
 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEBRUARY 2014. VOLUME 16, ISSUE 1. ISSN 1392-8716 1 

1124. On the periodic solutions of the nonlinear 

oscillators 

Abdelhalim Ebaid1, Shaher Momani2, Shih-Hsiang Chang3, Mona D. Aljoufi4 
1, 4Department of Mathematics, Faculty of Science, University of Tabuk 

P. O. Box 741, Tabuk 71491, Saudi Arabia 
2Department of Mathematics, Faculty of Science, University of Jordan, Amman 11942, Jordan 
3Department of Mechanical Engineering, Far East University 

Jhonghua Road, Tainan 74448, Taiwan, R. O. C. 
1Corresponding author 

E-mail: 1halimgamil@yahoo.com, 1aebaid@ut.edu.sa 

(Received 10 July 2013; received in revised form 29 October 2013; accepted 5 November 2013) 

Abstract. In this paper, a new approach is introduced to overcome the difficulty of applying the 

differential transformation method to the nonlinear oscillators described by  
�̈�(𝑡) + 𝑓(𝑥, �̇�(𝑡), |𝑥(𝑡)|) = 0. The obtained approximate periodic solutions are compared with 

those in open literatures and the results reveal that the present approach is very effective and 

convenient for a class of nonlinear oscillators with discontinuities. 
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1. Introduction 

Since the beginning of 1986, Zhou [1] and Pukhov [2] have developed a so-called differential 

transformation method (DTM) for electrical circuits problems. The method has been used 

extensively to solve effectively various linear and nonlinear ordinary, partial and integro-

differential equations [3-16]. However this method has a difficulty when applied to differential 

equations with discontinuous terms. So the main purpose of the present research is not only to 

solve this difficulty but also to show how to obtain the approximate periodic solutions for 

nonlinear oscillators with discontinuities. To our best knowledge, there is no paper reported in the 

literature on the application of the differential transformation method to differential equations with 

discontinuities. 

It is well known that DTM constructs the solution in the form of a truncated series which is 

periodic only in a very small region [17]. In order to overcome this difficulty, a reliable 

aftertreatment (AT) technique has been developed recently in [18] to obtain the approximate 

periodic solutions in a wider range. As shown in [18], the proposed aftertreatment technique splits 

into two types, named as (Sine-AT technique, SAT) and (Cosine-AT technique, CAT) and for 

illustration we will re-introduce the basic idea of the CAT technique which will be used in this 

paper. It was shown in [18] that the approximate periodic solutions have been obtained without 

any need for Pade approximants or Laplace transform which may give the SAT and CAT 

techniques some power if compared with the modified differential transform method [17, 19]. 

Very recently Merdan and Gokdoan [19] showed that the Cosine-AT and Sine-AT give same 

results obtained by using the modified differential transform method and the classical fourth-order 

Runge-Kutta (RK4) method. 

The rest of this paper is organized as follows: in the next section (Section 2) a brief description 

of the one-dimensional DTM is provided; in Sections 3 the basic idea of the Cosine-aftertreatment 

technique is discussed; in Section 4 the proposed techniques are implemented to obtain the 

approximate periodic solutions for three nonlinear oscillators with discontinuities; in Sections 5 

and 6 some conclusions are given. 

2. One-dimensional differential transform 

The differential transform of a function 𝑥(𝑡) is defined as follows: 
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𝑋(𝑘) =
1

𝑘!
[
𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘
]

𝑡=0

. (1) 

In Eq. (1) 𝑥(𝑡) is the original function and 𝑋(𝑘) is the transformed function. The differential 

inverse transform of 𝑋(𝑘) is defined as: 

𝑥(𝑡)  = ∑ 𝑋(𝑘)𝑡𝑘.

∞

𝑘=0

 (2) 

So: 

𝑥(𝑡)  = ∑
𝑡𝑘

𝑘!
[
𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘
]

𝑡=0

.

∞

𝑘=0

 (3) 

Eq. (3) implies that the concept of differential transform is derived from the Taylor series 

expansion. In actual applications the function 𝑥(𝑡) is expressed by a truncated series and Eq. (2) 

can be written as: 

𝛷𝑁(𝑡) = ∑ 𝑋(𝑡)𝑡𝑘.

𝑁

𝑘=0

 (4) 

Some of the fundamental mathematical operations performed by the differential transform 

method are listed in Table 1. 

