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Abstract. In this paper, a new approach is introduced to overcome the difficulty of applying the
differential  transformation method to the nonlinear oscillators described by
©0 "Qofwofgwos 1 The obtained approximate periodic solutions are compared with
thosein open literatures and the results reveal that the present approach is very effective anc
convenient for a class of nonlinear oscillators with discontinuities.
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1. Introduction

Since the beginning of 1986, Zhou [1] and Pukhov [2] have developedadlsd differential
transformation method (DTM) for electrical circuits problems. The method has been used
extensively to solve efféiwely various linear and nonlinear ordinary, partial antedno
differential equations [36]. However this method has a difficulty when applied to differential
equations with discontinuous terms. So the main purpose of the present research is wot only t
solve this difficulty but also to show how to obtain the approximate periodic solutions for
nonlinear oscillators with discontinuities. To our best knowledge, there is no paper reported in the
literature on the application of the differential transfoioramethod to differential equations with
discontinuities.

It is well known that DTM constructs the solution in the form of a truncated series which is
periodic only in a very small region [17]. In order to overcome this difficulty, a reliable
aftertreatmat (AT) technique has been developed recently in [18] to obtain the approximate
periodic solutions in a wider range. As shown in [18], the proposed aftertreatment technique splits
into two types, named as (StAd technique, SAT) and (Cosis&T technique,CAT) and for
illustration we will reintroduce the basic idea of the CAT technique which will be used in this
paper. It was shown in [18] that the approximate periodic solutions have bagmedlwithout
any need for Padapproximants or Laplace transforwhich may give the SAT and CAT
technigues some power if compared with the modified differential transform methatB][17,
Very recently Merdan and Gokdoan [19] showed that than€dsT and SineAT give same
results obtained by using the modified diffetial transform method and the classical fototter
RungeKutta (RK4) method.

The rest of this paper is organized as foBoim the next section (Secti@) a brief description
of the onedimensioal DTM is provided; in Section3 the basic idea of ti@osineaftertreatment
technique is discussed; in Sectibrthe proposed techniques are implemented to obtain the
approximate periodic solutions for three nonlinear oscillators with discontinuities; in Sdction
and 6some conclusions are given.

2. One-dimensonal differential transform
The differential transform of functiono 6 is definedas follows:
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In Eq. (1)@ 0 is the original function and 'Q is the transformed function. The differential
inverse transform ab "Q is defined as
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Eq. (3) implies that the concepf differential transform is derived from the Taylor series
expansion. In actual applications the functiod is expressed by a truncated series and&g.
can be written as

0 OO0 8 4
Some of thfundamental mathematical operations performed by the differentiafdrans

method are listed in Table

Table 1.The fundamental operations of edenensional DTM

Originalonofu Transfor mé&d fun
| 60 1 0O | ™Yo T o
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3. Cosineaftertreatment technique (CAT-technique)

If the truncated series given by Eq. (4) is expressed only ingwerrs of the independent
variableg, i. e.:

. L . N L
0 O¢Qo hde¢Q p mQ ni“phﬂhc— pbh s even, (5)
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then the Cosinaftertreatment technique (CA€chnique) is based on the assumption that this
truncated series can be expressed as another finite series in terms of the cosine trigonometr
functions with different amplitudes and frequencies:

0 _AT 66 _A1T 6o _Ai 6o E AT Ooh (6)

whereg is finite.
Our main question he is how to find the values of and ,’Q 18 kE8For answer we

begin by expanding both sides of E@) as power series ofto obtain

Wn Oqo0 wWTo weo E ®O o

0 0 0 0
- - A - A - A - ¥
0A UA ™
°  gs
= P A
Now the equation of the coefficients of like powers yields
0d _ mnhod _ cAdch
®
0d _ tAbthod _ @A ¢ 8

In practical application it is sufficient to express the truncated seriesd in terms of two
or three cosines with different amplitudes and frequencies. If we choose to exprésas an
approximate periodic solution in terms of two cosines with two different amplitudasd_ h
and two different frequencies, and , we can rewrite Eq6) for0 @and¢ ¢ as:

0 Al 0o Al Oo Al Oos8 9)

In this case the four unknownsh_ h and can be determined by solving the following
system of nonlinear algebraic equations analytically:

dmh
Adch
- TAC(I)TCH (10
_ _ QA @ 8

Moreover, if we choose to express O as more accurate periodic solution in terms of three
cosines, we can rewrite Eq. (6) for p Tandé oas:
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) _AT 66 _AT 66 _AT OGo _ A1l Oos (11

