is also satisfied.  Then we can determine the orthogonality 

conditions through the nature of self-adjoint. Using Eq. (17) we can write Eq. (19) as: 

(𝜔𝑚
2 − 𝜔𝑛

2)∫ 𝐖𝑛
𝑇𝑀(𝐖𝑚)𝑑𝑥 = 0

𝐿

0

. (22) 

Since 𝜔𝑚
2 ≠ 𝜔𝑛

2 for 𝑚 ≠ 𝑛, in order for Eq. (22) to be zero, the integral has to be zero, that’s: 

∫ [𝐖𝑛
𝑇𝑀(𝐖𝑚)]

𝐿

0

 𝑑𝑥 = 0,  for  𝑚 ≠ 𝑛. (23) 

The above equation is referred to as the orthogonality condition, and when 𝑚 = 𝑛, it can be 

written: 

∫ [𝐖𝑛
𝑇𝑀(𝐖𝑛)]

𝐿

0

𝑑𝑥 = 𝑝𝑛 ,   for   𝑛 = 1, 2, 3, …. (24) 

Combining Eq. (23) and (24), we get: 

∫ 𝐖𝑛
𝑇𝑀(𝐖𝑚)

𝐿

0

𝑑𝑥 = {
0, 𝑚 ≠ 𝑛,
𝑝𝑛 , 𝑚 = 𝑛.

 (25) 

Using the method of eigenfunction expansion, the solution 𝐯(𝑥, 𝑡) in Eq. (1) can be expanded 

in terms of eigenfunctions as: 

𝐯(𝑥, 𝑡) = ∑ 𝑞𝑛

∞

𝑛=1

(𝑡)𝐖𝑛(𝑥), (26) 

where 𝐯(𝑥, 𝑡) stands for [𝑣(𝑥, 𝑡) 𝛼(𝑥, 𝑡)]𝑇. Then the Eq. (1) can be written: 

∑
𝑑2𝑞𝑛(𝑡)

𝑑𝑡2

∞

𝑛=1

𝑀(𝐖𝑛(𝑥)) + ∑ 𝑞𝑛(𝑡)𝐿(𝐖𝑛(𝑥))

∞

𝑛=1

= [
𝑓(𝑥, 𝑡)

0
]. (27) 

Using Eq. (17), the above equation becomes: 

∑ [
𝑑2𝑞𝑛(𝑡)

𝑑𝑡2
+ 𝜔𝑛

2𝑞𝑛(𝑡)]

∞

𝑛=1

𝑀(𝐖𝑛(𝑥)) = [
𝑓(𝑥, 𝑡)

0
]. (28) 

Multiplying by 𝐖𝑚
𝑇 (𝑥) and integrating from 0 to 𝐿 results in: 

𝑑2𝑞𝑛(𝑡)

𝑑𝑡2
+ 𝜔𝑛

2𝑞𝑛(𝑡) =
1

𝑝𝑛

∫ 𝐖𝑛
𝑇(𝑥)

𝐿

0

[
𝑓(𝑥, 𝑡)

0
] 𝑑𝑥 = 𝑁𝑛(𝑡),   𝑛 = 1,2, …, (29) 

where: 

𝑁𝑛(𝑡) =
1

𝑝𝑛

∫ 𝐖𝑛

𝐿

0

(𝑥)𝑓(𝑥, 𝑡)𝑑𝑥 . (30) 
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The solution is: 

𝑞𝑛(𝑡) =
1

𝜔𝑛

∫ 𝑁𝑛(𝑡)
𝐿

0

sin𝜔𝑛(𝑡 − 𝜏)𝑑𝜏 + 𝑞𝑛(0)cos𝜔𝑛𝑡 +
1

𝜔𝑛

𝑑𝑞𝑛(𝑡)

𝑑𝑡
|
𝑡=0

sin𝜔𝑛𝑡, (31) 

where 𝑞𝑛(0) and 
𝑑𝑞𝑛(𝑡)

𝑑𝑡
|
𝑡=0

 can be obtained from the initial conditions. Then using Eq. (26), we 

can successfully get the forced response of the beam. 

