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Abstract. Slow-wave is one of the most typical epileptic activities in EEGs and plays an important 

role in the diagnosis of disorders related to epilepsy in clinic. However artifacts such as blinking 

resemble slow-waves in shape and confuse slow-wave detection. Thus, differentiating and 

removing these artifacts are of great importance in slow-wave detection. In this paper, we propose 

an improved slow-wave detection algorithm based on discrete wavelet transform (DWT) that 

specially concerns on removal of blinking artifact (BA). EMD that can break down a complicated 

signal without a basis function such as sine or wavelet functions is used to decompose EEG. Two 

intrinsic mode functions (IMFs) which have BA’s characteristic are extracted. Then, we compute 

the similarity between original EEG and the combination of IMFs for identifying BA. Regression 

method is used to remove influence of BA from all channels. Finally, improved DWT is employed 

to detect slow-waves. We employ this method to clinical data and results show that the average 

false detection rate of the improved method is much lower than that of the traditional DWT 

method. 

Keywords: epilepsy, EEG, slow-wave detection, EMD, wavelet transform. 

1. Introduction 

Epilepsy is a common neurological disease that affects millions of people around the world 

and epileptic seizures are clinical manifestations of abnormal and excessive neuronal discharges 

in the brain [1]. EEG is a summation of electrical activities generated by cortical neurons and 

widely used in diagnosis of disorders related to epilepsy [2, 3]. The epileptic EEG signals acquired 

in clinic contain epileptic waves including spike, sharp-wave, slow-wave, and the combinations. 

In clinic, they can be observed in most ictal and interictal rhythmic discharges. However slow-

wave is an important sign of partial seizures and generalized seizure [4]. Thus the detection of 

slow-wave is crucial in diagnosis and seizure prediction of epilepsy. Simultaneously, labeling the 

epileptic waves manually is a very time-consuming process [5] and visual detection has not been 

proven very efficient [6]. Consequently, automatic detection of epileptic waves is highly 

concerned. 

Epileptic seizure may lead to transient disturbances of mental function and/or movements of 

different body parts. Therefore, epileptic seizure can cause artifacts which interfere in the 

judgment of epileptic waves [7, 8]. The BA which occurs at any moment is one of the most 

common artifacts. It diffuses across the scalp and pollutes all channels’ EEG signals. During the 

past decades, many methods have been put forward for removing artifacts. A traditional strategy 

is according to a fixed threshold. All the data that exceed the threshold is discarded on related 

electrodes. So this method is likely to be simply arbitrary and a complete waste of information. 

With the non-stationary characteristic of artifacts being accepted, non-linear methods such as 

independent component analysis (ICA) [9, 10] and wavelet transform [11, 12] etc. are applied. 

ICA can decompose artifacts and real EEGs into different independent components, but ICA 

usually requires a large amount of data and visual inspection to eliminate noisy independent 

components, making the method time-consuming. Wavelet transform is based on an established 
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basis function and reflects the frequency distribution of neural activity of subjects. However, the 

frequency and amplitude of blinking artifacts are inter- and intra-subject variabilities. Thus, it is 

difficult to remove the BA irreproachably using wavelet transform; even it may be a wrong way 

in practice. One of the advantages of EMD is that it can break down a complicated signal without 

a basis function such as sine or wavelet functions [13]. So EMD can be used to analyze some 

complicate signals from biology and all of the oscillatory modes embedded in the complicated 

signal can be described in the time frequency domain. 

In virtue of the non-stationary characteristic of epileptic waves, many non-linear methods are 

applied to detect epileptic waves. Since the amplitude and frequency of slow-wave are 

comparatively fixed, Wavelet which owns similar morphological characteristics comparing with 

slow-wave is selected to detect slow-wave. Arab and Suratgar [12] apply Mexican-hat wavelet to 

decompose the epileptic EEG signals and obtain the wavelet coefficients.Then they use neural 

network to classifier the epileptic EEG signals from the normal ones with the data set of wavelet 

coefficients. Gandhi and Panigrahi [14] undertake systematic study. They compare different 

wavelets’ performance on the accuracy of distinguishing epileptic EEG signals from the healthy 

ones by features they choose, energy, entropy, and standard deviation of wavelet coefficients. 