In this case the six unknownsh_. h_.h h and can be determined by solving the
following system of nonlinear algebraic equations numerically:

QTh

I
%
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¢ ¢
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12

g

b3
5 >«

P
P p ™

4. Applications

In this section we discuss the application of the DTM with the proposed SoEitexhnique
to obtain the periodic solutions of nonlinear oscillators with discontinuitieexpkained in the
previous section, the use of the CosKiEtechnique is based on obtaining the series solution of
the problem under consideration as a finite polynomial in even powers of

4.1.Example 1
Consider the nonlinear oscillataith a discontinuouterm [2G23]:

Qw .
o ; 13
Qo 13

with the initial conditions
on  don mhd ™8 (14)

In Eq.(13) the major source of the difficulty in using the differential transformation method is
the existence of the discontinuous texigBIn order to overcome this difficulty we introduce a
new approach to deal with such term. Firstly we suppose that

Qo wgh (15
which can be written as:
Mw w8 (16)

We then take a differentiation with respectto obtain

N0 Qv
.Qa . .
%6 g8 (19

By this Eq. (13) becomes
Qw
Qo

Now by applying the differential transform to Eqgs. (14), (17) and (18) we obtain the following
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recurrence scheme f@ Tt

Gmn  dop Th
"Oon msS ¢h

VM p Qe ¢ ®Q a ‘04 nh (19
G p 04 pOQ & wa phdQ a ™

Using Egs. (19) by taking @, we obtain a system of algebraic equationstor 18 fr.
By solving this system for the values @f¢ 8 hid ¢ by usingMathematica, we get

QD . . QD . . (%)
N C —fMyo mHdt —mMuv mhe —38 (20
c 0 C X C

From the inverse transformation rikg|. (4) we can construct the following truncated series
solution up tad :

r h! w‘ N
60 & —0 —o —o8 (21)

Since the truncated ses 0 given by the last equation is expressed as a polynomial in
evenpowers of, we can now deal with it by using the CosiE technique. We assume an
approximate periodic solution in the form

) _AT 66 _AT 6o _AT 0608 (22)

In order to find_ h_h and hwe insertd Tt hd ¢ hd T andd @ presented above into
systemEq. (10) to get a system of four nonlinear algebraic equations. By solving this system
analytically for_ h_h and Fhwe obtain

p —

— p T op Twh

s 0 (23
T Vp T8

p —
c_np T olip T

T Vp wh

Therefore we can write the approximate periodic solution for the(Egd4) as

hppod o P pmmalpmdy Al O 1 Vp Td P p Tl ollp T
¢ ¢

S (29

AT O1 Vp o 8

Here it should be noted that this approximate periodic solution is valid regardless of the
oscillation amplitude®, i. e., form &  H. In [20] the authors applied the pareter
expansion method to Eq4.3-14) and the following approximate periodic solution sidaeen
obtained
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Eq. (25) has been also obtained by the authors in [21] and [23] by using tmeimapproach
and He 6 s -frequepcly approadherespectiveline exact displacement of Eq$3-14) is
given by [21]

s
© AT eﬂh (26)

co —h{—)

whered zf denotes the Beta function.

In order to check the effectiveness of our approach we compare ourbgs{@#) with the
approximate periodic solution obtained by the pararetpansion and the marin methods,
glven by Eq(25) and the xact displacement E@6) in Figs.1-4 at different values of
© php fp mh 1t mHrom these figures it can be concluded that the stgdeapproach with
the CosineAT technique leasito approximate periodic solutions with good accuracy for all
amplitudes.

