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Abstract. Since shifted Chebyshev series can accurately approximate trigonometric function and 

Floquet transition matrix, a new method is presented for solving shifted Chebyshev series periodic 

solution of nonlinear vibration systems via optimization method. In the suggested method system 

state variables are expanded into the shifted Chebyshev series of the first kind with unknown 

coefficients. Then solving the unknown coefficients equals to an optimization issue on calculating 

the residual-force minimum value. It can be used to solve high dimension strongly nonlinear 

time-varying systems and parametrically excited systems. The accuracy of solutions can be 

controlled by adjusting optimization initial value, and Floquet transition matrix can be calculated 

effectively. As illustration examples the Chebyshev series periodic solutions and stability analysis 

of Duffing system and helicopter rotor coupling motion equation are studied. Compared with the 

harmonic balance method or time finite element method, the suggested method has a higher 

accuracy. It indicates that this method is accurate and effective. 

Keywords: nonlinear dynamics, rotor dynamics, shifted Chebyshev series of the first kind, steady 

state periodic solution. 

1. Introduction 

Chebyshev polynomials are one of the most important basis functions in numerical 

approximation [1, 2]. A Chebyshev series expansion can give precise approximations while 

reducing the Runge phenomenon [3]. It has been proved that a 15 to 18 terms shifted Chebyshev 

series of the first kind can accurately approach the trigonometric function [4] as well as the Floquet 

transition matrix (FTM) of high-dimension systems in stability analysis [5]. Although the use of 

Chebyshev series for solving ordinary differential equations has begun early [6], only recently it 

was applied to the study of periodic systems [5, 7-13]. In addition to reducing order of nonlinear 

periodic systems [12, 13] and solving delay-differential equations [14, 15], shifted Chebyshev 

series have been used to solve the response of nonlinear vibration systems [16, 17]. 

The nonlinear vibration system is widespread in mechanical, civil, aviation and other 

engineering fields. Since the periodic solution represents system steady state motion, the periodic 

solution and its stability are of important research value. Although the research for solving 

nonlinear vibration system has made great progress [18-22], there is still lack of general methods 

for solving an arbitrary nonlinear vibration system. Improving application scope, enhancing 

solution accuracy and reducing computational complexity of the solving method should be 

explored further [23]. While in the periodic-solution stability analysis, existing methods for 

calculating approximate FTM are generally cumbersome and of low-precision [24], or even worse 

may draw wrong conclusions on certain problems [25].  

In order to obtain more precise analytical solutions and overcome the shortcomings in stability 

analysis, a method for solving Chebyshev series periodic solutions of nonlinear vibration systems 

is suggested. In the method the periodic solutions are expanded in the form of Chebyshev series 

with unknown coefficients. Then solving of the unknown coefficients is transformed to a nonlinear 

optimization issue on calculating the minimum residual force over a prime cycle. Compared with 

the current methods, the attractive feature of this method is as follows. Firstly, the high-accuracy 

analytical periodic solutions of nonlinear vibration systems can be obtained. The assumption of 
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small parameters is abandoned and the high-dimension nonlinear vibration system is also 

applicable. Secondly, the initial value of optimization method can be reasonably estimated without 

trying blindly, which will effectively adjust solving precision. Thirdly, when periodic solutions 

are expanded in the form of shifted Chebyshev series of the first kind, the FTM can be obtained 

rapidly and accurately by integral operation without the help of the special methods for solving 

approximate FTM, and it will be beneficial to the stability analysis of periodic solutions.  

The remaining paper is organized as follows. Section 2 gives the properties of the shifted 

Chebyshev series of the first kind. Section 3 outlines the method for solving the Chebyshev series 

periodic solution of nonlinear vibration systems. Two examples, namely Duffing equation and 

helicopter rotor coupling motion equations, are given to demonstrate the accuracy and validity of 

the suggested method in Section 4. Finally, the paper ends with conclusions in Section 5. 