Similarly, wavelet transform is adopted to differentiate epileptic EEG segments from the normal 

rather than locate the epileptic waves. So wavelet transform is believable in slow-wave detection. 

For reducing false detection rate, we improve slow-wave detection method based on wavelet 

transform, applying third order of wavelet coefficients.  

In this paper, we employ EMD and regression method for artifact cancelling and we also 

improve the algorithm of DWT to extract slow-waves. The outline of this study is organized as 

follows. In section 2, we briefly describe the sets of EEG signals and the algorithms used. In 

section 3, we discuss optimal weighting combining in artifact removal method and we also present 

the results of artifact removing method and slow-wave detection method. At last section the 

performance of slow-wave detection method is provided and we conclude the paper. 

2. Materials and methods 

2.1. Subjects and recordings 

EEG data applied in this paper are collected from the subjects of the second affiliated hospital 

of Xi’an Jiaotong University, Xi’an, China. The subjects include 28 patients with epilepsy (12-25 

year-old males and females) and two normal adults (a 22 year-old male and a 30 year-old male. 

They are volunteers in Xi’an Jiaotong University, Xi’an, China. They are able bodied, free from 

medication and any disorders of, or injuries to, the central nervous system.). 21 out of 28 patients 

are training set to determine the threshold of detecting slow-wave and the remaining 7 patients are 

test set. To obtain dataset 1 including blinking artifacts, subjects (normal subjects) are instructed 

to self generate blinking at ease. We also achieve multi artifacts EEG data (dataset 2) which 

contain blinking artifacts and Electromyography (EMG). Data acquisition system is 

WEE-1000A/K, Nihon Kohden Corporation, Japan. Exploring cup electrodes are fixed to the scalp 

at Fp1, Fp2, F7, F8, C3, C4, T5, P3, P4, T6, O1, and O2 according to the International 10-20 

System. The reference electrode is located on the ipsilateral ear electrode. The epileptic EEG 

signals, dataset 1, and dataset 2 are recorded at a sampling frequency of 200 Hz. All the EEG data 

are amplified with bandpass filter of 0.5–60 Hz. 50 Hz notch filter is employed to wipe power 

frequency out. Block diagram of the EEG signal processing is shown in Fig. 1.  

 
Fig. 1. Block diagram of epileptic EEG signals diagnosis 
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2.2. Artifacts removing methods 

BA may be presented throughout the recording process and the amplitude of this artifact is 

much greater than the EEG signals [12]. In this paper, we use EMD and regression method to 

eliminate it. 

1) Empirical mode decomposition: empirical mode decomposition (EMD) proposed by N. E. 

Huang in 1998 [15] is a nonlinear signal processing method. It decomposes signals into a series 

of intrinsic mode functions (IMFs) indicating the bases of the signals. Each IMF satisfies two 

basic conditions: (1) in the whole data set, the number of extrema and the number of zero-crossing 

must be the same or differ at most by one; (2) the local mean value of the envelope defined by 

local maxima and the local minima is zero. The algorithm of EMD for extracting IMFs from x(𝑡) 

is been summarized as follows [16]: 

(1) Compute all the local extrema including maxima and minima of 𝑥(𝑡). 

(2) Obtain the upper envelope 𝑒𝑛(𝑡) and lower envelope 𝑒1(𝑡) respectively by cubic spline 

interpolation. 

(3) Compute the mean 𝑚(𝑡): 𝑚(𝑡) = (𝑒𝑛(𝑡) + 𝑒1(𝑡))/2. 

(4) Extract ℎ1(𝑡)  from 𝑥(𝑡)  as ℎ1(𝑡) = 𝑥(𝑡) − 𝑚(𝑡).  Check ℎ1(𝑡)  by the two basic 

conditions and repeat step 1-4 until an IMF is obtained. 

(5) Compute the residual as: 𝑟1(𝑡) = 𝑥(𝑡) − 𝑐1(𝑡), when the first IMF 𝑐1(𝑡) is extracted. 

(6) Consider 𝑟1(𝑡) as new 𝑥(𝑡) and repeat steps 1-5 until 𝑁 IMFs are obtained. 