Table 1. The fundamental operations of one-dimensional DTM 

Original function 𝑥(𝑡) Transformed function 𝑋(𝑘) 

𝛼𝑢(𝑡)  𝛽𝑣(𝑡)−
+   𝛼𝑈(𝑡)  𝛽𝑉(𝑡)−

+   

𝑑𝑚𝑥(𝑡)

𝑑𝑡𝑚
  

(𝑘+𝑚)!

𝑘!
𝑋(𝑘 + 𝑚)  

𝑢(𝑡)𝑣(𝑡)  ∑ 𝑈(𝐼)𝑉(𝑘 − 𝐼)𝐾
𝐼=0   

𝑢(𝑡)𝑣(𝑡)𝑤(𝑡)  ∑ ∑ 𝑈(𝐼)𝑉(𝑚)𝑊(𝑘 − 𝐼 − 𝑚)𝑘−𝐼
𝑚=0

𝑘
𝐼=0   

𝑢(𝑡) ∫ 𝑣(𝑡)𝑑𝑡
𝑡

0
  ∑ 𝑈(𝑘 − 𝐼)

𝑉(𝐼−1)

𝐼
, 𝑘 ≥ 1𝑘

𝐼=1   

𝑡𝑚  𝛿(𝑘 − 𝑚) = 1 if 𝑘 = 𝑚, 0 if 𝑘 ≠ 𝑚  

𝑒𝑥  
1

𝑘!
  

sin(𝜆𝑡 + 𝜔)  
𝜆𝑘

𝑘!
sin (

𝑘𝜋

2
+ 𝜔)  

cos(𝜆𝑡 + 𝜔)  
𝜆𝑘

𝑘!
cos (

𝑘𝜋

2
+ 𝜔)  

3. Cosine-aftertreatment technique (CAT-technique) 

If the truncated series given by Eq. (4) is expressed only in even-powers of the independent 

variable 𝑡, i. e.: 

𝛷𝑁(𝑡) = ∑ 𝑋(2𝑘)𝑡2𝑘

𝑁

𝑘=0

, 𝑋(2𝑘 + 1) = 0 ∀𝑘 = 0, 1, … ,
𝑁

2
− 1, 𝑁, is even, (5) 
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then the Cosine-aftertreatment technique (CAT-technique) is based on the assumption that this 

truncated series can be expressed as another finite series in terms of the cosine trigonometric 

functions with different amplitudes and frequencies: 

𝛷𝑁(𝑡) = ∑ 𝜆𝑗cos(𝛺𝑗𝑡)

𝑛

𝑗=1

= 𝜆1 cos(𝛺1𝑡) + 𝜆2 cos(𝛺2𝑡) + ⋯ + 𝜆𝑛 cos(𝛺𝑛𝑡), (6) 

where 𝑛 is finite. 

Our main question here is how to find the values of 𝜆𝑗 and 𝛺𝑗, 𝑗 =  0, … , 𝑛. For answer we 

begin by expanding both sides of Eq. (6) as power series of 𝑡 to obtain: 

𝑋(0) + 𝑋(2)𝑡2 + 𝑋(4)𝑡4 + 𝑋(6)𝑡6 + ⋯ + 𝑋(𝑁)𝑡𝑁

= ∑ 𝜆𝑗

𝑛

𝑗=1

− (∑ 𝜆𝑗

𝑛

𝑗=1

𝛺𝑗
2)

𝑡2

2!
+ (∑ 𝜆𝑗

𝑛

𝑗=1

𝛺𝑗
4)

𝑡4

4!
− (∑ 𝜆𝑗

𝑛

𝑗=1

𝛺𝑗
6)

𝑡6

6!
+ (∑ 𝜆𝑗

𝑛

𝑗=1

𝛺𝑗
8)

𝑡8

8!

− (∑ 𝜆𝑗

𝑛

𝑗=1

𝛺𝑗
10)

𝑡10

10!
+ ⋯. 

(7) 

Now the equation of the coefficients of like powers yields: 

𝑡0 : ∑ 𝜆𝑗

𝑛

𝑗=1

= 𝑋(0),    𝑡2 : ∑ 𝜆𝑗

𝑛

𝑗=1

𝛺𝑗
2 = −2! 𝑋(2), 

𝑡4 : ∑ 𝜆𝑗

𝑛

𝑗=1

𝛺𝑗
4 = −4! 𝑋(4),    𝑡6 : ∑ 𝜆𝑗

𝑛

𝑗=1

𝛺𝑗
6 = −6! 𝑋(6). 

