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Abstract. In the current study an analytical model to determine fundamental frequency of 

perforated plate with circular perforation is formulated. Circular holes are replaced by equivalent 

square hole and non homogeneity in Young’s modulus and density due to equivalent square 

perforation is expressed by using unit step functions. Analytical formulation is based on 

Rayleigh-Ritz method. In present study boundary condition considered is clamped at all edges. 

The deflected middle surface of the plate is approximated by a function which satisfies the 

boundary conditions. Proposed approach is validated by comparing numerical analysis results 

with Finite Element Method (FEM) modal analysis results. 

Keywords: perforated plate, unit step function, Rayleigh-Ritz method, vibration of plate, 

staggered perforation pattern. 

1. Nomenclature 

𝐴 Area of perforation 𝑑𝑐  Side length of square perforation 

𝑎 
Effective outer dimension  

along x axis 
𝑟𝑐 Radius of circular perforation 

𝑏 
Effective outer dimension  

along y axis 
𝜌 Density 

𝐷 

Flexural rigidity 

𝐷 =
𝐸ℎ3

12(1 − 𝜐2)
 

𝛻2 

Two-dimensional Laplacian operator 

𝛻2 =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 

𝐸 Modulus of elasticity 𝜔 Fundamental frequency 

ℎ Uniform plate thickness 𝑢𝑚𝑎𝑥 Maximum kinetic energy 

𝜈 Poisson’s ratio 𝑇𝑚𝑎𝑥 Maximum strain energy 

𝑊 
Deflection of the mid plane  

of the plate 
𝑓(𝑦) 

Function representing variation of  

material properties along y axis 

𝑓(𝑥) 
Function representing variation of  

material properties along 𝑥 axis 
𝐹(𝑥, 𝑦) 

Function representing variation of  

material properties along 𝑥 and 𝑦 axes 

2. Introduction 

Study of vibration characteristics of plates is important as plates are one of the most important 

structural elements used in various mechanical, civil, and aerospace engineering applications, such 

as bridge decks, hydraulic structures, tube sheets of heat exchanger, ship decks, airplanes, missiles, 

pressure vessel covers, machine parts and nuclear reactor components. Specially, plates with 

various complicating effects such as perforations have markedly different behavior than usual 

homogeneous plates under vibration, as the complicating effect alters the vibration characteristics. 

From the survey of existing literature authors found that effective elastic constants for the bending 

of thin perforated plates with triangular and square penetration patterns are suggested by 

O’Donnell [1]. These equivalent material properties can be used to model perforated plate as 

equivalent solid plate. Finite element method was used by Forskitt et al. [2] to determine effective 

Young’s modulus and Poisson’s ratio for a perforated plate with circular holes. They also proposed 

mailto:malikirand@gmail.com


975. AN ANALYTICAL MODEL TO DETERMINE FUNDAMENTAL FREQUENCY OF RECTANGULAR PLATE HAVING RECTANGULAR ARRAY OF 

CIRCULAR PERFORATIONS. KIRAN D. MALI, PRAVIN M. SINGRU 

  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. JUNE 2013. VOLUME 15, ISSUE 2. ISSN 1392-8716 589 

expressions for equivalent density for plates with regular triangular and rectangular array of holes. 

By using the concept of equivalent solid plate Choi et al. [3] studied vibration of simply supported 

perforated plates. They found that values of equivalent elastic constants for dynamics studies are 

different from static problems to get accurate results. Further they noticed, difference between 

equivalent elastic properties for static and those for dynamic analysis become significant as the 

ligament width becomes smaller. Wang and Lai [4] used hybrid approach combining experimental 

and numerical methods to obtain equivalent material properties. They studied vibrations of 

perforated plates having rectangular/square and triangular array of holes using the concept of 

equivalent material properties. Burgemeister and Hansen [5] showed that to predict accurately the 

resonance frequencies of simply supported perforated panel, effective material constants cannot 

be used in classical equations. They used cubic function fitted from ANSYS results to determine 

the effective resonance frequency ratio for large range of panel geometries with an error of less 

than 3 %. Patil et al. [6] also gave an expression for effective resonance frequency by using curve 

fitting technique. They used FEM (Finite Element Method) simulation data of resonance 

frequencies for five perforated plates. The formula is a function of mass remnant ratio, i.e. the 

ratio of surface area of perforated plate to that of the solid plate for the same dimension. Mali and 

Singru [7] introduced the concept of concentrated negative masses for perforation holes and 

determined fundamental frequency of rectangular plate carrying four circular perforations in 

rectangular pattern. Mali and Singru [8, 9] formulated an analytical model by using unit step 

functions and greatest integer functions to express non homogeneity in Young’s modulus and 

density and determined fundamental frequency of free vibration of perforated plate. They have 

also given details of literature related to non-homogeneous rectangular plates.  