If residual 𝑐𝑁(𝑡) or 𝑟𝑁(𝑡) is a constant or a function with only one maxima and minima, the 

procedure stops. 

After the procedure, 𝑁 IMFs and a residual 𝑟𝑁(𝑡) are achieved. The original signal 𝑥(𝑡) can 

be described as Eq. (1). The lower order IMF owns the higher frequency and vice versa. 

𝑥(𝑡) = ∑ 𝑐𝑖(𝑡)

𝑁

𝑖=1

+ 𝑟𝑁(𝑡). (1) 

2) Regression method: regression methods often assume that the scalp potential is a linear 

combination of brain and blinking potentials. By subtracting propagated blinking from EEG 

recordings, EEG signals can be recovered [17]. The algorithm is summarized as Eq. (2). 

[9, 10, 18, 19]: 

𝐸𝐸𝐺𝑒𝑠𝑡,𝑖(𝑡) = 𝐸𝐸𝐺𝑚,𝑖(𝑡) − 𝛼 × 𝐸𝐸𝐺𝑏,𝑗(𝑡) − 𝛽, (2) 

where 𝐸𝐸𝐺𝑒𝑠𝑡,𝑖(𝑡) is the reconstructed EEG. 𝐸𝐸𝐺𝑚,𝑖(𝑡) is the EEG signal except Fp1 and Fp2. 

𝐸𝐸𝐺𝑏,𝑗(𝑡) is EEG polluted by BA in Fp1 or Fp2. 𝑖 is electrode index except Fp1 and Fp2. 𝑗 

indicates Fp1 or Fp2. 𝛼 and 𝛽 are computed in Eq. (3) and Eq. (4) respectively:  

𝛼 = 𝛾𝑖,𝑗 × 𝑠𝑑𝑖 𝑠𝑑𝑗⁄ , (3) 

𝛽 = 𝑥𝑗 − 𝑦𝑖 × 𝛼, (4) 

where 𝛾𝑖,𝑗 stands for the correlation coefficient of 𝐸𝐸𝐺𝑚,𝑖(𝑡) and 𝐸𝐸𝐺𝑏,𝑗(𝑡). 𝑠𝑑𝑖 and 𝑠𝑑𝑗 indicate 

the standard deviations of 𝐸𝐸𝐺𝑚,𝑖(𝑡)  and 𝐸𝐸𝐺𝑏,𝑗(𝑡)  respectively. 𝑥𝑗  and 𝑦𝑖  are the means of 

𝐸𝐸𝐺𝑏,𝑗(𝑡) and 𝐸𝐸𝐺𝑚,𝑖(𝑡) respectively.  

2.3. Slow-wave detecting method  

Wavelet transform (WT) that is proposed in the late 1980s has the advantage of analysis signals 

in frequency-scale. The usage of WT is widely. A common use is wavelet filter [20, 21] besides, 
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epilepsy detection is also an area in which the WT has been particularly successful since WT 

captures transient features and localizes them in both time and frequency content accurately [12]. 

The wavelet transform is an integral transform and the formula of wavelet transform is described 

in Eq. (5): 

𝜑𝑎,𝑏(𝑡) = 𝑎−1 2⁄ 𝜑 (
𝑡 − 𝑏

𝑎
), (5) 

where 𝜑(𝑡)  is the mother function wavelet. 𝑎  is the dilation parameter and 𝑏  stands for the 

translation parameter. 

3. Results 

After analyzing dataset 1 with EMD, we discover that IMF2 and IMF3 contain the main 

morphological features of BA (Fig. 2 (a-b)) and the combination of IMF2 and IMF3 should have 

more superior similarity than either of them. For obtaining optimal weight of combination, we 

make a comparison. 