(8) 

In practical applications it is sufficient to express the truncated series 𝛷𝑁(𝑡) in terms of two 

or three cosines with different amplitudes and frequencies. If we choose to express 𝛷𝑁(𝑡) as an 

approximate periodic solution in terms of two cosines with two different amplitudes, 𝜆1 and 𝜆2, 
and two different frequencies, 𝛺1 and 𝛺2, we can rewrite Eq. (6) for 𝑁 = 6 and 𝑛 = 2 as: 

𝛷6(𝑡) = ∑ 𝜆𝑗cos(𝛺𝑗𝑡)

2

𝑗=1

= 𝜆1 cos(𝛺1𝑡) + 𝜆2 cos(𝛺2𝑡). (9) 

In this case the four unknowns 𝜆1, 𝜆2, 𝛺1 and 𝛺2 can be determined by solving the following 

system of nonlinear algebraic equations analytically: 

𝜆1 +  𝜆2 = 𝑋(0), 
𝜆1𝛺1

2 + 𝜆2𝛺2
2 = −2! 𝑋(2),  

𝜆1𝛺1
4 + 𝜆2𝛺2

4 = 4! 𝑋(4), 
𝜆1𝛺1

6 + 𝜆2𝛺2
6 = −6! 𝑋(6). 

(10) 

Moreover, if we choose to express 𝛷𝑁(𝑡) as more accurate periodic solution in terms of three 

cosines, we can rewrite Eq. (6) for 𝑁 = 10 and 𝑛 = 3 as: 
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𝛷10(𝑡) = ∑ 𝜆𝑗cos(𝛺𝑗𝑡)

3

𝑗=1

= 𝜆1 cos(𝛺1𝑡) + 𝜆2 cos(𝛺2𝑡) + 𝜆3 cos(𝛺3𝑡). (11) 

In this case the six unknowns 𝜆1, 𝜆2, 𝜆3, 𝛺1, 𝛺2  and 𝛺3  can be determined by solving the 

following system of nonlinear algebraic equations numerically: 

𝜆1 + 𝜆2 + 𝜆3 = 𝑋(0), 
𝜆1𝛺1

2 + 𝜆2𝛺2
2 + 𝜆3𝛺3

2 = −2! 𝑋(2), 
𝜆1𝛺1

4 + 𝜆2𝛺2
4 + 𝜆3𝛺3

4 = 4! 𝑋(4), 
𝜆1𝛺1

6 + 𝜆2𝛺2
6 + 𝜆3𝛺3

6 = −6! 𝑋(6), 
𝜆1𝛺1

8 + 𝜆2𝛺2
8 + 𝜆3𝛺3

8 = 8! 𝑋(8), 
𝜆1𝛺1

10 + 𝜆2𝛺2
10 + 𝜆3𝛺3

10 = −10! 𝑋(10). 

(12) 

4. Applications 

In this section we discuss the application of the DTM with the proposed Cosine-AT technique 

to obtain the periodic solutions of nonlinear oscillators with discontinuities. As explained in the 

previous section, the use of the Cosine-AT technique is based on obtaining the series solution of 

the problem under consideration as a finite polynomial in even powers of 𝑡. 

4.1. Example 1 

Consider the nonlinear oscillator with a discontinuous term [20-23]: 

𝑑2𝑥

𝑑𝑡2
+ 𝑥|𝑥| = 0, (13) 

with the initial conditions: 

𝑥(0) = 𝑎, �̇�(0) = 0, 𝑎 ≥ 0. (14) 

In Eq. (13) the major source of the difficulty in using the differential transformation method is 

the existence of the discontinuous term |𝑥|. In order to overcome this difficulty we introduce a 

new approach to deal with such term. Firstly we suppose that: 

𝑓(𝑥) = |𝑥|, (15) 

which can be written as: 

𝑓2(𝑥) = 𝑥2. (16) 

We then take a differentiation with respect to 𝑡 to obtain: 

𝑓
𝑑𝑓

𝑑𝑡
= 𝑥

𝑑𝑥

𝑑𝑡
. (17) 