3.2. Modeling of the cutting system 

Since the dynamic cutting operations are very complicated, the turning system which is 

investigated in this study was simplified to one-dimensional second-order orthogonal cutting 

model. When the deflection of the workpiece is neglected, the cutting system model is shown in 

Fig. 2, where the workpiece is unwrapped. However, now we consider it. First, the cutting 

governing equation is as follows: 

𝑚𝑦′′ + 𝑐𝑦′ + 𝑘𝑦 = 𝐹cos𝜃. (32) 

Here, 𝑦(𝑡) is tool vibration at time 𝑡 and the parameters 𝑚, 𝑐, and 𝑘 are the equivalent mass, 

damping, and stiffness of the cutting tool and tool holder, 𝜃 is the cutting angle and 𝐹(𝑡) is cutting 

force, which is given by:  

𝐹(𝑡) = 𝐶𝑏ℎ(𝑡), (33) 

where 𝐶 is cutting coefficient, 𝑏 is chip width, ℎ(𝑡) is the instantaneous chip thickness. We don’t 

consider the previous deflection of workpiece for convenience, so ℎ(𝑡) can be written as: 

ℎ(𝑡) = ℎ0(𝑡) − 𝑦(𝑡) + 𝑦(𝑡 − 𝑇) − 𝑣(𝑥, 𝑡). (34) 

 
Fig. 2. Cutting model which neglects the deflection of workpiece 

Here, ℎ0(𝑡) represents nominal chip thickness and the term 𝑦(𝑡) is the current offset of tool, 

𝑦(𝑡 − 𝜏) is the offset of tool previous cycle, 𝑇 represents the period for successive passages of 

tool and 𝑣(𝑥, 𝑡) represents the workpiece deflection. Because we only consider the end point 

cutting, the equivalence “𝑥 = 𝐿” is assumed. As the natural frequency of the workpiece is much 

higher than the spindle speed, we just consider the first mode dynamics. Substituting (26), (33), 

(34) into (32) and making a Laplace transformation, we can get: 

𝑚𝑠2𝑌(𝑠) + 𝑐𝑠𝑌(𝑠) + 𝑘𝑌(𝑠) = 𝐶𝑏[𝐻0(𝑠) − 𝑌(𝑠) + 𝑌(𝑠)𝑒−𝑇𝑠 − 𝑊1(𝐿)𝑄1(𝑠)]cos𝜃 , (35) 
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where: 

𝑊1(𝐿) = 𝐵1

[
 
 
 
 sin𝑎1𝐿 −

𝑎1(𝑎1
2 + 𝛾2𝑑1

2)sin𝑎1𝐿 + 𝑑1(𝑎1
2 + 𝛾2𝑑1

2)sinh𝑑1𝐿

𝑎1[(𝑎1
2 + 𝛾2𝑑1

2)cos𝑎1𝐿 + (𝑑1
2 + 𝛾2𝑎1

2)cosh𝑑1𝐿]
cos𝑎1𝐿

−
𝑎1

2 + 𝛾2𝑑1
2

𝑑1
2 + 𝛾2𝑎1

2

𝑑1

𝑎1
sinh𝑑1𝐿 +

𝑎1(𝑎1
2 + 𝛾2𝑑1

2)sin𝑎1𝐿 + 𝑑1(𝑎1
2 + 𝛾2𝑑1

2)sinh𝑑1𝐿

𝑎1[(𝑎1
2 + 𝛾2𝑑1

2)cos𝑎1𝐿 + (𝑑1
2 + 𝛾2𝑎1

2)cosh𝑑1𝐿]
cosh𝑑1𝐿

]
 
 
 
 

. 

The concentrated force can be written as: 

𝑓(𝑥, 𝑡) = 𝐹(𝑡)𝛿(𝑥 − 𝐿)cos𝜃. (36) 

Substituting (33), (34) into (29) and making a Laplace transformation, we can get: 

(𝑠2 + 𝜔1
2 + 𝐴1𝐶𝑏cos𝜃)𝑄(𝑠) =

𝐴1𝐶𝑏cos𝜃

𝑊1(𝐿)
[𝐻0(𝑠) − 𝑌(𝑠) + 𝑌(𝑠)𝑒−𝑇𝑠], (37) 

where 𝐴1=
𝑊1

2(𝐿)

𝑝1
. 

Combining (35) with (37), we can get: 

𝑌(𝑠)

𝐻0(𝑠)
=

𝑏𝐶𝐺(𝑠)𝐺1(𝑠)

1 + 𝑏𝐶𝐺(𝑠)𝐺1(𝑠)(1 − 𝑒−𝑇𝑠)
, (38) 

where: 𝐺(𝑠) =
cos𝜃

𝑚𝑠2+𝑐𝑠+𝑘
, 𝐺1(𝑠) =

𝑠2+𝜔1
2

𝑠2+𝜔1
2+𝐴1𝐶𝑏cos𝜃

. 