=== present approach
= paraneter —expansion [20]

— max-min approach[21]

-05

-10
Fig. 1. Comparison of the present approach Eq. (24) with the maeaexpansion method [20], E(R5)
and the exact solutiofmaxmin [21]), Eq.(26) for example 1, ab p

=== present approach

== parameter —expansion [20]

— max-min approach|[21]

-10+
Fig. 2. Comparison of the present approach 24) with the paraeterexpansion method [20], E(R5)
and the exet solution (maxmin [21]), Eq.(26) for example 1,a p 1
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X(t)

== present approach

== parameter —expansion [20]

— max-min approach|[21]

Fig. 3. Compari®n of the pesent approach, E(R4) with the parametezxpansion method [20], EqR5)
and the exact solution (mamin [21]), Eq.(26) for example 1, @ p T

X(1)
1000

=== present approach

== parameter —expansion [20]
500+

— mmx-—min approach [21]

=500

=1000 -
Fig. 4. Compari®n of the present approach, E24) with the parametezxpansion method [20], EqR5)
and the exat solution (maxmin [21]), Eq.(26) for example 1, ab p mm m
4.2.Example 2
Consider the nonlinear oscillator with a discontinuous terr2i}4

Qw N N
iy Ky _ LR 2
o5 @ - @5 m mh (27)

with the initial conditions
on  don 1 (29)

By the same analysis as in the previous example, we can easily obtain the following recurrenc
scheme forQ 1T

Om dp Th
Oon swmus Gh

VMpQcQc¢c QT M®Q & 04 mh 29

G p 04 pOQ & va phdQ a ™
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Using the above relations by takidg @, we obtain a system of algebraic equations for
"Q 1B fr. By solving this system for the valuescdfc 8 hd ¢ , we get

& gp c o T cﬁrp G Od & ddy T

0 (30
AY0 TR PPOCTO pTo 8
Hence we have the following truncated series solution ap: to
5 o Pptemd Lp g od @6
< Gt (31)

P . . S
. Ppwcmw pftw w8

Here 0 is also expressed as a polynomial in geewwers ofo and as shown in the previous
example we can deal with it by using the Cogkletechnique. We also assume an approximate
periodic solution inlie form of Eq(22). This leadso the approximate periodic solution

VU @ QUL QT T O &
ICL 9T O T T

C‘KDDC‘)@ 2

Al ng f @ CU T ®TTO® O
(32

VU @ OUCUL PT T O &
ML 9T O T

A'rc’)gx g & cuv T WTTI® oh

which is also periodic for any given value$ aindd The approximate periodic solution obtained
by the variational iteration method [24] is given by

o MAT O=0 8 (33

— nunerical solu.

— present approach

== variational method [24]

=0.5

_] 0 L
Fig. 5. Comparisorof the presenépproach, Eq32) with the variational iteration method, E(®3) and
the numerical solution for example 27 at T and® p
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X(0)
10 — nunerical solu.
== present approach
5 === variational nethod [24]
1 t
-5
-10

Fig. 6. Comparisn of the present approach, E8R) with the vaiational iteration method, E§33) and the
numerical solution for example 2,fat T®& and® p 7

— nunerical solu.
= present approach

50 = variational nethod [24]

=50

v

—IOO L v Y .
Fig. 7. Comparison of the present approach, B88) with the vaational iteration method, E§33) and the

numerical solution for example 2,fat @& and®d p T

X (1)
1000 ; . -
— nunerical solu.

— present approach
500 F L.
! i == variational method [24]

-500

»

=-1000 ~ v v
Fig. 8. Comparison ofhe present approach, §8§2) with the vaational iteration method, E§33) and the

numerical solution for example 2,jat T8t pand® p T

In Figs. 58 we compared our analytical approximate periodic solutidagin(32) with the
variational iteratio resultEq. (33) and the numerical solution obtained by Mathematica using the
AINDSol ved command. | t digures tHateour oebult i@ EG32 provifler o m
excellent agreement with variational iteration method and the numerical solgfodless of the

oscillation amplitudea

9
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4.3.Example 3

This example considers the following equation 23);
Qw . .
fuiniy D - & 34
T o @s ™ Th (34

with the initial conditions

o  omn 1 (35
where the parameteris considered real. Proceeding as above, we obtak forr

Om dp 1:[5
"Oon wmns ¢h

TMpQcdQ ¢ | O ad da adad

) (36)

T OQ a "0a T
& p o4 p0OQ & had pOQ a ™

Usingd @, a system of algebraic equations is obtainedCormt8 fr. On solving this
system fory ¢ 8 ho @ hyields

(AN Py 1 anvfdo mdT =g & U1 o @h
C 0 CT (37
AXVI 1 Y AY0) —Tc[,}(cb epf ® THI OpT ®8
X C
Therefore the approximate series solution can be written as
B O W -7 T 0 —d & U T wg wo
< ¢t (39

p . . . I
oo kw 0 w THPT wpmm woh

which is also expressed as a polyndrimaevenpowers ofd. The CosinéAT technique leads to
the approximate periodic solution:

