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Abstract. According to Kallesøe’s model of turbine blades, two methods were developed to solve 

the nonlinear vibration of blades, namely, nonlinear non-autonomous system with gravity effect 

and nonlinear autonomous system without gravity effect. The equations were changed into the 

mass and stiffness matrices using a finite difference method on the boundary conditions of 

cantilever beams. By the time discretion methods and the Matlab vibration toolboxes, the 

displacements and the phase tracks of blade tip were simulated in the directions of lead-lag, 

flapping and twisting. Then the amplitude-frequency and phase-frequency characteristic curves 

were plotted by the analysis of non-autonomous rotating turbine blades. Finally all simulation 

results were compared among the nonlinear system and the linear system. The nature frequencies 

and the convergence of the systems were also discussed.   

Keywords: vibration, horizontal axis, turbine blades, nonlinear, finite differential methods.  

1. Introduction 

At present, the large wind turbine blade structure models contain crossed elastic hinge 

presented in [1] and continuous distribution parameters presented in [2, 3]. In 2007, Kallesøe 

introduced a new coordinate system of turbine blades based on Hodges-Dowell’s model, and 

established the dynamic equations presented in [4], but only studied on the linear parts of the 

blades. This paper has retained the nonlinear parts, to better study the lead-lag, flapping and 

twisting of turbine blades. The blades became into nonlinear non-autonomous systems with 

gravity effect and nonlinear autonomous systems without gravity effect using a finite difference 

method on the boundary conditions of cantilever beams, which can display the whole process of 

rotating blades, and have an engineering significance. 

There are many methods, such as harmonic balance method presented in [5-8],perturbation 

method presented in [9, 10], Poincare method presented in [11, 12], average method, asymptotic 

method presented in [13-15], and the method of multiple scales presented in [16-17],to study the 

nonlinear vibration of large horizontal axis wind turbine blades. Scholars at home and abroad, 

have fall over each other to research the method of harmonic balance in these years. But this 

nonlinear solution exists limitation. For example, Galerkin algorithm as a harmonic balance 

method is based on the linear modality, which is obtained from the linear equations or directly 

from the empirical formula. So it is not accurate. Finite difference methods by dispersing the 

nonlinear system, as long as the increasing number of nodes, in theory is an exact solution, which 

also make simulation simpler in time domain, more convenient in frequency domain based on 

FFT. In addition, a finite difference method is particularly suitable for processing variable 

parameters along the blade geometric axis. 

2. Nomenclature 

𝑚 The mass pr. length, Kg/m 

𝛺 Rotating speed of the blade, rad/s 

𝐸𝜁  Elastic modulus in 𝜁-direction, Pa 

𝐸𝜂 Elastic modulus in 𝜂-direction, Pa 

http://dict.cn/amplitude-frequency%20characteristic
http://dict.cn/phase-frequency%20characteristic
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𝐺 Shear modulus, Pa 