By this Eq. (13) becomes: 

𝑑2𝑥

𝑑𝑡2
+ 𝑥𝑓 = 0. (18) 

Now by applying the differential transform to Eqs. (14), (17) and (18) we obtain the following 



1124. ON THE PERIODIC SOLUTIONS OF THE NONLINEAR OSCILLATORS.  

ABDELHALIM EBAID, SHAHER MOMANI, SHIH-HSIANG CHANG, MONA D. ALJOUFI 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEBRUARY 2014. VOLUME 16, ISSUE 1. ISSN 1392-8716 5 

recurrence scheme for 𝑘 ≥ 0: 

𝑋(0) = 𝑎, 𝑋(1) = 0, 
𝐹(0) = |𝑥(0)| = 𝑎, 

(𝑘 + 1)(𝑘 + 2)𝑋(𝑘 + 2) + ∑ 𝑋(𝑘 − 𝑚)𝐹(𝑚) = 0,

𝑘

𝑚=0

 

∑ (𝑚 + 1)[𝐹(𝑚 + 1)𝐹(𝑘 − 𝑚) − 𝑋(𝑚 + 1)𝑋(𝑘 − 𝑚)] = 0.

𝑘

𝑚=0

 

(19) 

Using Eqs. (19) by taking 𝑁 = 6, we obtain a system of algebraic equations for 𝑘 = 0, … , 4. 

By solving this system for the values of 𝑋(2), … , 𝑋(6) by using Mathematica, we get: 

𝑋(2) = −
𝑎2

2
, 𝑋(3) = 0, 𝑋(4) =

𝑎3

12
, 𝑋(5) = 0, 𝑋(6) = −

𝑎4

72
. (20) 

From the inverse transformation rule Eq. (4) we can construct the following truncated series 

solution up to 𝑡6: 

𝛷6(𝑡) = 𝑎 −
𝑎2

2
𝑡2 +

𝑎3

12
𝑡4 −

𝑎4

72
𝑡6. (21) 

Since the truncated series 𝛷6(𝑡) given by the last equation is expressed as a polynomial in 

even powers of 𝑡, we can now deal with it by using the Cosine-AT technique. We assume an 

approximate periodic solution in the form: 

𝛷6(𝑡) = ∑ 𝜆𝑗 cos(𝛺𝑗𝑡)

2

𝑗=1

= 𝜆1 cos(𝛺1𝑡) + 𝜆2 cos(𝛺2𝑡). (22) 

In order to find 𝜆1, 𝜆2, 𝛺1 and 𝛺2, we insert 𝑋(0), 𝑋(2), 𝑋(4) and 𝑋(6) presented above into 

system Eq. (10) to get a system of four nonlinear algebraic equations. By solving this system 

analytically for 𝜆1, 𝜆2, 𝛺1 and 𝛺2, we obtain: 

𝜆1 =
1

20
(10 − 3√10)𝑎, 𝜆2 =

1

20
(10 + 3√10)𝑎, 

𝛺1 = √(4 + √10)𝑎, 𝛺2 = √(4 − √10)𝑎. 

(23) 

Therefore we can write the approximate periodic solution for the Eqs. (13-14) as: 

𝑥approx(𝑡) =
1

20
(10 − 3√10)𝑎 × cos (√(4 + √10)𝑎𝑡) +

1

20
(10 + 3√10)𝑎 

        × cos (√(4 − √10)𝑎𝑡). 

(24) 

Here it should be noted that this approximate periodic solution is valid regardless of the 

oscillation amplitude 𝑎 , i. e., for 0 < 𝑎 < +∞ . In [20] the authors applied the parameter 

expansion method to Eqs. (13-14) and the following approximate periodic solution has been 

obtained: 
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𝑥 = 𝑎 cos (√
8𝑎

3𝜋
𝑡). (25) 

Eq. (25) has been also obtained by the authors in [21] and [23] by using the max-min approach 

and He’s amplitude-frequency approach, respectively. The exact displacement of Eqs. (13-14) is 

given by [21]: 

𝑥 = 𝑎 cos [
𝜋√6𝑎𝑡

2𝐵 (
1
2

,
1
3

)
], (26) 

where 𝐵(∗,∗) denotes the Beta function. 

