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Abstract. Extended forms of a pseudo-numerical scheme for advection terms in fluid momentum 

equations are proposed here. The fact that analytic solution exists for the Burgers equation, if 

velocity distribution in space is straight for one-dimensional flow, was shown by Jang et al. 

Analytic solution also exists for two- or three-dimensional fluid flows, if the velocity components 

in two- or three-direction are linearly distributed in space, and the existing piecewise exact 

solution method is extended for two- and three-dimensions here. The analytic solution is adopted 

for computation of the advecting property of fluid momentum in two- or three-dimensional 

directions. This method produces zero numerical error during one time increment so that it is 

distinguished from any other numerical scheme which produces small or large numerical error 

within one time increment. The behavior of the new scheme is demonstrated for two- and three-

dimensional examples. The nonlinear modifications of velocity profiles towards singularity with 

time progress are well simulated for three test cases. The computed maximum relative errors for 

a given condition for one-, two-, and three-dimensions become larger as the number of dimension 

increases. The scheme is believed to work well for two- and three-dimensional flows. 

Keywords: three-dimensional flows, PESM, advection, Burgers equation. 

1. Introduction 

Fluid motion is governed by conservation equations including momentum conservation 

equation. Not only the advection equation but also the advection-diffusion equation has been 

intensively used to describe the flow of fluids or other material in engineering problems [1, 2, 3]. 

Fundamentally, the one-dimensional advection-diffusion equation has a form: 

��
�� + � ��

�� = � ���
���

, (1)

which is reduced to the advection-only equation: 

��
�� + � ��

�� = 0, (2)

where � is the transporting celerity, and � is a physical property. The inviscid Burgers equation is 

a specific form of the above advection equation, when � = �: 

��
�� + � ��

�� = 0. (3)

From mathematical point of view the momentum equations in three dimensions are composed 

of several terms, i.e, advection terms, diffusion terms, and the others. Fractional step method [4, 5] 

or operator splitting method [6] is often adopted in numerical solution procedure due to its 
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convenience and simplicty. The one-dimensional invisicid Burgers equation can be written in 

conservative form as: 

��
�� +

��(�)

�� = 0, (4)

���	 =
��

2
, (5)

where � is the spatial axis, � is the time, and � is the velocity in the � axis. The velocity field �(�, �) at the initial time (� = 0) is �(�, 0) and is called 
(��). The analytic solution of Eq. (4) 

for the given initial condition is: 

�����, �	 = ����, 0	 = 
���	, (6)

where ��  is the velocity for Langrangean position. The Eulerian description of the velocity 

becomes: 

� = �� + �� ⋅ � = �� + 
���	 ⋅ �, (7)���, �	 = ���� + 
���	 ⋅ �, �	 = �����, �	 = �����, 0	 = 
���	. (8)

The above advection equation is called the inviscid Burgers equation [7, 8]. The two- or three-

dimensional Burgers equation in a Lagrangean form is: 

��/�� = 0, (9)

where � is the velocity vector of fluid flow, � = (�, �, 
), (�, �), or (�) for three-dimensional, 

two-dimensional, or one-dimensional flow, respectively, where � , �  and 
  are the velocity 

components in the �, � and � directions, respectively. Eulerian forms of the Burgers equations are 

then: 

��
�� + � ��

�� + � ��
�� + 
 ��

�� = 0, 

��
�� + � ��

�� + � ��
�� + 
 ��

�� = 0, 

�

�� + � �


�� + � �

�� + 
 �


�� = 0. 

(10)

The problem is that it is not always possible to get the solution in an explict form for an 

arbitrary initial function 
. We need adquate nemerical methods which are good for fixed grid 

system [9, 10]. One of frequently used numerical schemes to solve the advection equation is the 

upwind scheme [9]: 

��
��� + ��

�

�� = −
������ �����

� − ��
�  or  ��

� − ����
� 	, (11)

where superscript � or � + 1 means the time step � or � + 1, subscript � means the spatial grid 

number �, ���� is a representative velocity at the index number � at time step �, which could either 

be ��
� , ����

� , ����
� , (��

� + ����
� )/2 or (����

� + ��
�)/2. If we use the difference equation for the 

Burgers equation in the conservative form, the difference equation becomes: 