From review of the literature, authors have found that no work has been reported dealing with 

analytical formulation for rectangular perforated plate with an array of circular holes, by 

considering unit step function to express non-homogeneity due to the holes (in Young’s modulus 

and density). 

In this paper an analytical model to determine fundamental frequency of perforated plate with 

circular perforations is formulated. Circular holes are replaced by equivalent square hole and non 

homogeneity in Young’s modulus and density due to equivalent square perforation is expressed 

by using unit step functions. These functions are used in the analytical model, to determine 

fundamental frequency. Perforated plate is considered as plate with uniformly distributed mass 

and holes are considered as non homogeneous patches. Approach presented here is an extension 

of the approach proposed by Mali and Singru [9]. Rayleigh-Ritz formulation is used to establish 

an analytical model to determine fundamental frequency. In the present work, fundamental 

frequency is obtained by numerical analysis with proposed approach for different plate specimens 

with all edges clamped boundary condition. Numerical analysis involves two cases of 2 mm 

thickness perforated plate specimens as follows. All specimens analyzed are having rectangular 

arrays of circular holes. 

• Rectangular plates with effective outer dimensions 138 mm × 216 mm × 2 mm and varying 

perforation sizes. 

• Rectangular plates with effective outer dimensions 276 mm × 432 mm × 2 mm and varying 

perforation sizes. 

3. Analytical formulation 

3.1. Concept of equivalent square hole for circular perforation 

Circular hole can be replaced by square hole of the same area [10] with centre of the square 

same as the centre of the circular hole. Consider a circular hole of radius 𝑟𝑐  as shown in Fig. 1. 

For a square perforation of side length 𝑑𝑐, area can be given: 

𝐴𝑐 = 𝑑𝑐
2. (2) 
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For equivalent square perforation, from equation (1) and (2): 

𝑑𝑐
2 = 𝜋𝑟𝑐

2. (3) 

Thus for equivalent square perforation side dimension 𝑑𝑐 can be given as: 

𝑑𝑐 = 𝑟𝑐√𝜋. (4) 

 

  
Fig. 1. Equivalent square hole 

for circle of radius 𝑟𝑐 
Fig. 2. Orientation of the perforated plate 

with equivalent square perforations 

3.2. Formulation of the function to express non-homogeneity in material properties of 

plates with circular perforations 

A rectangular plate with coordinate system (𝑂; 𝑥, 𝑦, 𝑧), having the origin 𝑂 at one corner is 

considered as shown in Fig. 2. Co-ordinates of the plate clamped on all edges carrying circular 

holes are 𝑎 and 𝑏 along 𝑥 and 𝑦 axis respectively. The displacement of an arbitrary point with 

coordinates (𝑥, 𝑦) on the middle surface of the plate is denoted by 𝑊, in out-of-plane (𝑧) direction. 

The boundary conditions considered here, are all edges clamped. Geometric parameters of the 

rectangular plate are as 𝑎 and 𝑏 for sides, ℎ as thickness and 𝑟𝑐  is radius of hole which is uniform 

for all perforations arranged in rectangular array. It is assumed that transverse defections are small 

so that the dynamic behavior of the plate is governed by classical thin plate theory. 

Equivalent square holes replacing the circular holes are shown in Figure 2 with side dimension 

as 𝑑𝑐. This is an equivalent approach, to use unit step functions to express non-homogeneity in 

material properties. Rayleigh-Ritz method is used for the analytical formulation to determine 

fundamental frequency. Analytical model in the present work does not consider any rotary inertia 

of the plate. 

Consider function 𝐹(𝑥, 𝑦) representing the variation of the density and modulus of elasticity 

due to equivalent square perforations. For the function 𝐹(𝑥, 𝑦) to represent these parameters it 

must satisfy the following requirements: 

𝐹(𝑥, 𝑦) = 0  in the region corresponding to a perforation, 
𝐹(𝑥, 𝑦) = 1  otherwise. 

(5) 
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The function 𝐹(𝑥, 𝑦)  is constructed as per the geometry of the plates considered with 

equivalent square perforations. To construct the function 𝐹(𝑥, 𝑦) we assume that density at any 

point (𝑥, 𝑦)  is the superposition of the density along 𝑥  direction and 𝑦  direction [8, 9], this 

superposition is also considered for modulus of elasticity.  