In order to check the effectiveness of our approach we compare our result Eq. (24) with the 

approximate periodic solution obtained by the parameter-expansion and the max-min methods, 

given by Eq. (25) and the exact displacement Eq. (26) in Figs. 1-4 at different values of  

𝑎 = 1, 10, 100, 1000. From these figures it can be concluded that the suggested approach with 

the Cosine-AT technique leads to approximate periodic solutions with good accuracy for all 

amplitudes. 

 
Fig. 1. Comparison of the present approach, Eq. (24) with the parameter-expansion method [20], Eq. (25) 

and the exact solution (max-min [21]), Eq. (26) for example 1, at 𝑎 = 1 

 
Fig. 2. Comparison of the present approach, Eq. (24) with the parameter-expansion method [20], Eq. (25) 

and the exact solution (max-min [21]), Eq. (26) for example 1, at 𝑎 = 10 
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Fig. 3. Comparison of the present approach, Eq. (24) with the parameter-expansion method [20], Eq. (25) 

and the exact solution (max-min [21]), Eq. (26) for example 1, at 𝑎 = 100 

 
Fig. 4. Comparison of the present approach, Eq. (24) with the parameter-expansion method [20], Eq. (25) 

and the exact solution (max-min [21]), Eq. (26) for example 1, at 𝑎 = 1000 

4.2. Example 2 

Consider the nonlinear oscillator with a discontinuous term [24-25]: 

𝑑2𝑥

𝑑𝑡2
+ 𝑥 + 휀𝑥|𝑥| = 0, 𝜖 > 0, (27) 

with the initial conditions: 

𝑥(0) = 𝑎, �̇�(0) = 0. (28) 

By the same analysis as in the previous example, we can easily obtain the following recurrence 

scheme for 𝑘 ≥ 0: 

𝑋(0) = 𝑎, 𝑋(1) = 0, 
𝐹(0) = |𝑥(0)| = 𝑎, 

(𝑘 + 1)(𝑘 + 2)𝑋(𝑘 + 2) + 𝑋(𝑘) + 𝜖 ∑ 𝑋(𝑘 − 𝑚)𝐹(𝑚) = 0,

𝑘

𝑚=0

 

∑ (𝑚 + 1)[𝐹(𝑚 + 1)𝐹(𝑘 − 𝑚) − 𝑋(𝑚 + 1)𝑋(𝑘 − 𝑚)] = 0.

𝑘

𝑚=0

 

(29) 
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Using the above relations by taking 𝑁 = 6, we obtain a system of algebraic equations for  
𝑘 = 0, … , 4. By solving this system for the values of 𝑋(2), … , 𝑋(6), we get: 

𝑋(2) = −
1

2
(1 + 𝜖𝑎)𝑎, 𝑋(3) = 0, 𝑋(4) =

1

24
(1 + 3𝜖𝑎 + 2𝜖2𝑎2)𝑎, 𝑋(5) = 0, 

𝑋(6) = −
1

720
(1 + 11𝜖𝑎 + 20𝜖2𝑎2 + 10𝜖3𝑎3)𝑎. 

(30) 

Hence we have the following truncated series solution up to 𝑡6: 

𝛷6(𝑡) = 𝑎 −
1

2
(1 + 𝜖𝑎)𝑎𝑡2 +

1

24
(1 + 3𝜖𝑎 + 2𝜖2𝑎2)𝑎𝑡4 

          −
1

720
(1 + 11𝜖𝑎 + 20𝜖2𝑎2 + 10𝜖3𝑎3)𝑎𝑡6. 

(31) 

Here 𝛷6(𝑡) is also expressed as a polynomial in even powers of 𝑡 and as shown in the previous 

example we can deal with it by using the Cosine-AT technique. We also assume an approximate 

periodic solution in the form of Eq. (22). This leads to the approximate periodic solution: 

𝑥approx(𝑡) =
(5 + 6𝜖𝑎 + √25 + 64𝜖𝑎 + 40𝜖2𝑎2)𝑎

2√25 + 64𝜖𝑎 + 40𝜖2𝑎2
 

           × cos (√
1

2
(7 + 8𝜖𝑎 − √25 + 64𝜖𝑎 + 40𝜖2𝑎2) 𝑡) 