��
�

�� = −
1

2�� ������
� 	� − ���

�	�  or  ���
�	� − �����

� 	��. (12)
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This virtually takes a representative velocity as (��
� + ����

� )/2 or (����
� + ��

�)/2 depending 

on the flow direction. Jang et al. [12] proposed a useful piecewise exact solution method (PESM) 

to solve the one-dimensional advection equation, Eq. (3). If the velocity is linearly distributed in 

space as: 

� =
� + �

� . (13)

Then the above equation itself satisfies the advection equation, Eq. (3), if conditions are 

well-posed. Eq. (13) may have a singular solution, if the velocity gradient becomes infinity as time 

goes by. This corresponds to shock wave in physical domain [11]. The solution at a fixed point of 

index � becomes: 

��
��� =

��
(��

� − ����
� )�� + �� ��

�. (14)

However, if the governing momentum equation is to be solved with the splitting method, the 

analytical solution for some long period may not be very useful, because not only invisid Burgers 

equation but also the diffusion equation or other equation with other terms should be alternately 

solved every time step. Therefore the analytical solution for the invisid Burgers equation may be 

useful for each time increment only. 

Interesting feature of this solution is that the orgin of �, �� is not a priori, but should be found, 

and the solution is not temporarilly linear from the Eulerion point of view. If a fixed grid is used, 

and two velocities, at two points �� and ���� at time �� are: 

��
� =

�� + �
�� ,   ����

� =
�� − �� + �

�� . (15)

We can remove � from Eq. (15), and get ��
��� as: 

��
��� =

�� + �
�� + �� =

����
�

(��
� − ����

� )�� + ��. (16)

If the velocity at �� is negative, the velocity at �� at new time step is: 

��
��� =

����
�

(����
� − ��

�)�� + ��. (17)

The above PESM for one-dimensional advection equation was compared with Godunov's 

method [11], and demonstrated higher accuracy relative to Godunov's method. Since the above 

solution is the analytic solution, it does not produce any numerical error during a time increment, 

but errors develop during the spatial interpolation. The PESM was compared with a few existing 

numerical schemes, and showed unconditional stability for CFL number larger than 1.0 by using 

the following extended solution: 

��
��� =

��{(� + 1)���	
� − ����	��

� }

(���	
� − ���	��

� )�� + �� ,   ��
� ≥ 0 and ���	

� �� ≥ ���,

��
��� =

��{(� + 1)���	
� − ����	��

� }

(���	��
� − ���	

� )�� + �� ,   ��
� < 0 and ���	

� �� < ���,

 (18)

where � is an integer. Jang et al. suggested the above solutions could be used for the first-order 
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portion of any other existing higher order schemes, e.g. Fromm's or Lax-Wenddroff scheme. 

However, Jang et al.’s method has been confined to one-dimensional form. 

2. Extension of PESM for two- and three-dimensional cases 

We are extending Jang et al.’s PESM for higher dimension here, i.e. for two-dimensional and 

three-dimensional advection equations [12]. Starting from one-dimensional problem, we adopt 

coefficients for spacial distribution of velocity, not involving ��: 

��
� = ��� + �, ����
� = ���� − ��	 + �, 

(19)

where � implicity include the time effect. We can also use the invariant Lagrangean advection 

property of the velocity component. Furthermore we also know that the solution must be spatially 

linear: 

��
��� = ��� + �. (20)

We have two boundary values at two points at the advanced time: 

��∗
��� = ��

�   at   ��∗ = �� + ��
���, 

�(���)∗
��� = ����

�    at   �(���)∗ = ���� − �� + ����
� ��, 

(21)

where superscript * means the new position of the particle which was at grid point � at the previous 

time. Inserting Eq. (21) into Eq. (19), we obtain the solution for ��
��� which is identical to Eq. (16). 

Now we expand this approach to the two-dimensional advection equations: 

��
�� = � ��

�� + � ��
��, 

��
�� = � ��

�� + � ��
��. 