 

 
Fig. 2. Decomposing of EEG signal contained blinking artifacts by EMD: 

(a) original signal, (b) IMF2, (c) IMF3, (d) IMF2 + IMF3 
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3.1. Optimal weight for combination  

The combination method (𝜆 and 𝜇 in 𝜆IMF2 + 𝜇IMF3) takes the summation value between 

the two input IMF2 and IMF3. For searching optimal weight, we make comparison on three 

different ways. The first one is 𝜆 = 𝜇 = 1. The second is that 𝜆 = 𝑚 (in Eq. (6)) and 𝜇 = 1 − 𝑚 

when the energy of IMF2 is lower than IMF3, i.e., 𝑚 is less than 1; on the contrary, we define 

𝜆 = 1 − 𝑚 and 𝜇 = 𝑚. The last is similar with the second except that 𝑛 (in Eq. (7)) is employed:  

𝑚 = 𝐸𝑁(IMF2) 𝐸𝑁(IMF3)⁄ , (6) 

𝑛 = 𝑉𝐴𝑅(IMF2) 𝑉𝐴𝑅(IMF3)⁄ , (7) 

where 𝐸𝑁(IMF𝑖) and 𝑉𝐴𝑅(IMF𝑖) are the average energy and standard deviation of the 𝑖-th IMF 

respectively (𝑖 = 2, 3). 

In Fig. 3, box 1, box 2, and box 3 represent correlation coefficients calculated by three different 

combination ways mentioned above respectively. It is obviously that the first combination method 

(𝜆 = 𝜇 = 1) yield higher correlation coefficients than those using other ways. This suggests that 

the threshold defined by the first way is higher than others and it benefits to decrease erroneous 

judgment. Fig. 3 also clearly shows that the first way (𝜆 = 𝜇 = 1) holds higher robustness when 

another artifact is included. 

  
Fig. 3. Statistical comparison. The box 1 is significantly higher than the second (𝑝 < 0.05), this situation 

also appears when comparing the first with the third (𝑝 < 0.05). Figures (a) and (b) are plotted by dataset 1 

and dataset 2 respectively. Each sample stands for five seconds EEG signals. The length of data should not 

be too short for preventing not enough maxima and minima existing or too long for avoiding reduction of 

the correlation coefficients between original EEG signal and IMF2 + IMF3 

3.2. Artifact removing 

Therefore, IMF2 + IMF3 can be served as useful signal in identifying BA from EEG 

background. It is more clearly in Fig. 2 (a)-(d). We also analyse the clinical EEGs containing BAs 

and the results validate this finding. Correlation coefficient is employed to quantify the similarity 

between original EEG signal and IMF2 + IMF3. If the correlation coefficient of original EEG 

signal and IMF2 + IMF3 is higher than the predefined threshold in Fp1 or Fp2, BA in the original 

EEG signal is detected. 

The threshold discriminating blinking artifacts should be confirmed. The databases contain 

clinical epileptic EEG data, dataset 1, and dataset 2. Segmentation is performed for a set of 

thresholds between 0 and 1 with a step of 0.005. For each threshold, the number that is accordance 

with the prior awareness form of data style is counted. The threshold which leads to the maximum 

number is kept as the definitive threshold. If several threshold levels lead to the same number, the 

lowest one is taken. After analyzing, the threshold is set to 0.715. 

For purpose of removing blinking artifacts completely, we filter the original polluted EEG 

signals in Fp1 or Fp2 with bandstop filter of 5-8 Hz that is the main frequency of blinking artifacts. 
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Considering the BAs that are obtained by subtracting the filtered data from the original EEG as 

template, the influence of artifacts on other electrodes (except Fp1 and Fp2) is reduced by 

regression method. Fig. 4 shows the performance of artifact cancelling method.  

 

 
Fig. 4. (a) Original EEG signal which contains blinking in Fp1, (b) original EEG signal which contains 

blinking in Fp2, (c) original EEG signal polluted by blinking in F3, (d) the EEG signal processed by 

artifact cancelling method in F3. Blinkings in Fp1 and Fp2 are boxed in boxes 

3.3. Slow-wave detection 

To locate slow-waves, we apply the db6 wavelet function because the shape of its mother 

wavelet resembles slow-wave. Fig. 5 (a) and (b) display the scale function and the wavelet 

function of db6 respectively. 

The analysis of slow-wave based on discrete wavelet transform (DWT) is performed in three 

stages: 1) decomposition, using DWT to analysis of EEG signals in four levels; 2) feature 

extraction, selecting the frequency band, the fourth level, that involves the frequency of slow-wave 

and cubing the slow-wave wavelet coefficients; and 3) label, detecting and marking the slow-wave 

relying on slow-wave threshold. 