2. Properties of the shifted Chebyshev series of the first kind 

Chebyshev polynomials of the first kind are defined as follows: 

����� = ��−1��2��! �2��!⁄ ��1 − ���� �⁄ �� ��⁄ ���1 − ������ �⁄ ,   � = 0, 1, 2, 3, …, (1)

and are orthogonal over the interval [−1, 1] about the weight function �(�) = (1 − ��)�� �⁄ . 

For ease of use, take the change of variable �∗ = (� + 1) 2⁄ , then shifted Chebyshev 

polynomials of the first kind are obtained over the interval [0, 1], and they satisfy the following 

relationship: 

��∗��� = ���2� − 1�,   � ∈ 	0, 1
. (2)

According to the properties of shifted Chebyshev polynomials of the first kind, any function 

which is continuous in the interval [0, 1] can be expanded into the shifted Chebyshev series of the 

first kind [4] as: 

���� = � ���∗���
�

���

,   � ∈ 	0, 1
, (3)

where � are Chebyshev coefficients, and they can be obtained from: 

� =
2� � �(�)�(�)��∗(�)���

�

. (4)

The integral of Chebyshev polynomials satisfies: 

� {�∗(�)}��	

�

= 	�
��∗���� = ��∗����
	�

, (5)

and [�] is the integral operator matrix. {�∗(�)} is a column vector of the polynomials, defined as:  

��∗���� = ���∗���   ��∗���   …  ����
∗ ����
, (6)

where {   }
 denotes the transpose operation of the quantity {   }.  

The product of Chebyshev polynomials satisfies: 
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���� = � ���∗���
���

���

,   ���� = � ����∗���
���

���

, (7)

�������� = ��∗����
	�
����, (8)

and [�] is the integral operator matrix. 

The other related theories of shifted Chebyshev series, the value of operator matrix [�] and 

[�] are given in references [4, 5, 16, 17]. 

3. The method of analysis 

Consider the following strongly nonlinear vibration system: 

����� = ������, ��, (9)

where �(�) = {��(�)  ����� … �(�)}
 is an � × 1 column vector and �(�(�), �) is a function of 

period �.  

In nonlinear dynamics, compared with the determination of equilibrium points, the existence 

of periodic motions and the number of periodic solutions are even more difficult to ascertain. In 

general we only solve a part of periodic motions of the nonlinear vibration system. Let  �(�) = {�����  �����  …   �(�)}
  denote a periodic solution of Eq. (9) such that the periodic 

solution can be expressed as � terms shifted Chebyshev series: 

����� = 	��∗ ��∗ ��∗ … ����
∗ 
 ⋅ ���� ���  ��� … �� ,����
, (10)

������ = 	��∗ ��∗ ��∗ … ����
∗ 
 ⋅ ���� ��� ��� … ��,����
, (11)

where ��∗  is the  th shifted Chebyshev polynomial of the first kind, ���  and ���  are unknown 

Chebyshev coefficients. In order to estimate optimization initial value reasonably, the periodic 

solution should be expanded in harmonic series (or other series) at the same time: 

����� = �� + � !��cos
"2��#� + ���sin

"2��#� $�

���

,   � = 1,2, ⋯ , ��, (12)

where ��  and ���  are (2% + 1) ⋅ � unknown harmonic series coefficients. For a single-period 

orbit # = 1, for a period-doubling orbit # = 2 and � is the number of period-doubling bifurcation. 

Taking periodic solution of single-periodic orbit for example, we expand every harmonic of 

Eq. (12) in terms of the shifted Chebyshev series of the first kind, i.e.: 

����� = 	1   cos�&��    sin�&��    cos�2&��    sin�2&��  …  cos�%&��    sin�%&��
  
            ⋅ 	��  �� ��� �� ��� … ��  ���

   

           = 	��∗ ��∗ ��∗ … ����
∗ ����

∗ 
 ⋅

'(
((
)1 *�� *�� ⋯ *����,� *��,�

0 *�� *�� ⋯ *����,� *��,�

0 *�� *�� ⋯ *����,� *��,�

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 *�,��� *�,��� ⋯ *����,��� *��,���+,
,,
-