(22)

A rectangular grid is considered at this stage. Planar distribution of the two velocity 

components at an instance are assumed as: 

� =
��� + ��� + �
� ,   � =

��� + ��� + �
� , (23)

���, �, ��	 =
��� + ��� + �
�� = ��� + ��� + �
,   ���, �, ��	 = ��� + ��� + �
. (24)

The coefficients ��, ��, �
, ��, ��, �
 are assumed to satisfy Eq. (22). We have six boundary 

values at three triangle corner points �, � and � of a triangle at time ��. For example, if ��,�
� ≥ 0 

and ��,�� ≥ 0, then the three corner points will move to other positions ��, �	∗ , �� − 1, �	∗  and 

��, � − 1	∗ at �� + ��: 
���,�
∗
��� = �����,�
∗ + �����,�
∗ + �
, 

�����,�
∗
��� = �������,�
∗ + �������,�
∗ + �
, 

�(�,���)∗
��� = ���(�,���)∗ + ���(�,���)∗ + �
, 

(25)
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���,�
∗��� = �����,�
∗ + �����,�
∗ + �
, 

�����,�
∗��� = �������,�
∗ + �������,�
∗ + �
, 

�(�,���)∗��� = ���(�,���)∗ + ���(�,���)∗ + �
, 

(26)

where: 

���,�
∗��� = ���,�

� ��, 

�(�,�)∗��� = �(�,�)� ��, 
(27)

�����,�
∗��� = −�� + �����,�

� ��, 

�(���,�)∗��� = �(���,�)� ��, 
(28)

���,���
∗��� = ���,���

� ��, 

�(�,���)∗��� = −�� + ���,���
� ��. 
(29)

 
Fig. 1. Position movement of three corner points of triangle for 2-dimensional case 

Then, at time �� + �� the six unknowns ��, ��, �
, ��, ��, �
 are obtained from the above six 

equations. For different flow directions other three corner points are chosen, i.e. (�, �), (� − 1, �), 
(�, � + 1) for negative ��,�  and positive ��,� , and (�, �), (� + 1, �), (�, � + 1) for positive ��,�  and 

negative ��,�. Eqs. (27) to (29) can be expressed as: 

��� = �, ��� = �, 
(30)

where �� , ��  
are the coefficient matrices, �  and �  are the unknown vectors ���, ��, �
	  and ���, ��, �
	, respectively; � and �  are known boundary value vector  ���,�
∗

��� , �����,�
∗
��� , ���,���
∗

��� ! 

and  ���,�
∗��� , �����,�
∗��� , ���,���
∗��� !, respectively. Then: 

� = ��
���, � = ��
���. 

(31)

Thus ��,�
��� = �
 and ��,���� = �
 are new velocity components at (�, �), i.e. � = � = 0. Next 

we expand this approach to the three-dimensional advection equations: 
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��
�� = � ��

�� + � ��
�� + � ��

�� , 

��
�� = � ��

�� + � ��
�� + � ��

��, 

�

�� = 
 �


�� + 
 �

�� + 
 �


�� . 

(32)

A rectangular parallelepiped grid is considered at this stage. Planar distribution of the three 

velocity components at an instance are assumed as: 

� =
��� + ��� + �
� + ��� , � =

��� + ��� + �
� + ��� , 
 =
��� + ��� + �
� + ��� , (33)

���, �, �, ��	 = ��� + ��� + �
� + ��, ���, �, �, ��	 = ��� + ��� + �
� + ��, 
��, �, �, ��	 = 
�� + 
�� + 

� + 
�. 

(34)

The coefficients ��, ��, �
, ��, ��, ��, �
, ��, ��, ��, �
, �� are assumed to satisfy Eq. (32). 