The functions 𝑓(𝑥) and 𝑓(𝑦) represent variation of density and modulus of elasticity along 𝑥 

and 𝑦 axes respectively. The functions 𝑓(𝑥) and 𝑓(𝑦) are formed by using unit step functions and 

are superimposed to obtain the function 𝐹(𝑥, 𝑦).  

The unit step as a function of a discrete variable 𝑛 is given as [11]: 

𝐻(𝑛) = {
0, 𝑛 < 0,
1, 𝑛 ≥ 0,

 (6) 

𝑓(𝑥) = 𝐻(𝑥) − 𝐻 (𝑥 − (
𝑎

4
−

𝑑𝑐

2
)) + 𝐻 (𝑥 − (

𝑎

4
+

𝑑𝑐

2
)) − 𝐻 (𝑥 − (

2𝑎

4
−

𝑑𝑐

2
)) 

          +𝐻 (𝑥 − (
2𝑎

4
+

𝑑𝑐

2
)) − 𝐻 (𝑥 − (

3𝑎

4
−

𝑑𝑐

2
)) + 𝐻 (𝑥 − (

3𝑎

4
+

𝑑𝑐

2
)), 

(7) 

𝑓(𝑦) = 𝐻(𝑦) − 𝐻 (𝑦 − (
𝑏

4
−

𝑑𝑐

2
)) + 𝐻 (𝑦 − (

𝑏

4
+

𝑑𝑐

2
)) − 𝐻 (𝑦 − (

2𝑏

4
−

𝑑𝑐

2
)) 

          +𝐻 (𝑦 − (
2𝑏

4
+

𝑑𝑐

2
)) − 𝐻 (𝑦 − (

3𝑏

4
−

𝑑𝑐

2
)) + 𝐻 (𝑦 − (

3𝑏

4
+

𝑑𝑐

2
)). 

(8) 

Equations (7) and (8) show the rectangular Heaviside function used to express the non 

homogeneity in Young’s modulus and density of the plate due to perforations.  

Using the above equations 𝐹(𝑥, 𝑦) for a square perforation pattern can be obtained by the 

relation [8, 9]: 

𝐹(𝑥, 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) − 𝑓(𝑥) ⋅ 𝑓(𝑦). (9) 

3.3. Determination of the fundamental frequency of plates with circular perforations 

To determine fundamental frequency Rayleigh’s-Ritz method [12, 13] is used. Rayleigh’s-Ritz 

method is based on the maximum kinetic energy and maximum strain energy of the plate. 𝐹(𝑥, 𝑦) 

obtained in section (2.2) is used to obtain the energy expressions given as below.  

Maximum value of kinetic energy is given as [13]: 

𝑇max =
1

2
𝜔1

2 ∫ ∫ 𝐹(𝑥, 𝑦)

𝑏

0

𝑎

0

[ℎ𝜌𝑊2(𝑥, 𝑦)]𝑑𝑥𝑑𝑦. (10) 

Maximum strain energy is given as [13]: 

𝑢max =
1

2
∫ ∫ 𝐹(𝑥, 𝑦)

𝑏

0

𝑎

0

𝐷 [(𝛻2𝑊)2 + 2(1 − 𝜐) {(
𝜕2𝑊

𝜕𝑥𝜕𝑦
)

2

−
𝜕2𝑊

𝜕𝑥

𝜕2𝑊

𝜕𝑦
}] 𝑑𝑥𝑑𝑦. (11) 

The middle surface displacement 𝑊 in the above expressions is approximated by using shape 

function 𝑊(𝑥, 𝑦) in the form of a series, which satisfies the clamped boundary conditions on the 

edges 𝑥 = 0, 𝑥 = 𝑎, and 𝑦 = 0, 𝑦 = 𝑏 as given below [13, 14]: 
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(
𝜕𝑊(𝑥, 𝑦)

𝜕𝑥
)

𝑥=0
𝑥=𝑎

= 0, (
𝜕𝑊(𝑥, 𝑦)

𝜕𝑦
)

𝑦=0
𝑦=𝑏

= 0,

𝑊(𝑥, 𝑦)|𝑥=0
𝑥=𝑎

= 0, 𝑊(𝑥, 𝑦)|𝑦=0
𝑦=𝑏

= 0.