𝛽 The pitch angle, rad 

𝐽 Polar moment of inertia, m4, 𝐽 = ∬ (𝜂2 + 𝜁2)𝑑𝜂𝑑𝜁
 

𝐴
 

𝛪𝜁  The principle moment of inertia in 𝜁-direction, m4, 𝛪𝜁 = ∬ 𝜂2𝑑𝜂𝑑𝜁
 

𝐴
 

𝛪𝜂 The principle moment of inertia in 𝜂-direction, m4, 𝛪𝜁 = ∬ 𝜁2𝑑𝜂𝑑𝜁
 

𝐴
 

𝛪𝜂𝜂𝜁  ≡ ∬ 𝜂(𝜂2 + 𝜁2)𝑑𝜂𝑑𝜁
 

𝐴
  

𝛪𝜂𝜁𝜁  ≡ ∬ 𝜁(𝜂2 + 𝜁2)𝑑𝜂𝑑𝜁
 

𝐴
  

𝜃 The pre-twist angle, rad 

𝐼𝑔 Moment of inertia pr. length, Kg m2 

𝑙𝑐𝑔 Eccentricity of the blade, m 

𝑢 The displacement in 𝑥-direction, m 

𝑣 The displacement in 𝑦-direction, m 

𝜑 The displacement in 𝑦-direction, rad 

𝑠 The distance from the center of rotation,m 

𝜌0 Equivalent density of the blade, Kg/m3 

𝑏 Thickness of the blade, m 

𝑐 Chord length of the blade, m 

𝑁 The number of finite difference nodes 

ℎ The length of each finite difference node, m 

𝑡 the time, s 

𝑡ℎ the time step, s 

𝑔 gravitational constant, m/s2 

(·)′ 𝑑(·)/𝑑𝑠 

(·) 𝑑(·)/𝑑𝑡 

3. The model of wind turbine blades 

  
Fig. 1.The model of a horizontal axis turbine blade 

Kallesøe established a structure model of turbine blades in Fig. 1 presented in reference [3], 

on which coordinate transformation and the establishment of differential equation have been 

introduced. The finite differential method is more convenient in analysis of tapered cross section 

blades. The blades can be solid metal materials, also be a hollow composite material. Based on 

the equations in reference [3], retention of the first and second order Taylor quantity, neglecting 

higher-order quantity, considering gravity and ignoring the aerodynamic parameters, nonlinear 
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motion equations in 𝑥, 𝑦, 𝑧 directions can be gained as follows in Formula (1), (2) and (3): 

𝑚�̈� − 𝛺2𝑚(𝑠(𝑅 − 𝑠)𝑢′)′ + (𝐸𝜉𝛪𝜉cos2(𝜃) + 𝐸𝜂𝛪𝜂sin2(𝜃))𝑢″″
+ (𝐸𝜉𝛪𝜉

− 𝐸𝜂𝛪𝜂)cos (𝜃)sin (𝜃)𝑣″″
− (𝐸𝜉𝛪𝜉 − 𝐸𝜂𝛪𝜂) (𝜑(𝑢″sin(2𝜃) − 𝑣″cos(2𝜃)))

′′

 

− 𝛺2𝑚cos(𝛽)(𝑢cos(𝛽) − 𝑣sin(𝛽)) = −𝑚𝑔sin(𝛺𝑡)cos(𝛽), 

(1) 

𝑚�̈� − 𝛺2𝑚𝑠((𝑅 − 𝑠)𝑣′)′ + (𝐸𝜉𝛪𝜉sin2(𝜃) + 𝐸𝜂𝛪𝜂cos2(𝜃))𝑣″″
+ (𝐸𝜉𝛪𝜉

− 𝐸𝜂𝛪𝜂)cos(𝜃)sin(𝜃)𝑢″″
+ (𝐸𝜉𝛪𝜉 − 𝐸𝜂𝛪𝜂)(𝜑(𝑢″cos(2𝜃) + 𝑣″sin(2𝜃))

′′

+ 𝛺2𝑚sin(𝛽)(𝑢cos(𝛽) − 𝑣sin(𝛽)) = 𝑚𝑔sin(𝛺𝑡)sin(𝛽), 

(2) 

(𝐼𝑔 + 𝑚𝑙𝑐𝑔
2 )�̈� − 𝐺𝐽(𝜑′ + 𝑢″𝑣′)′ − 𝐸𝜂𝐼𝜂𝜂𝜉(𝜑′(𝑢″sin(𝜃) − 𝑣″cos(𝜃))′

+ 𝐸𝜉𝐼𝜂𝜉𝜉(𝜑′(𝑢″cos(𝜃) − 𝑣″sin(𝜃))′ = 𝑚𝑔𝑙𝑐𝑔sin(𝛺𝑡)(sin(𝜃 + 𝛽). 
(3) 

4. The establishment of general nonlinear equations 

4.1. Finite difference discretization 

Before finite difference discretization, the difference solution and curve fitting on the 

parameters of wind turbine blades must be done to get values in different nodes. The parameters 

in Formula (1), (2) and (3) are 𝑚 = 𝑚(𝑠) , 𝜃 = 𝜃(𝑠) , 𝛪𝜁 = 𝛪𝜁(𝑠) , 𝛪𝜂 = 𝛪𝜂(𝑠) , 𝐶 = 𝐶(𝑠) . The 

boundary conditions of blades are as follows: 