We have twelve boundary values at four corner points �, �, � and � of the quadrangular pyramid 

at time ��. For example, if ��,�
� ≥ 0, ��,�� ≥ 0 and 
�,�

� ≥ 0 then the four corner points will take 

other positions at �� + ��: 
���,�,�
∗
��� = �����,�,�
∗ + �����,�,�
∗ + �
���,�,�
∗ + ��, 

�(���,�,�)∗
��� = ���(���,�,�)∗ + ���(���,�,�)∗ + �
�(���,�,�)∗ + ��, 

���,���,�
∗
��� = �����,���,�
∗ + �����,���,�
∗ + �
���,���,�
∗ + ��, 

�(�,�,���)∗
��� = ���(�,�,���)∗ + ���(�,�,���)∗ + �
�(�,�,���)∗ + ��, 

(35)

���,�,�
∗��� = �����,�,�
∗ + �����,�,�
∗ + �
���,�,�
∗ + ��, 

�����,�,�
∗��� = �������,�,�
∗ + �������,�,�
∗ + �
�����,�,�
∗ + ��, 

���,���,�
∗��� = �����,���,�
∗ + �����,���,�
∗ + �
���,���,�
∗ + ��, 

�(�,�,���)∗��� = ���(�,�,���)∗ + ���(�,�,���)∗ + �
�(�,�,���)∗ + ��, 

(36)


��,�,�
∗
��� = �����,�,�
∗ + �����,�,�
∗ + �
���,�,�
∗ + ��, 


����,�,�
∗
��� = �������,�,�
∗ + �������,�,�
∗ + �
�����,�,�
∗ + ��, 


��,���,�
∗
��� = �����,���,�
∗ + �����,���,�
∗ + �
���,���,�
∗ + ��, 


(�,�,���)∗
��� = ���(�,�,���)∗ + ���(�,�,���)∗ + �
�(�,�,���)∗ + ��, 

(37)

where: 

���,�,�
∗��� = ���,�,�

� ��, 

���,�,�
∗��� = ���,�,�
� ��, 

�(�,�,�)∗��� = 
(�,�,�)
� ��, 

(38)

�����,�,�
∗��� = −�� + �����,�,�

� ��, 

�����,�,�
∗��� = �����,�,�
� ��, 

�����,�,�
∗��� = 
����,�,�

� ��, 

(39)

���,���,�
∗��� = ���,���,�

� ��, 

���,���,�
∗��� = −�� + ���,���,�
� ��, 

�(�,���,�)∗��� = 
(�,���,�)
� ��, 

(40)
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���,�,���
∗��� = ���,�,���

� ��, 

���,�,���
∗��� = ���,�,���
� ��, 

�(�,�,���)∗��� = −�� + 
��,�,���

� ��. 

(41)

 
Fig. 2. Position movement of four corner points of quadangular pyramid for 3-dimensional case 

Then, at time �� + �� the twelve unknown coefficients ��, ��, �
, ��, ��, ��, �
, ��, 
�, 
�, 

, 
� are obtained from the above twelve equations. For different flow directions from the above case, 

other four corner points are chosen, see Table 1. Eqs. (35) to (37) can be expressed as: 

��� = �, ��� = �, �

 = 
, 

(42)

where ��,  ��,  �
  are the coefficient matrices, �,  �  and 
  are the unknown vectors ���, ��, �
, ��	, ���, ��, �
, ��	, �
�, 
�, 

, 
�	 respectively, and �, � and 
 are known boundary 

value vectors  ���,�,�
∗
��� , �����,�,�
∗

��� , ���,���,�
∗
��� , ���,�,���
∗

��� ! ,  ���,�,�
∗��� , �����,�,�
∗��� , ���,���,�
∗��� , ���,�,���
∗��� ! 

and  
��,�,�
∗
��� , 
����,�,�
∗

��� , 
��,���,�
∗
��� , 
��,�,���
∗

��� ! respectively. Then: 

� = ��
���, � = ��
���, 
 = �

��
. 

(43)

Thus, ��,�,�
��� = �
,  ��,�,���� = �
  and 
�,�,�

��� = 

  are new velocity components at (�, �, "),  

i.e. � = � = � = 0. 
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Table 1. Selection of four corner points for different signs of �, � and �  

��,�,� ��,�,� ��,�,� Four points 

+ + - (�, �, �), (� − 1, �, �), (�, � − 1, � ), (�, �, � + 1) 

+ - + (�, �, �), (� − 1, �, �), (�, � + 1, � ), (�, �, � − 1) 

+ - - (�, �, �), (� − 1, �, �), (�, � + 1, � ), (�, �, � + 1) 