Since EEG is complex in clinic and the amplitude of EEG is inter- and intra-subject variability, 

statistical method is the best choice. Here we select 500 hours EEG data from 21 patients which 

contain epileptic slow-waves. For each patient, the result of marking slow-wave is censored by 

two experts. The method for determining threshold is identical with the artifacts removing 
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threshold and the optimal threshold is decided to 0.403. 

Finally, the slow-wave detection method is tested on 7 clinical epileptic EEGs. The results are 

very promising and the average false detection rate [3] is 15.67 %. The details are presented in 

section 4 (Table 1). 

 
Fig. 5. The wavelet applied: (a) scale function of db6, (b) wavelet function of db6 

 

 
Fig. 6. Decomposing of epileptic EEG signal that contains slow-wave by EMD: 

(a) the original epileptic EEG signal which contains slow-wave at about 1 s, 

(b) IMF2, (c) IMF3, (d) IMF2+IMF3 
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3.4. Performance of artifact removal method 

The artifact removing method we present should not disturb the detection of slow-wave 

(Fig. 6). We compare Fig. 2 with Fig. 6 and the result indicates that the similarity of original signal 

and IMF2 + IMF3 is greatly lower in Fig. 6, i.e., in the case of blinking artifacts contained, the 

signals of IMF2 + IMF3 are more similar with original signals. Consequently, the artifact 

removing method can’t generate misjudgment between slow-waves and artifacts. We also find 

that the proposed method of eliminating blinking artifacts in this paper can decrease the false 

detection rate of slow-waves (Fig. 7). It is more obvious in the boxes (Fig. 7 (c)-(d)). 

 

 
Fig. 7. (a) The original EEG signal which contains blinking artifacts in Fp2 (blinking which pollute P4 

channel’s signals is circled), (b) the original data which do not contain slow-waves in P4, (c) third order of 

wavelet coefficients of the signal which is preprocessed by blinking cancelling method in P4, (d) third 

order of wavelet coefficients of the original signal which do not have to be preprocessed in P4 

4. Discussion and conclusion 

4.1. Discussion 

The advantage of third order of wavelet coefficients method comparing with traditional first 

order of wavelet coefficients method is depicted in Fig. 8. The original data are epileptic EEGs 

containing slow-waves in O2. This figure makes it clear that the difference between slow-wave 

and other waves expands when cubing the wavelet coefficient (it is more obvious in the boxes). 
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Hence, the accuracy ratio of detecting slow-wave must rise up with third order of wavelet 

coefficients applying.  

 
Fig. 8. Comparison of third order of wavelet coefficients and first order of wavelet coefficients: 

(a) third order of wavelet coefficients, (b) first order of wavelet coefficients 

Detailed results are displayed in Table 1. All the data we analyzed are reviewed by two 

experienced clinicians and they also determine the number and location of slow-waves in each 

clinical EEG segments. It is obvious that the false detection rate reduces by 53.5 % corresponding 

to the traditional on average.  

Table 1. Result of detecting slow-wave 

Number 
Number of 

slow-wave 

False detection rate of third order  

of wavelet coefficient (%) 

False detection rate of first order  

of wavelet coefficient (%) 

1 16 30.00 58.97 

2 69 10.91 16.67 

3 27 15.15 35.04 

4 24 8.33 32.23 

5 45 22.73 33.87 

6 101 9.35 21.69 

7 36 13.24 27.78 

Total 318 109.71 226.25 

Average 45.43 15.67 32.32 

4.2. Conclusion 

In this paper, we presented improved slow-wave detection algorithm that specially concerns 

on removal of BA. EMD and regression method are utilized to eliminate blinking artifacts and 

then third order of wavelet coefficients is employed to extract slow-waves. The results of applying 

the method to clinical epileptic EEGs demonstrate that this method can reduce the false detection 

rate of slow-wave. Future work will focus on new feature selection in IMF2 and IMF3 which can 

depict blinking artifacts more clearly. Furthermore, more wavelets will be tested for reducing false 

detection rate of slow-wave.  
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