⋅

'(
((
)�������

⋮���+,
,,
-
 

           = 	��∗ ��∗ ��∗ … ����
∗  ����

∗ 
 ⋅ ���� ���  ��� … �� ,��� ��,����
, 

(13)
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���(�) = [sin�&��  cos�&��  sin�2&��   cos�2&��  …  sin(%&�)   cos(%&�)]  

            ⋅ [−&��   &���   − 2&��   2&���  …  − %&��     %&���]
 

           = 	��∗ ��∗ ��∗ … ����
∗  ����

∗ 
 ⋅

'(
((
) *�� *�� ⋯ *��,� *����,�*�� *�� ⋯ *��,� *����,�*�� *�� ⋯ *��,� *����,�

⋮ ⋮ ⋱ ⋮ ⋮*�,��� *�,��� ⋯ *��,��� *����,���+,
,,
-
 

            ⋅

'(
((
)−& &

−2&
⋱ %&+,

,,
-

⋅

'(
((
)�������

⋮���+,
,,
-
 

           = 	��∗ ��∗ ��∗ … ����
∗  ����

∗ 
 ⋅ ���� ��� ��� … ��,��� ��,����
, 

(14)

where ��∗ is the  th shifted Chebyshev polynomial of the first kind, & = 2� �⁄  and each column 

of matrix [*��] is from the � terms Chebyshev coefficients of the corresponding trigonometric 

function. 

Since the domain of shifted Chebyshev series of the first kind is [0, 1], the transformation  � = � ⋅ . (. ∈ [0,1]) must be done in order to normalize the period to 1. In actual calculation it is 

only necessary to expand the nonlinear vibration system equation into shifted Chebyshev series 

of the first kind and to replace & with 2�, � with ., ��∗(�) with ��∗(.). Transpose the right side of 

Eq. (9), then in symbolic form residual force /(.) can be written as:  

/�.� = 	�0∗�.�

 ⋅ 	1��� , ����
, (15)

where [�0(.)]×�

 = 2 ⊗ [��∗�.� ��∗�.� ��∗�.� … ����

∗ (.)]
 , ⊗  represents matrix Kronecker 

product. [2] is the identity matrix. [1(�� , ���)] is an �� × 1 column vector. Obviously, in the 

case of exact solutions, residual / equals to 0 on arbitrary time point in a primary cycle. Let /�(.) 

be the row component of residual force /(.). The total error between the exact solutions and 

periodic solutions, see Eq. (10), is equivalent to the sum of the absolute value of all time points in 

a cycle. It can be expressed as an unconstrained nonlinear optimization problem, i.e.:  

min
���,���∈�

3,   where  3 =
1� � � /�(.)��.�

�



���

. (16)

The unknown coefficients �� and ��� can be obtained via local optimization algorithm such 

as quasi-Newton method [26]. Since initial value selection will affect optimization results of local 

optimization algorithm, the number of harmonic terms in Eq. (13) can be adjusted in order to limit 

optimization initial value in a reasonable range. For simplicity we can directly reference to the 

harmonic terms of harmonic balance method (HBM). Then according to Eq. (13), Eq. (14) and 

Eq. (16) the unknown Chebyshev coefficients ���  and ���  can be calculated. Note that the periodic 

solution of engineering models usually has a clear physical meaning (such as in Section 4.2.2) and 

a closed interval of the feasible region can be estimated. Then the interval optimization algorithm 

can be used to seek global optimal solutions, while it will greatly increase the time complexity 

and computational complexity, and sometimes it is not necessary. 

When the periodic solution is expressed in the form of shifted Chebyshev series, the periodic 

solution stability can be analyzed as follows. Suppose that a perturbation 4�(�) is imposed to the 

known periodic solution ��(�), i.e.: 

���� = ����� + 4����. (17)
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Substitute Eq. (17) into the system equation and omit the higher order small amount. Then a 

linearized system with respect to 4�(�) can be obtained: 

4����� = 5�6�����7 ⋅ 4����. (18)

By linear periodic system theory and Chebyshev series operation properties, we only need to 

integrate the linearization system Eq. (18) over the interval [0, 1] with each column of the identity 

matrix as the integral initial value separately. Then the linearization-system state vector at the end 

point of the period is the corresponding column vector of FTM 8(�) [4]. According to Floquet 

theory, if the eigenvalue norms of FTM are less than 1, the periodic solution of the system is 

asymptotically stable, otherwise it is unstable.  