4. Stability analysis 

Based on Eq. (38), we can get the characteristic equation: 

1 + 𝑏𝐶𝐺(𝑠)𝐺1(𝑠)(1 − 𝑒−𝑇𝑠) = 0. (39) 

Substituting 𝑠 = 𝑗𝜔c, separating real and imaginary parts, the influences of natural frequencies 

have been included in the formula of the period for successive passages of tool 𝑇 and the depth of 

cut 𝑏, and solving for 𝑇 and 𝑏 generates the following critical values: 

𝑏2 =
(𝑚𝜔𝑐

2 − 𝑘)2 + (𝑐𝜔𝑐)
2

2𝐶(𝑚𝜔𝑐
2 − 𝑘)cos𝜃

(1 +
𝐴1𝐶𝑏2cos𝜃

𝜔1
2 − 𝜔𝑐

2
) = 𝑏1𝑅1, (40) 

where: 

𝑏1 =
(𝑚𝜔𝑐

2 − 𝑘)2 + (𝑐𝜔𝑐)
2

2𝐶(𝑚𝜔𝑐
2 − 𝑘)cos𝜃

,           𝑅1 = (1 +
𝐴1𝐶𝑏2cos𝜃

𝜔1
2 − 𝜔𝑐

2
), 

𝑇 =
2

𝜔𝑐

[(𝑛 +
1

2
)𝜋 + atan

𝑐𝜔𝑐

𝑚𝜔𝑐
2 − 𝑘

]. 

(41) 

5. Results comparison and analysis 

First, we consider a 0.5-m-long and 0.06-m-radius workpiece and compare the stability 

analysis results with the other model in which the elastic effects of workpiece are ignored. The 

corresponding parameters of tool and workpiece are as follows in Table 1.  

In Eq. (40), 𝑏1 represents the chip width which ignores the elastic effects of workpiece, and 

the size of 𝑅1 reflects the size of the gap. Besides, the expression form of 𝑇 is identical for two 
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cases. Therefore, spindle speed in revolution per second which is computed as 𝑛 = 1/𝑇 is also the 

same. It can be seen that (41) has multiple solutions due to different values of 𝑛. Thus, (40) and 

(41) define the stability limits of the system. 

 
a) 

 
b) 

Fig. 3. a) Comparison of the critical chip width between Timoshenko beam and that ignores the elastic 

effects of workpiece; b) the differential percentage of the critical chip width between Timoshenko beam 

and that ignores the elastic effects of workpiece 

Fig. 3(a) shows the results of the critical chip width in which the solid line represents the 

situation where the elastic effects of workpiece are ignored and the dashed line represents the 

situation where we consider the workpiece as a Timoshenko beam. Fig. 3(b) shows the variation 

of percentage difference in chip width between them that is 𝑏2– 𝑏1 𝑏1⁄ × 100%. 

From the above comparison, we can see the critical chip width corresponding to two different 

cases are different. Besides, when we consider the deflection of workpiece, it becomes larger, and 

the smaller the value of 𝑛, the larger the percentage of critical chip width difference. 

Table 1. The parameters of tool and workpiece [6, 14] 

Parameters Tool Workpiece (steel) 

𝑚, Kg 50 – 

𝑐, kg/s 2×103, 4×103, 6×103 – 

𝐾, N/m 2×107, 4×107, 6×107 – 

𝐶, N/m2 2×109 – 

𝜃, deg 70 – 

𝐸, GPa – 180 

𝜌, Kg/m3 – 7850 

𝐿, m – 0.05, 0.25, 0.3, 0.5 

𝜈 – 0.29 

𝑘′ – 0.8855 

𝐷, m – 0.012, 0.06, 0.12, 0.14, 0.16 

Next, we explore the influences of the length, radius, slenderness, damping and stiffness of the 

cutting tool on the proposed model. 

5.1. Same radius for different lengths 

In this case, we compare the difference in critical chip width between the case where the elastic 
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effects of workpiece are ignored and a Timoshenko beam workpiece with a radius of 0.06 m for 

two different values in length as Figure 4. It shows the longer the length, the larger the percentage 

of critical chip width difference. Larger workpiece has smaller natural frequency but larger 

deflection and larger critical chip width. 

5.2. Same length for different radius 

Figure 5 shows the percentage of critical chip width difference for three different workpieces 

of constant length 0.5 m with different radius. It can be seen that the percentage difference 

decreases progressively with the increase of radius. It can be explained that the smaller the radius, 

the larger the deflection, which results in larger critical chip width. 