𝑢(0, 𝑡) = 𝑢′(0, 𝑡) = 𝑣(0, 𝑡) = 𝑣′(0, 𝑡) = 0, 
𝑢″(𝑅, 𝑡) = 𝑣″(𝑅, 𝑡) = 𝑢‴(𝑅, 𝑡) = 𝑣‴(𝑅, 𝑡) = 0, 
𝜑(0, 𝑡) = 𝜑′(0, 𝑡) = 0. 

(4) 

The boundary conditions in 𝑋 and 𝑌 directions are the same, so now fourth order derivative in 

𝑥-direction as an example is used to illustrate the difference discrete process. According to the 

Taylor expansion form, each derivative of the general differential form in 𝑥-direction can be 

gotten by using two order central difference. The first order derivative difference equations from 

boundary conditions are as follows: 

𝑢0
′ =

1

2ℎ
(−𝑢−1 + 𝑢1) = 0, 

𝑢−1 = 𝑢1. 
(5) 

     

The second and third order derivative difference equations are as follows: 

𝑢𝑛
″ =

1

12ℎ2
(−𝑢𝑛−2 + 16𝑢𝑛−1 − 30𝑢𝑛 + 16𝑢𝑛+1 − 𝑢𝑛+2) = 0, 

𝑢𝑛
″′

=
1

2ℎ3
(−𝑢𝑛−2 + 2𝑢𝑛−1 − 2𝑢𝑛+1 + 𝑢𝑛+2) = 0, 

(6) 

formula (7) can be gained according to the formula (6) and boundary conditions: 

𝑢𝑛+1 =
1

7
(𝑢𝑛−2 − 9𝑢𝑛−1 + 15𝑢𝑛), 

𝑢𝑛+2 =
1

7
(9𝑢𝑛−2 − 32𝑢𝑛−1 + 30𝑢𝑛). 

(7) 

  

The fourth order derivative difference equations in 𝑥-direction can be gained as formula (8): 
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𝑢1
″″

=
1

ℎ4
(7𝑢1 − 4𝑢2 + 𝑢3), 

𝑢2
″″

=
1

ℎ4
(−4𝑢1 + 6𝑢2 − 4𝑢3 + 𝑢4), 

𝑢𝑛
″″

=
1

ℎ4
(𝑢𝑛−2 − 4𝑢𝑛−1 + 6𝑢𝑛 − 4𝑢𝑛+1 + 𝑢𝑛+2),   (3 ≤ 𝑛 ≤ 𝑁 − 2), 

𝑢𝑁−1
″″

=
1

7ℎ4
(7𝑢𝑁−3 − 27𝑢𝑁−2 + 33𝑢𝑁−1 − 13𝑢𝑁), 

𝑢𝑁
″″

=
12

7ℎ4
(𝑢𝑁−2 − 2𝑢𝑁−1 + 𝑢𝑁)). 

(8) 

  

Similarly, the first order derivative difference equations in 𝑥-direction are as follows: 

𝑢1
′ =

1

12ℎ
(𝑢1 + 8𝑢2 − 𝑢3), 

𝑢2
′ =

1

12ℎ
(−8𝑢1 + 8𝑢3 − 𝑢4), 

𝑢𝑛
′ =

1

12ℎ
(𝑢𝑛−2 − 8𝑢𝑛−1 + 8𝑢𝑛+1 − 𝑢𝑛+2),        (3 ≤ 𝑛 ≤ 𝑁 − 2), 

𝑢𝑁−1
′ =

1

12ℎ
(𝑢𝑁−3 −

57

7
𝑢𝑁−2 +

9

7
𝑢𝑁−1 +

41

7
𝑢𝑁), 

𝑢𝑁
′ =

1

12ℎ
(

6

7
𝑢𝑁−2 −

96

7
𝑢𝑁−1 +

90

7
𝑢𝑁). 