The shifted Chebyshev polynomial of the first kind, multiplication and integral operator matrix 

used in calculating residual force, objective function and FTM are given in references 

[4, 5, 16, 17]. In this paper a 15 terms shifted Chebyshev series of the first kind is adopted. 

4. Examples 

4.1. Application to the Duffing system 

Consider the Duffing system with cubic nonlinearities: 

�9 + � + ��� + *�� = �cos�&��, (19)

where  = 4, � = 2, * = 17, � = 5, & = 2. When solving the shifted Chebyshev series periodic 

solution with the suggested method, we must normalize the period to 1 by transforming the time 

variable � to 2�. &⁄  �. ∈ 	0,1
�. Then we expand Eq. (19) into shifted Chebyshev series, and 

calculate the system residual /  via multiplication and integral operator matrix. Finally 

quasi-Newton method can be used to seek optimal solutions of objective function. Table 1 shows 

the unknown coefficients of periodic solution obtained by the optimization method (3-term 

harmonic) and HBM (7-term harmonic).  

Table 1. Coefficients of approximate analytical periodic solution 

Coefficient Optimization method Coefficient HBM 

�� 0.000214327013 �� 0 

�� 0.55117695 �� 0.550665369 

�� 0.37818696117 �� 0.37846670826 

�� 0.00059928746 �� 0 

�� -0.0009649196 �� 0 

�� 0.0157754674 �� 0.0162381788 

�� 0.051302781 �� 0.0515055873 

�� 0.00044608728 �� 0 

�	 0.00055906966 �� 0 

�
 -0.0022438111 �� -0.00222665 

��� 0.0023410744 �� 0.003084981 

��� -0.0000682019 �� 0 

��� 0.00056548798 �� 0 

��� -0.0002677232 �� -0.0002695199 

��� -0.000180024115 �� 0.000017709946 

Fig. 1 and Fig. 2 show the residual curves obtained by the two methods over one time cycle. 

It can be seen that even the number of harmonic terms adopted in the suggested method is fewer 
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than that of HBM, the periodic solution obtained still has greater accuracy than HBM. The reason 

is that in the suggested method adjusting the harmonic expansion terms is equivalent to changing 

the optimization initial value reasonably, and the objective function aims to reduce the error 

between the supposed periodic solution and the exact solution. Obviously the suggested method 

is apt to get a higher accuracy periodic solution. The phase portraits of Duffing system obtained 

by optimization method and HBM are displayed in Fig. 3, and both of them coincide very well. 

The optimization method not only requires expanding fewer harmonic items than HBM (i.e. 

solving fewer unknown coefficients), but also reduces the residual from 10-3 to 10-7 order of 

magnitude. 

  
Fig. 1. The residual curve of HBM Fig. 2. The residual curve of the suggested method 

 
Fig. 3. The phase portrait of Duffing system 

According to the linear periodic system theory and the Chebyshev series operation property, 

take each column of identity matrix as the integral initial condition respectively. The state vector 

obtained at the end of the cycle via integration is the corresponding column of FTM. One of the 

norms of the eigenvalue (Floquet multiplier) of FTM is 10.91, which is greater than 1. Then the 

periodic solution of Duffing equation is unstable. 

4.2. Helicopter rotor system 

Rotor response and its stability is an important research topic in helicopter dynamics. Rotor 

dynamics model is a time-varying differential equation group containing nonlinear structure, 

inertial and aerodynamic loads. It is usually calculated by HBM, time finite element method 

(TFEM) or numerical integration algorithm. Since numerical integration algorithm is sensitive to 

integration initial value, solving rotor response usually adopts HBM or TFEM. 