  

Fig. 4. Differential percentage of critical  

chip width for same radius (0.06 m)  

and different length of workpiece 

Fig. 5. Differential percentage of critical  

chip width for same length (0.5 m)  

and different radius of workpiece 

5.3. Same slenderness ratios for different dimensions 

Figure 6 presents the results for two workpieces with the same slenderness ratio but different 

dimensions. One has a length of 0.5 m and a radius of 0.06 m, and the other has a length of 0.25 m 

and a radius of 0.03 m. As it is easy to cause larger deflections for the latter, it has larger percentage 

of critical chip width difference. 

 
Fig. 6. Differential percentage of critical chip width for the same slenderness ratio of steel workpiece 
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5.4. Effect of tool damping 

Damping is a very important factor for stability analysis. Figure 7 shows the influence of 

damping on the critical chip width, and the workpiece has a length of 0.5 m and a radius of 0.06 m. 

In order to facilitate comparison, the spindle speed is selected as 200 rev/s. It can be seen that the 

larger the tool damping, the larger the critical chip width. Figure 8 presents percentage of critical 

chip width difference, and it also shows the larger the tool damping, the larger the percentage of 

critical chip width difference. 

  

Fig. 7. Effect of the cutting tool damping in the 

critical chip width 

Fig. 8. Differential percentage of critical chip width 

for different damping of tool 

  

  

Fig. 9. Effect of tool stiffness in the  

critical chip width 

Fig. 10. Differential percentage of critical chip width 

for different stiffness of cutting tool 

5.5. Effect of tool stiffness 

Tool stiffness is also very important for stability analysis. Figure 9 shows the influence of tool 

stiffness on the critical chip width when workpiece still has a length of 0.5 m and a radius of 

0.06 m. In order to facilitate comparison, the spindle speed is selected as 200 rev/s. Figure 9 shows 

a special case: the critical chip width decreases with the increase of tool stiffness in a certain range, 
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and it is opposite in another range. The result demonstrates that it is necessary to select appropriate 

tool stiffness. Figure 10 presents the percentage of critical chip width difference, and it is different 

for different cutting stiffness. 

5.6. Comparisons between present model and Euler-Bernoulli beam 

Just as discussed before, Euler-Bernoulli beam neglects the transverse shear and the rotary 

inertia which brings some errors. Through comparisons between present model and 

Euler-Bernoulli beam, we can find the superiority of the former. Figure 11 shows the percentage 

of critical chip width difference for one workpiece which has a length of 0.05 m and a radius of 

0.006 m. Timoshenko beam has larger critical chip width than Euler-Bernoulli beam, and it can 

be seen that the maximum difference between the two critical chip widths is over 17 %. 

Besides, The Timoshenko model is a major improvement especially for high-frequency 

responses where shear or rotary elects cannot be neglected. With the great increase of turning 

speed, Timoshenko model will have a greater advantage compared to Euler-Bernoulli beam model. 

 
Fig. 11. The differential percentage of the critical chip width between Timoshenko beam  

and Euler-Bernoulli beam 

6. Conclusions 

In this paper, a new analytical model considering both tool and workpiece dynamics is 

proposed to predict chatter in turning. The workpiece is modeled as a more realistic and accurate 

Timoshenko beam which adds the effect of shear as well as the effect of rotation to the 

Euler-Bernoulli beam. The forced response of the Timoshenko beam is derived by an 

eigenfunction expansion approach. Based on regenerative chatter mechanisms, the stability lobe 

diagram is obtained. Compared with the workpiece model without the deflection and the one by 

using Euler-Bernoulli model, the present model can obtain larger critical chip width and larger 

stability area. Furthermore, chip width deviation between the present model and the workpiece 

model neglecting the deflection is studied by varying some parameters, including the geometric 

dimensions of the workpiece, damping of the cutting tool. It is found that either decreasing the 

radius of workpiece or increasing damping of cutting tool can raise the deviation, when it is more 

necessary to apply the new model presented in this paper. In addition, the effects of damping and 

stiffness of the cutting tool on the dynamic stability of the proposed analytical model have been 

given. The results show that it can provide larger critical chip width by increasing damping of the 

tool. However, the stiffness has the opposite effect in a certain range and beyond the range it has 

the same effect as the cutting tool damping. 

As the new model can obtain more accurate stability lobe diagram, it is significant to choose 
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the reasonable parameters, for instance, the best spindle speed and chip width. Moreover, active 

control is also necessary to allow for a sufficiently broad range of stability, such as increasing the 

cutting tool damping and selecting appropriate cutting tool stiffness. 
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