(9) 

  

The second order derivative difference equations in 𝑥-direction are as follows: 

𝑢1
″ =

1

12ℎ2
(−31𝑢1 + 16𝑢2 − 𝑢3), 

𝑢2
″ =

1

12ℎ2
(16𝑢1 − 30𝑢2 + 16𝑢3 − 𝑢4), 

𝑢𝑛
″ =

1

12ℎ2
(−𝑢𝑛−2 + 16𝑢𝑛−1 − 30𝑢𝑛 + 16𝑢𝑛+1 − 𝑢𝑛+2),       (3 ≤ 𝑛 ≤ 𝑁 − 2), 

𝑢𝑁−1
″ =

1

84ℎ2
(−7𝑢𝑁−3 + 111𝑢𝑁−2 − 201𝑢𝑁−1 + 97𝑢𝑁), 

𝑢𝑁
″ = 0. 

(10) 

The third order derivative difference equations in 𝑥-direction are as follows: 

𝑢1
″′

=
1

2ℎ3
(−𝑢1 − 2𝑢2 + 𝑢3), 

𝑢2
″′

=
1

2ℎ3
(2𝑢1 − 2𝑢3 + 𝑢4), 

𝑢𝑛
″′

=
1

2ℎ3
(−𝑢𝑛−2 + 2𝑢𝑛−1 − 2𝑢𝑛+1 + 𝑢𝑛+2),     (3 ≤ 𝑛 ≤ 𝑁 − 2), 

𝑢𝑁−1
″′

=
1

14ℎ3
(−7𝑢𝑁−3 + 15𝑢𝑁−2 − 9𝑢𝑁−1 + 𝑢𝑁), 

𝑢𝑁
″′

= 0. 

(11) 

The first order derivative difference equations from boundary conditions in twisting direction 

are as follows: 
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𝜑1
′ =

1

2ℎ
𝜑2, 

𝜑𝑛
′ =

1

2ℎ
(−𝜑𝑛−1 + 𝜑𝑛+1),         (2 ≤ 𝑛 ≤ 𝑁 − 1), 

𝜑𝑁
′ = 0. 

(12) 

The second order derivative difference equations from boundary conditions in twisting 

direction are as follows: 

𝜑1
″ =

1

ℎ2
(−2𝜑1 + 𝜑2), 

𝜑𝑛
″ =

1

ℎ2
(𝜑𝑛−1 − 2𝜑𝑛 + 𝜑𝑛+1),        (2 ≤ 𝑛 ≤ 𝑁 − 1), 

𝜑𝑁
″ =

1

ℎ2
(2𝜑𝑁−1 − 2𝜑𝑁). 

(13) 

5. The establishment of nonlinear difference equations 

According to differential formula (1), (2), (3), the selection of the node number and the 

synthesis of the blade parameters, finally the nonlinear expressions are obtained as follows: 

�̈�𝑗 = 𝑋𝑗(𝑥1, 𝑥2, … , 𝑥3𝑁 , 𝑡),    (𝑗 = 1,2 … ,3𝑁), 

𝑥 = [𝑢1. . . 𝑢𝑁; 𝑣1. . . 𝑣𝑁; 𝜑1. . . 𝜑𝑁]. 
(14) 

The formula (14) is transmuted into matrix form: 

𝑀�̈� + (𝐾𝐹 + KX)�̇� = 𝐹. (15) 

Supposing 𝑦𝑗 = �̇�𝑗, the formula (14) is transformed into the formula (16): 

�̇�𝑗 = 𝑌𝑗(𝑦1, 𝑦2, … , 𝑦6𝑁 , 𝑡),    (𝑗 = 1,2 … ,6𝑁), 

𝑦 = [𝑢1. . . 𝑢𝑁; 𝑣1. . . 𝑣𝑁; 𝜑1. . . 𝜑𝑁; �̇�1. . . �̇�𝑁; �̇�1. . . �̇�𝑁; �̇�1. . . �̇�𝑁]. 
(16) 

6. Numerical calculation and simulation 

6.1. Parameters calculation and selection 

The typical blade parameters in reference [18] are chosen to carrying out the calculation and 

analysis of the wind turbine blades. As the cross section of blades is universal, the isotropic 

rectangular blade is selected for numerical simulation. The variable parameters are as follows. 