W, 0. .t W, @ M, 0. W, B
Wppo? @ - ct o T (39
where* H h, andt are given as
ogm® ¢progh ¢t w opl oy h T T g b (40)

,» TOQWO priind wox & oy T8
In [24] the approximate periodic solution was obtained by using the variational iteration
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method and giveby:

. e 200 I ®
2= X 41
oocoAIOT —0 8 (41

It should be noted that the solutign. (39) is always peodic under the two conditions:

. Ty, mt W, mht mh (42)

and

, mooowm, o om, mr s (43)

Examples for the values pfand] that satisfy these conditiorsse shown graphically by
Figs.9-12 at different values of the amplitudeThe numerical results are depicted and compared
with other solutions in Figd3-16 at different values @h The results show that @t p the
Cosineafter treatment technique agsegith the other methods in a wider ranged&fowever
this agreement decreases with increasging may be concluded that at large valoéwwe have
to increase the accuracy of our technique by increasind=g. (6).

4

a e e e o ssEnesEaa] 4

e e e A A A A

| b i
| ; » ]
Region plotof conditions : Region plot of conditions :
2 (42) and (43) ata=1. : 24 (42) and (43) ata=10. !
) ! '
) 1 '
0 &= 4 O e rrrrrrs -
SO SS~- )
B -~ ‘h‘ -"-- l B
-2 “a ""-.. =~ )
\~~ ‘h'
S 1
_4 € s‘--' -4 €
0 12 3 4 5 0 1 2 3 4 5
Fig. 9. Fig. 10.
4]‘ H"H”"r"'r"rif 4-"---b--d------h---;
! . » [ ' 1
‘I Region plotof conditions : : Region plot of conditions :i
o1 (42)and (43) ata=100. 1 21 (42)and (43) ata=1000. :
i l : ]
. 1 ' :
0]----------------] 0_‘___-_-_____-_-_--_
B
B
-2 -2 J
-4 € 4 € |
0 1 2 3 4 5 0 1 2 3 4 5
Fig. 11. Fig. 12.
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X(1)
1.0 4

— NDSolve
== CAT-Tech

0.5 L === Variational

05 |

-10 |
Fig. 13.Comparison of the present Casiaftertreatment technique, CA'ech., Eq(39) with the
variational iteration method;q. (41) for example 3, atd p,T ™andi T
X(1)

10

I — NDSolve
[ we CAT-Tech
5

=== Variational

-10
Fig. 14.Comparison of the present Cosine aftertreatment technique,T€éf., Eq(39) with the
variational iteration method, E¢41) for example 3, ab p 1 pand o

X (1)

100 [ — NDSolve

== CAT-Tech

=== Variational

50

~50 ¢

100 -
Fig. 15.Comparison of theresent Cosine aftertreatment technique, G&Th., Eq(39) with the
variational iteration method, E@41) for example 3, afd p ,t candi 1

EJVETERNATI bNBRJOURNALVOBROENGI! NEFEFBRURARY 1VHL UME 6ISSUEI S SN BZ 1 6



11204. THE PERI OOLUTI ONNSONAA NIEHAER OSGI LLATOR
ABDELHAEBMI,BHAHEMOMANSHI #s1 ANCEHANGVMONAD ALJ OUF I

X(t)

1000 — NDSolve
i we CAT-Tech
500 B === Variational
i t
-500
-1000

Fig. 16.Comparison of the present Cosine aftertreatment technique;TeAf., Eq(39) with the
variational iteration méiod, Eq.(41) forexample 3,a p mmn ocandi 1

5. Remarks

In several papers [280] many authors showed that the DTM is nothing more than a disguised
version of the Taylor series method. In this regard we agree with thetrgfoirew in the case
when the DTM and Taylor series are applied to search for a series solution for a differential
equation in which the discontinuous terms are not involved. However it may be difficult to directly
apply Taylor series method to obtain theries solutions for the present class of ordinary
differential equations with discontinuous terms.

6. Conclusions

To our best knowledge, this is the first paper reported on the application of the differential
transformation method to nonlinear oscillatorhwdiscontinuities. A new approach has been
proposed to overcome the difficulty arising from the existence of the discontinuous terms. Three
examples are solved and the obtained results demonstrate that the discontinuous function will nc
affect much theffectiveness and convenience of the differential transformation method.
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