           +
(−5 − 6𝜖𝑎 + √25 + 64𝜖𝑎 + 40𝜖2𝑎2)𝑎

2√25 + 64𝜖𝑎 + 40𝜖2𝑎2
 

           × cos (√
1

2
(7 + 8𝜖𝑎 + √25 + 64𝜖𝑎 + 40𝜖2𝑎2) 𝑡), 

(32) 

which is also periodic for any given values of 𝜖 and 𝑎. The approximate periodic solution obtained 

by the variational iteration method [24] is given by: 

𝑥 = 𝑎 cos (√
8𝜖𝑎

3𝜋
𝑡). (33) 

 
Fig. 5. Comparison of the present approach, Eq. (32) with the variational iteration method, Eq.  (33) and 

the numerical solution for example 2, at 𝜖 = 0.1 and 𝑎 = 1 
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Fig. 6. Comparison of the present approach, Eq. (32) with the variational iteration method, Eq. (33) and the 

numerical solution for example 2, at 𝜖 = 0.2 and 𝑎 = 10 

 
Fig. 7. Comparison of the present approach, Eq. (32) with the variational iteration method, Eq. (33) and the 

numerical solution for example 2, at 𝜖 = 0.3 and 𝑎 = 100 

 
Fig. 8. Comparison of the present approach, Eq. (32) with the variational iteration method, Eq. (33) and the 

numerical solution for example 2, at 𝜖 = 0.01 and 𝑎 = 1000 

In Figs. 5-8 we compared our analytical approximate periodic solution in Eq. (32) with the 

variational iteration result Eq. (33) and the numerical solution obtained by Mathematica using the 

“NDSolve” command. It can be observed from these figures that our result in Eq. (32) provides 

excellent agreement with variational iteration method and the numerical solution regardless of the 

oscillation amplitude 𝑎. 
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4.3. Example 3 

This example considers the following equation [24, 25]: 

𝑑2𝑥

𝑑𝑡2
+ 𝛽𝑥3 + 휀𝑥|𝑥| = 0, 𝜖 > 0, (34) 

with the initial conditions: 

𝑥(0) = 𝑎, �̇�(0) = 0, (35) 

where the parameter 𝛽 is considered real. Proceeding as above, we obtain for 𝑘 ≥ 0: 

𝑋(0) = 𝑎, 𝑋(1) = 0, 
𝐹(0) = |𝑥(0)| = 𝑎, 

(𝑘 + 1)(𝑘 + 2)𝑋(𝑘 + 2) + 𝛽 ∑ ∑ 𝑋(𝑘 − 𝑚)𝑋(𝑚 − 𝑙)

𝑚

𝑙=0

𝑋(𝑙)

𝑘

𝑚=0

+ 𝜖 ∑ 𝑋(𝑘 − 𝑚)𝐹(𝑚) = 0,

𝑘

𝑚=0

 

∑ (𝑚 + 1)[𝐹(𝑚 + 1)𝐹(𝑘 − 𝑚) − 𝑋(𝑚 + 1)𝑋(𝑘 − 𝑚)] = 0.

𝑘

𝑚=0

 

(36) 

Using 𝑁 = 6, a system of algebraic equations is obtained for 𝑘 = 0, … , 4. On solving this 

system for 𝑋(2), … , 𝑋(6), yields: 

𝑋(2) = −
1

2
(𝜖 + 𝛽𝑎)𝑎2, 𝑋(3) = 0, 𝑋(4) =

1

24
(3𝛽2𝑎2 + 5𝜖𝛽𝑎 + 2𝜖2)𝑎3, 

𝑋(5) = 0, 𝑋(6) = −
1

720
(27𝛽3𝑎3 + 63𝜖𝛽2𝑎2 + 46𝜖2𝛽𝑎 + 10𝜖3)𝑎4. 

(37) 

Therefore the approximate series solution can be written as: 

Φ6(𝑡) = 𝑎 −
1

2
(𝜖 + 𝛽𝑎)𝑎2𝑡2 +

1

24
(3𝛽2𝑎2 + 5𝜖𝛽𝑎 + 2𝜖2)𝑎3𝑡4 

       −
1

720
(27𝛽3𝑎3 + 63𝜖𝛽2𝑎2 + 46𝜖2𝛽𝑎 + 10𝜖3)𝑎4𝑡6, 

(38) 

which is also expressed as a polynomial in even powers of 𝑡. The Cosine-AT technique leads to 

the approximate periodic solution: 