𝜃 = 2𝜋(𝑠 − 60)2120/360, 𝑐 = 4 − 3𝑠 × 2.8/180, 𝑏 = 0.25𝑐, 𝑚 = 𝜌0𝑏𝑐.  The constant 

parameters are 𝐸𝜁 = 𝐸𝜂 = 10×109 Pa, 𝐺 =  10×107 Pa, 𝛽 =  0.035 rad, 𝜌0 =  0.94×103 Kg/m3, 

𝑅 = 60 m. 

6.2. Simulation on nonlinear autonomous system  

Ignoring gravity, the blade vibration equations by finite difference discretization, can be 

described as a general nonlinear autonomous system: 

�̇�𝑗 = 𝑌𝑗(𝑦1, 𝑦2, … , 𝑦6𝑁),    (𝑗 = 1,2 … ,6𝑁)�̈�, 

𝑦 = [𝑢1. . . 𝑢𝑁; 𝑣1. . . 𝑣𝑁; 𝜑1. . . 𝜑𝑁; �̇�1. . . �̇�𝑁; �̇�1. . . �̇�𝑁; �̇�1. . . �̇�𝑁]. 
(17) 
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(a1) 

 
(a2) 

 
(b1) 

 
(b2) 

 
(c1) 

 
(c2) 

Fig. 2. The displacements and phase tracks of blade tip  

(the red dotted line represents the linear system; the black solid line represents the nonlinear system) 

Fig. 2. represents the displacements and the phase tracks of the blade in the directions of 

lead-lag, flapping and twisting. The chosen parameters are 𝑁 = 30, 𝑡ℎ = 0.001, 𝛺 = 0.8 rad/s. 

The initial displacements of blade tip are 𝑈6 = –0.5432, 𝑣6 = 2.0272, 𝜑6 = 0.2673. The initial 

displacements of other node must be selected by the linear vibration mode for the displacement 

continuity of continuous bar. The simulation of linear system can be achieved by Matlab/Simulink 

presented in [19-21]. In order to compare with linear system, the initial displacement of blade tip 

in nonlinear system should agree with that in linear system. But the initial displacement in other 

nodes will disagree with that in linear system with the nonlinear effect, which should be calculated 

according to nonlinear modes. Application of time discretion and Matlab vibration toolboxs, the 

wind turbine blade can be simulated in nonlinear autonomous system. 

The Fig. 2. shows, in the linear system, the blade tip makes a simple harmonic vibration in the 

directions of lead-lag, flapping and twisting. The vibration period depends on the natural 
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parameters of the blades. And initial displacement conditions determine the amplitudes of the 

blade vibration. In addition, the vibration characteristic of other positions in the blade is similar 

with that in blade tip, but the amplitudes are different. Because of nonlinear stiffness, the blade tip 

displacement in nonlinear system is sharper than that in linear system.With the nonlinear effect, 

the blade vibration is not strictly periodic motion, and the amplitudes of the vibration vary slightly. 

From the phase curves in Fig. 2. the vibration velocity of blade tip in nonlinear system is quite 

different from that in linear system. The displacements in positive and negative directions are 

different, but that in linear system are symmetrical.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. The nature frequencies of the blades (in Fig. 3(d), — – the first order nature frequency;  

* – the second order nature frequency; ○ – the third order nature frequency) 

In Fig. 3(a), (b) and (c), 𝛺 =  0.8 rad/s. And the natural frequencies vary with the blade 

displacements in the directions of lead-lag, flapping and twisting. Fig. 3(a) shows, with increasing 

lead-lag diaplacements of blade tip, the natural frequencies increase accordingly. In Fig. 3(b) and 

Fig. 3(c), as increasing diaplacements of blade tip, the natural frequencies reduce in the directions 

of flapping and twistting. Fig. 3(d) shows, with increasing rotating speeds of the blade, all natural 

frequencies increase accordingly.And the change in third order natural frequency is quite obvious, 

that in first and second frequencies are not too obvious. The rotating speed of large horizontal axis 

wind turbine blades is relatively low, and the change range of which is limited in scope, so the 

rotating speed has little effect on the natural frequency of the blade. 