- + + (�, �, �), (� + 1, �, �), (�, � − 1, � ), (�, �, � − 1) 

- + - (�, �, �), (� + 1, �, �), (�, � − 1, � ), (�, �, � + 1) 

- - + (�, �, �), (� + 1, �, �), (�, � + 1, � ), (�, �, � − 1) 

- - - (�, �, �), (� + 1, �, �), (�, � + 1, � ), (�, �, � + 1) 

3. Examinations of present extention  

Now we apply the present PESM extended for two- and three-dimensional fluid flow to two 

simple two- and three-dimensional situations. The initial distribution of the velocity field of the 

the two- dimensional flow is given as: 

� =
√2

2
$1 + exp %−�� − 50	� − �� − 50	�

500
&', 

� =
√2

2
$1 + exp %−�� − 50	� − �� − 50	�

500
&'. 

(44)

And the initial velocity field for a simple three-dimensional situation is: 

� =
√3

3
$1 + exp %−�� − 50	� − �� − 50	� − �� − 50	�

500
&', 

� =
√3

3
$1 + exp %−�� − 50	� − �� − 50	� − �� − 50	�

500
&', 


 =
√3

3
$1 + exp %−�� − 50	� − �� − 50	� − �� − 50	�

500
&'. 

(45)

 

Fig. 3. Speed contour at two instants  

for two dimensional test flow: � = 0 

Fig. 4. Speed contour at two instants  

for two dimensional test flow: � = 15 
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Fig. 5. Speed contour at two instants  

for three dimensional test flow: � = 0 

Fig. 6. Speed contour at two instants  

for three dimensional test flow: � = 15 

 

 
(a) Profile 

 
(b) Zoomed view 

Fig. 7. Velocity profiles along � axis for one-dimensional flow 
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(a) Profile 

 
(b) Zoomed view 

Fig. 8. Velocity profiles along � axis for two-dimensional flow 

One-dimensional case is also used for comparision with the two- and three-dimensional cases. 

The initial velocity distribution of the one-dimensional case is: 

� = 1 + exp %−�� − 50	�
500

&. (46)

The application results of this method to the two-dimensional and three-dimensional 

progressive flood cases are shown in Figs. 3, 4, 5 and 6, respectively. 

Computed profiles of the speed along central lines at two instants for one-, two-, and three-

dimensional cases are shown in Figs. 7 to 9. Figs. 7 to 9 show that even though the PESM is the 

exact solution for each ��, the method still produces numerical diffusion due to the process of 

spacial interpolation every time step, see Jang et al. [12]. The computed distributions of speed 

along central lines are close to analytical solution for one-, two-, and three-dimensional cases, 

respectively. The maximum relative errors of the computed speed for one-, two-, and three-

dimensional cases are shown in Table 2. The relative error becomes larger as the number of 

dimensions increases, which means the spacial interpolation produces high diffusion. Nontheless 

the expanded PESM works well for two-and three-dimensional problems according to the present 

examinations. 
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(a) Profile 

 
(b) Zoomed view 

Fig. 9. Velocity profiles along � axis for three-dimensional flow 

Table 2. Comparison of relative errors for different dimensions 

Dimension Analytic solution PESM result Relative error (%) 

One 2.0000 1.9931 0.3457 

Two 2.0000 1.9844 0.7799 

Three 2.0000 1.9812 0.9408 

4. Conclusions 

Previous PESM for one-dimensional flow was expanded here for two-, and three-dimensional 

fluid flows. The PESM takes exact solution within one time step and therefore it is irrelevant to 

any numerical error, although it is not free from interpolation error due to the non-moving property 

of grid computational. The PESM secures unconditional stability, which is important for practical 

use in numerical modeling workes. Algorithms for two- or three-dimensional advection equations 

are extensions of that for one-dimensional advection equation. The boundery values at corners of 

a triangle or a quadrangular pyramid at time ��  preserved at time �� + ��  according to the 

characteristics of the Lagrangean advection equation. The method was applied to simple situations, 

and the results are satisfactory. The diffusion due to spacial interpolation become larger as the 

dimension becomes larger. The PESM is believed to work well for arbitrary number of dimensions. 
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