 (12) 

Let us represent the shape function 𝑊(𝑥, 𝑦) for a rectangular plate with dimensions 𝑎 and 𝑏 

in the form: 

𝑊(𝑥, 𝑦) = ∑ 𝐶𝑖𝜙𝑖(𝑥, 𝑦)

𝑛

𝑖=1

, (13) 

where 𝐶𝑖 are unknown coefficients representing the amplitudes of the free vibration modes and 

𝜙𝑖(𝑥, 𝑦) is the product of the pertinent eigenfunctions of lateral beam vibrations. 

Each of the 𝜙𝑖 in the above equations satisfies at least the geometric boundary conditions. 

Geometric boundary conditions for the plate are those imposed on displacements and slopes given 

by equation (12). 

For clamped all edges two term deflection function 𝑊 is considered as [15, 16]: 

𝑊(𝑥, 𝑦) = [𝐶1 (
𝑥

𝑎
)

2

(
𝑦

𝑏
)

2

(1 −
𝑥

𝑎
)

2

(1 −
𝑦

𝑏
)

2

+ 𝐶2 (
𝑥

𝑎
)

3

(
𝑦

𝑏
)

3

(1 −
𝑥

𝑎
)

3

(1 −
𝑦

𝑏
)

3

]. (14) 

In order to apply Rayleigh-Ritz procedure, maximum strain energy must be equal to maximum 

kinetic energy, i.e.: 

𝛿(𝑢max − 𝑇max) = 0, (15) 

𝑇max = 𝑢max. (16) 

From equations (10) and (11): 

𝜔2 =
𝑢max

𝑇max
∗

, (17) 

where 𝑇∗
max =

𝑇max

𝜔2  is the integral over the plate area without the frequency. 

To use the Rayleighs-Ritz method 𝑢𝑚𝑎𝑥 and 𝑇𝑚𝑎𝑥  expressions are formulated in terms of 𝐶𝑖 

and 𝜙𝑖, and then frequency is minimized with respect to 𝐶𝑖. Thus 𝐶𝑖 are determined so as to obtain 

the best upper bounds for the fundamental frequency. The frequency minimizing equations are 

[12]: 

𝜕(𝜔2)

𝜕𝐶𝑖

= 0, (𝑖 = 1, 2). (18) 

Substituting (17) into (18), the following set of minimizing equations can be obtained [12]: 

𝜕

𝜕𝐶𝑖

(𝑢max − 𝜔2𝑇∗
max) = 0, (𝑖 = 1,2). (19) 

This is a set of 2 simultaneous, linear, algebraic equations in the unknowns 𝐶1 and 𝐶2. For a 

nontrivial solution, the determinant of the coefficient matrix is set equal to zero. The roots of the 

determinant are the 2 values of 𝜔2. The lowest value of 𝜔2 is an upper bound approximation to 

the fundamental frequency [12].  
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4. Numerical simulation 

To estimate the sensitivity of the proposed approach for various cases of perforation sizes and 

plate sizes numerical simulation is carried out. All plate specimens analyzed numerically have 

thickness of 2 mm. Total ten specimens with different sizes of uniform perforations arranged in a 

rectangular array are considered for numerical simulation. Two sets of plates are analyzed; the 

first set of plates is having outer effective dimensions as 138 mm × 216 mm and the second set of 

plates is having outer effective dimensions as 276 mm × 432 mm. Diameter of the perforation in 

the first set varies over range from 5 mm to 30 mm where as in the second set it varies over range 

from 10 mm to 65 mm. Side dimensions of the equivalent square perforations for the range of 

circular holes considered are given in Table 1. Following are the material properties [17] 

considered for all specimen plates analyzed numerically: 

𝐸 = 2.1 × 1011 N/m2, 𝜌 = 7850 kg/m3 and 𝜈 = 0.3. (20) 

5. Validation of the proposed approach 

The proposed analytical model is validated by comparing the numerical analysis results with 

FEM modal analysis results. FEM modal analysis is carried out by ANSYS 11 using Shell 63 

element. Parameters of the plate specimen considered in this study are shown in Table 1. Analysis 

is carried out for clamped steel plates having 2 mm thickness and carrying nine holes at positions 

shown in Fig. 2. Meshing is done by free meshing with smart size option and quadrilateral 

elements are used. Mesh convergence for FEM results is checked for every specimen. This is 

checked by running different simulations. Final solution is chosen based on the mesh quality as 

well as mesh size. Thus converged solution is given in Table 1. It is assumed that structure is 

formed of isotropic homogeneous elastic material, i.e. structural steel with material properties [17] 

same as used in numerical analysis. 