4.2.1. Application to the articulated rotor system 

Take the articulated helicopter rotor motion for example. Consider flapping/lagging coupled 



1024. FINDING CHEBYSHEV SERIES PERIODIC SOLUTIONS OF NONLINEAR VIBRATION SYSTEMS VIA OPTIMIZATION METHOD.  

WEI ZHOU, JINGLONG HAN, QUANLONG CHEN 

  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2013. VOLUME 15, ISSUE 3. ISSN 1392-8716 1087 

movements in rotating plane, as shown in Fig. 4 and Fig. 5. Suppose that each blade has the same 

properties. The flapping/lagging coupled equations are established as follows: 

:;<
;=� >�(� − ?)��� @9�

�

+ � >����� @ A�
�

�

+ B�6@ − @�7 = � �� − ?�1����

�

,

� (� − ?)>���� C9�

�

+ � ?>���� C A�
�

�

+ � >�  >���� 2A @ @��

�

+ B�C = � (� − ?)1����

�

.

(20)

 

  
Fig. 4. The force diagram of articulated  

rotor blade flap movement 

Fig. 5. The force diagram of articulated  

rotor blade lag movement 

The symbols in the above equations have been described in references [27, 28]. 1�  is the 

aerodynamic force parallel to the disc plane. 1� is the aerodynamic force vertical to the disc plane. 

Where: 

1� =
1

2
�D�D
E − D��� +

F�
2 D


� , (21)

1� =
1

2
�D


�E − D�D
�, (22)

D
 = � + Gsin	H
, (23)D� = I + �@� + @Gcos	H
. (24)

Table 2. Main parameters of the articulated helicopter rotor system 

Illustration Unit Value 

Rotor radius m 5.345 

Rotor speed rad/s 40.42 

Rotor shaft anteversion angle deg 2 

Chord length m 0.35 

Blade number  3 

Flapping hinge overhang amount m 0.205 

Blade twist angle deg -12 

Airfoil lift line slope rad-1 6.2 

Airfoil zero lift incidence deg 0.75 

Rotor solidity  0.06253 

Mass moment around flapping hinge kg⋅m 88.68 

Inertia moment around flapping hinge kg⋅m2 306.01 

Let us assume that advance ratio G equals to 0.2 and take Drees inflow model. For ease of 

calculation, the parameters not listed in the Table are supposed equal to 0. 

Transform the blade motion equations into state equations and take the periodic solution 

Eq. (13) into Eq. (20). Normalize the system period to 1. Then residual force /� of each motion 

equation can be obtained. When the periodic solutions are expanded as the 2-term harmonics, the 

variance averages of flapping and lagging motion equations obtained by HBM are 1.90047 and 

0.073. Obviously, it is a wrong conclusion, because large magnitude harmonic terms of the 
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periodic solution are omitted. Meanwhile, the system variance averages obtained by optimization 

method (quasi-Newton method) are 0.443 and 0.128, which can be considered comparatively 

accurate. The reason is that in the suggested method harmonic series is only used to correct the 

optimization initial value. The final result is the local optimal value in the vicinity of the initial 

value and the periodic solution is still approximated by a 15 terms shifted Chebyshev series. When 

expanded in the form of the 3-term harmonics, the total variance averages obtained by 

optimization method are 9.8 % lower than that of HBM in a cycle. Fig. 6 and Fig. 7 show the 

residual curves of the blade flapping/lagging motions when periodic solutions are expanded to the 

3-term harmonics. 

 
Fig. 6. Residual curve of flapping movement (3-term harmonics) 

 
Fig. 7. Residual curve of lagging movement (3-term harmonics) 

Note that the objective function of this issue can also be solved by global optimization 

algorithm. As @ and C on behalf of the flapping and lagging periodic solutions we can estimate a 

reasonable feasible region, i.e. a closed interval range according to actual situation. Then the 

periodic solutions can be converged to global optimal solutions by deterministic methods, while 

the calculation complexity will increase significantly and the time cost becomes unacceptable. It 

can be seen through the calculation results that by adjusting the optimization initial values local 

optimization method (quasi-Newton method) can also generate satisfying results. When we take 

the 7-term harmonic expansion, the system variance average can reach up to 10-10 order of 

magnitude and the flapping and lagging movement phase portraits are shown in Fig. 8 and Fig. 9. 