Tables 1, 2 and 3 shows the first order nature frequencies with diffrenrent number of finite 

difference nodes and diffrenrent blade displacements in the directions of lead-lag, flapping and 

twisting, respectively. Table 3 shows the first order nature frequencies with diffrenrent number of 

finite difference nodes and diffrenrent rotating speeds. The higher the number of finite difference 

nodes is,the more exact the solution of the system is. When 𝑁 comes to a value,the increase of 

which can not enhance the precision of the computation obviously. With increasing finite 
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difference nodes, the computing time will  become long. So 𝑁 =  30 is a good choice for 

simulation of the systems. 

Table 1. The first order nature frequencies with different lead-lag diaplacements 

Lead-lag displacement (m) 0 0.2 0.4 0.6 0.8 

𝑁 = 6 0.385435 0.391554 0.395111 0.403498 0.414723 

𝑁 = 10 0.385872 0.391776 0.395340 0.403746 0.414956 

𝑁 = 16 0.385932 0.391820 0.395434 0.403843 0.415024 

𝑁 = 30 0.385970 0.391851 0.395452 0.403872 0.415002 

𝑁 = 50 0.385971 0.391851 0.395451 0.403872 0.415001 

Table 2. The first order nature frequencies with different flapping diaplacements 

Flapping displacement (m) 0 0.5 1.0 1.5 2.0 

𝑁 = 6 0.385435 0.370943 0.350499 0.320807 0.274704 

𝑁 = 10 0.385872 0.371167 0.350780 0.321067 0.274954 

𝑁 = 16 0.385932 0.371210 0.350821 0.321108 0.275012 

𝑁 = 30 0.385970 0.371231 0.350833 0.321124 0.275034 

𝑁 = 50 0.385971 0.371231 0.350833 0.321124 0.275035 

Table 3. The first order nature frequencies with different twisting diaplacements 

Twisting displacement (m) 0 0.05 0.1 0.15 0.2 

𝑁 = 6 0.385435 0.388680 0.387423 0.384170 0.378041 

𝑁 = 10 0.385872 0.388812 0.387678 0.384314 0.378267 

𝑁 = 16 0.385932 0.388921 0.387756 0.384478 0.378314 

𝑁 = 30 0.385970 0.388940 0.387766 0.384474 0.378347 

𝑁 = 50 0.385971 0.388940 0.387766 0.384473 0.378347 

Table 4. The first order nature frequencies with different rotating speeds 

Rotating speed (rad/s) 0.8 10 20 30 40 

𝑁 = 6 0.385435 1.55221 2.53160 3.29263 4.02112 

𝑁 = 10 0.385872 1.55445 2.53368 3.29599 4.02246 

𝑁 = 16 0.385932 1.55511 2.53434 3.29743 4.02303 

𝑁 = 30 0.385970 1.55526 2.53465 3.29762 4.02312 

𝑁 = 50 0.385971 1.55526 2.53465 3.29763 4.02312 

6.3. Simulation on nonlinear non-autonomous system  

Considering gravity, the blade vibration equations by the finite difference discretization, can 

be described as a general nonlinear non-autonomous system. Application of time discretion and 

Matlab vibration toolboxs, the wind turbine blade can be simulated in nonlinear autonomous 

system. The chosen parameters are 𝑁 = 30, 𝑡ℎ = 0.001, 𝛺 = 0.8 rad/s. The initial displacements 

of blade tip are zeros. Fig. 4 represents the displacements and the phase tracks of the blades in the 

directions of lead-lag, flapping and twisting.  