𝑥approx(𝑡) =
(𝜇1 + √𝜎)𝑎

2√𝜎
cos (√

(𝜇2 − √𝜎)𝑎

2𝜏
𝑡) +

(−𝜇1 + √𝜎)𝑎

2√𝜎
cos (√

(𝜇2 + √𝜎)𝑎

2𝜏
𝑡), (39) 

where 𝜇1, 𝜇2, 𝜎 and 𝜏 are given as: 

𝜇1 = 20𝛽2𝑎2 + 25𝜖𝛽𝑎 + 6𝜖2, 𝜇2 = 24𝛽2𝑎2 + 31𝜖𝛽𝑎 + 8𝜖2, 𝜏 = 𝜖 + 2𝛽𝑎, 
𝜎 = 432𝛽4𝑎4 + 1080𝜖𝛽3𝑎3 + 937𝜖2𝛽2𝑎2 + 328𝜖3𝛽𝑎 + 40𝜖4. 

(40) 

In [24] the approximate periodic solution was obtained by using the variational iteration 



1124. ON THE PERIODIC SOLUTIONS OF THE NONLINEAR OSCILLATORS.  

ABDELHALIM EBAID, SHAHER MOMANI, SHIH-HSIANG CHANG, MONA D. ALJOUFI 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEBRUARY 2014. VOLUME 16, ISSUE 1. ISSN 1392-8716 11 

method and given by: 

𝑥 = 𝑎 cos (√
3𝛽𝑎2

4
+

8𝜖𝑎

3𝜋
𝑡). (41) 

It should be noted that the solution Eq. (39) is always periodic under the two conditions: 

𝜎 > 0, 𝜇2 − √𝜎 > 0, 𝜇2 + √𝜎 > 0, 𝜏 > 0, (42) 

and: 

𝜎 > 0, 𝜇2 − √𝜎 < 0, 𝜇2 + √𝜎 < 0, 𝜏 < 0. (43) 

Examples for the values of 𝛽 and 𝜖 that satisfy these conditions are shown graphically by 

Figs. 9-12 at different values of the amplitude 𝑎. The numerical results are depicted and compared 

with other solutions in Figs. 13-16 at different values of 𝑎. The results show that at 𝑎 = 1 the 

Cosine-after treatment technique agrees with the other methods in a wider range of 𝑡. However 

this agreement decreases with increasing 𝑎. It may be concluded that at large values of 𝑎 we have 

to increase the accuracy of our technique by increasing 𝑛 in Eq. (6). 

  
Fig. 9. Fig. 10. 

  
Fig. 11. Fig. 12. 
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Fig. 13. Comparison of the present Cosine aftertreatment technique, CAT-Tech., Eq. (39) with the 

variational iteration method, Eq. (41) for example 3, at 𝑎 = 1, 𝛽 = −0.5 and 𝜖 = 4 

 
Fig. 14. Comparison of the present Cosine aftertreatment technique, CAT-Tech., Eq. (39) with the 

variational iteration method, Eq. (41) for example 3, at 𝑎 = 10, 𝛽 = 1 and 𝜖 = 3 

 
Fig. 15. Comparison of the present Cosine aftertreatment technique, CAT-Tech., Eq. (39) with the 

variational iteration method, Eq. (41) for example 3, at 𝑎 = 100, 𝛽 = 3 and 𝜖 = 4 
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Fig. 16. Comparison of the present Cosine aftertreatment technique, CAT-Tech., Eq. (39) with the 

variational iteration method, Eq. (41) for example 3, at 𝑎 = 1000, 𝛽 = 3 and 𝜖 = 4 

5. Remarks 

In several papers [26-30] many authors showed that the DTM is nothing more than a disguised 

version of the Taylor series method. In this regard we agree with their point of view in the case 

when the DTM and Taylor series are applied to search for a series solution for a differential 

equation in which the discontinuous terms are not involved. However it may be difficult to directly 

apply Taylor series method to obtain the series solutions for the present class of ordinary 

differential equations with discontinuous terms. 

6. Conclusions 

To our best knowledge, this is the first paper reported on the application of the differential 

transformation method to nonlinear oscillators with discontinuities. A new approach has been 

proposed to overcome the difficulty arising from the existence of the discontinuous terms. Three 

examples are solved and the obtained results demonstrate that the discontinuous function will not 

affect much the effectiveness and convenience of the differential transformation method. 
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