The periodic solution stability can be analyzed by Floquet theory. According to the linear 

periodic system theory and the Chebyshev series operation property we calculate the FTM. All 

the norms of eigenvalue of FTM are 0.0963 and 0.6802, less than 1. Therefore when advance ratio 
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G equals to 0.2, the helicopter rotor coupling motion is asymptotically stable.  

  
Fig. 8. Phase portrait of blade flapping movement Fig. 9. Phase portrait of blade lagging movement 

4.2.2. Application to the hingeless rotor system 

Consider the hingeless helicopter rotor system. Establish rotor blade motion equation in 

rotating coordinate via finite element method. The blade space finite element is shown in Fig. 10.  

 
Fig. 10. Blade space finite element 

The blade motion equation using the symbolic representation is: 

JK�9 + F̅�� + BK� − 10 = 0, (25)

where �(�) = {D�, M�, M��, ��, ��
�, N�, … , D��, N��, D��} is the total node displacement vector on a 

single blade. D, M, �, N represent the stretching, lagging, flapping and twist elastic displacements 

for each node on the blade elastic axis. In this example the blade parameters are adopted as BO-105 

rotor parameters in [29], where quasi-steady aerodynamic force and Drees inflow model are 

considered. 

In order to reduce the computation time and equation dimension, we take the first six order 

intrinsic modes in calculation. Then Eq. (25) transforms into an equation with respect to mode 

coordinate �(�): 

����� = O�����, �� ⋅ ���� + F���, (26)

where �(�) = {��, ��, ��, ��, ��, � , ���, ���, ���, ���, ���, �� }
  is dimensionless mode degree of 

freedom. A numerical method, named TFEM, is usually used to solve the response of 

high-dimension nonlinear rotor system model. 
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Fig. 11. Dimensionless mode degree of freedom phase portraits on blade tip position 

  
Fig. 12. Blade tip flapping response phase portrait Fig. 13. Blade tip lagging response phase portrait 

 
Fig. 14. Blade tip twist response phase portrait 

When periodic solution is expanded to 3-term harmonics as optimization initial value, the total 

variance averages obtained by optimization method reach up to 10-6 order of magnitude, which is 

slightly more accurate than TFEM (take 15 time elements and 5-order shape function). The 

dimensionless mode degree of freedom phase portraits on blade tip position are shown in Fig. 11. 

Then we return the mode degree of freedom to physical degree of freedom. Fig. 12 to Fig. 14 show 

the flapping, lagging and twist response phase portraits. The periodic solutions obtained by 
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optimization method coincide very well with the numerical results of TFEM. It proves that the 

suggested method is accurate and effective. 

According to Floquet theory, all the norms of eigenvalues of FTM are less than 1. Therefore 

when advance ratio G equals to 0.2, the periodic motion of this hingeless rotor is asymptotically 

stable. 

5. Conclusions 

In this paper, using the good properties of shifted Chebyshev series in numerical 

approximation field, proceeding from optimization of system residual force, the analytical 

periodic solution in the form of shifted Chebyshev series of the first kind is obtained. Compared 

with HBM, when the periodic solution is expanded in fewer or the same harmonic terms, the 

suggested method owns higher accuracy. When solving the high-dimension nonlinear system, it 

can still obtain a high precision analytical solution. In periodic solution stability analysis the FTM 

can be obtained directly and accurately by the integral operation of Chebyshev series without the 

help of special numerical approach for calculating approximate FTM. Examples show that in 

addition to solving low-dimensional system, this method also can be used to calculate the periodic 

solution and to analyze the stability of high-dimensional nonlinear vibration system, such as the 

helicopter rotor system. It indicates that finding Chebyshev series periodic solutions of nonlinear 

vibration systems via optimization method is accurate and effective. 
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