The displacements of the blades correspond to the sine excitation wih the gravity.When  

𝛺 = 0.8 rad/s, the exciting period is 7.8555 s. Fig. 4(a1), (b1) and (c1) show the time displacement 

curves of the blade tip in non-autonomous system.The vibration of blade tip is basically sinusoidal, 

but there is a certain disturbance due to the coupling of vibration. The exciting period agrees with 

the vibration period in linear system, but slightly different from the vibration period in nonlinear 

system. Because of the nonlinear effects, nonlinear vibration amplitude is slightly different from 

the inear vibration amplitude. Fig. 4(a2), (b2) and (c2) show the phase tracks of the blade tip in 

non autonomous system, which not only reflect the relationships between the displacements and 

the velocities, but also can show the differences between the nonlinear vibration and the linear 

vibration.  
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Fig. 4. The displacements and phase tracks of blade tip  

(the red dotted line represents the linear system; the black solid line represents the nonlinear system) 

Fig. 5 shows the displacements and phase tracks of blade tip with diffrenrent 𝑁 and 𝑡ℎ.The 

smaller the value of 𝑡ℎ is, the more exact the solution of the system is. With decreasing time steps, 

the computing time will increase greatly. In Fig. 5(a2), the curve when 𝑡ℎ = 0.001 is smoother 

than that when 𝑡ℎ = 0.01. When 𝑁 or 𝑡ℎ comes to a value, the change of which will have little 

effect on the calculation error. So 𝑁 = 30 and 𝑡ℎ = 0.001, is chosen for simulation of the systems. 

Fig. 6 represents the amplitude-frequency and phase-frequency characteristics of the blades in 

the directions of lead-lag, flapping and twisting,which is obtained through FFT transform of the 

vibration signal.When 𝛺 = 0.8 rad/s, excitation frequency is 0.1273 Hz, under which the blade 

will vibrate greatly. The first-order natural frequency of the blade is 0.39 Hz, in which the 

vibration amplitudes increase obviously.The nonlinear vibration amplitudes are bigger than those 

in linear system under those typical frequencies. And the blade phases in all directions change 

drastically in both nonlinear system and linear system under those typical frequencies. 
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Fig. 5. The displacements and phase tracks of blade tip with diffrenrent 𝑁 and 𝑡ℎ (the red dotted line 

represents 𝑁 = 30 and 𝑡ℎ = 0.001; the black solid line represents 𝑁 = 10 and 𝑡ℎ = 0.01) 
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Fig. 6. The magnitude-frequency and phase-frequency characteristics of the blade tip  

(the red dotted line represents the linear system; the black solid line represents the nonlinear system) 

7. Conclusions 

According to Kallesøe’s model of turbine blades, two methods are developed to solve the 

nonlinear vibration of blades, namely, nonlinear non-autonomous system with gravity effect and 

nonlinear autonomous system without gravity effect. The equations are changed into the mass and 

stiffness matrices using a finite difference method on the boundary conditions of cantilever beams. 

This method has an exact solution, fast computation speed and wide application in the general 

nonlinear vibration theory.And the research work of the wind turbine blades is more 

comprehensive, and has an engineering significance.  

By the time discretion methods and the Matlab vibration toolboxes, the displacements and the 

phase tracks of the blade tip are simulated in the directions of lead-lag, flapping and twisting. Then 

the amplitude-frequency and phase-frequency characteristic curves are plotted by the analysis of 

non-autonomous rotating turbine blades. Finally the simulation results are compared among the 

nonlinear systems and the linear systems. The nature frequencies and the nonlinear vibration 

characteristics are also discussed. This article can provide theoretical support for the design, 

operation, maintenance and flutter suppression on the large wind turbine blades.The nonlinear and 

linear simulation results not only show the difference between the linear system and the nonlinear 

system, but also can effectively verify the nonlinear vibration model and the validity of the 

algorithm. In addition, using a finite difference method to solve complex nonlinear problem of 

blade system is a beneficial attempt. 
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