Table 1. Fundamental frequency results obtained by numerical and FEM simulations 

Specimen No. 𝑑𝑐  (mm) MRR 𝑟𝑐 (mm) 𝜔, numerical (Hz) 𝜔, FEM (Hz) % error 

Specimens with dimensions (138 mm × 216 mm) 

1 4.431 0.994 2.5 696.790 693.38 0.378 

2 8.862 0.976 5 703.043 693.85 1.370 

3 13.293 0.946 7.5 714.042 695.97 2.701 

4 22.155 0.851 12.5 755.054 710.17 6.909 

5 26.586 0.786 15 802.215 724.94 10.354 

Specimens with dimensions (276 mm × 432 mm) 

6 8.862 0.994 5 174.197 173.37 0.477 

7 17.724 0.976 10 175.760 173.46 1.326 

8 22.155 0.962 12.5 176.975 173.65 1.914 

9 44.311 0.851 25 188.763 177.53 6.327 

10 57.604 0.749 32.5 203.390 183.55 10.809 

6. Results and discussion 

Plots of the functions 𝑓(𝑥) and 𝑓(𝑦) are shown in Fig. 3 and Fig. 4 respectively. The nature 

of the plots of 𝑓(𝑥) and 𝑓(𝑦) is same as rectangular waves with amplitude unity. The density plot 

for the function 𝐹(𝑥, 𝑦) (for 𝑎 = 276 mm, 𝑏 = 432 mm and 𝑟𝑐 = 25 mm) is shown in Fig. 5. The 

density plot of the function 𝐹(𝑥, 𝑦) resembles the geometry of the plate considered. The dark area 

represents the region where 𝐹(𝑥, 𝑦) = 0 which is the region corresponding to perforation. The 

density plot indicates that 𝐹(𝑥, 𝑦) is a valid representation of the density and elastic modulus 

variations for the plate. Table 1 shows the fundamental frequency results obtained by proposed 
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approach and FEM modal analysis. Comparison between the results of FEM and numerical 

calculations shows that the frequency obtained by the proposed approach is higher than that 

obtained by FEM. This is because frequency values depend upon the type and the form of the 

shape function chosen. In present analysis only two term approximation is used for the shape 

function. The approximate representation of the deflection of the plate given by equation (14) is 

used for the ease of computations involved in the analysis. Increasing the number of terms will 

increase the accuracy of the numerical results. Size of circular perforations considered for each 

specimen is different. The mass remnant ratio (MRR), which is the ratio of mass of perforated 

plate to the mass of a homogeneous plate with the same effective outer dimensions, is calculated 

for each specimen as follows: 

𝑀𝑅𝑅 =
𝑎 × 𝑏 − 𝑁 × 𝑑𝑐

2

𝑎 × 𝑏
, (21) 

where 𝑁 is the total number of perforations. 

  
Fig. 3. Plot of the function 𝑓(𝑥) for specimen  

276 mm × 432 mm with 𝑟𝑐 = 25 

Fig. 4. Plot of the function 𝑓(𝑦) for specimen  

276 mm × 432 mm with 𝑟𝑐 = 25 

From Table 1 it can be observed that mass remnant ratio for each plate specimen considered 

is different. The distribution of mass and thus the stiffness for each specimen is different. 

Results obtained from numerical analysis are reasonably in good agreement with FEM results 

for plate having MRR more than or equal to 0.852. It is observed from the fundamental frequency 

results given in Table 1 that, as the MRR decreases, error in the fundamental frequency obtained 

by the proposed approach becomes higher. It shows that mass distribution pattern approximated 

by equivalent square perforation deviates more from the actual mass distribution pattern due to 

circular perforations. This deviation gives maximum error of 10 % in the fundamental frequency 

obtained by the proposed approach for plate specimens having MRR less than 0.852. For plate 

specimens having MRR greater than 0.946 the present approach gives results with more accuracy 

with maximum discrepancy of 2.7 %. Thus the present approach can be used for plate specimens 

having MRR greater than or equal to 0.852 with maximum error of 6-7 %. Further it can be noticed 

that with the proposed analytical model results obtained for specimens having approximately close 

MRR values but different geometrical parameters, accuracy in the results obtained is almost the 

same (specimen Nos. 1 and 6, specimen Nos. 2 and 7, specimen Nos. 4 and 9). 
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Fig. 5. Density plot of the function 𝐹(𝑥, 𝑦) for specimen 276 mm × 432 mm with 𝑟𝑐 = 25 

7. Conclusion 

In the present work an analytical model to determine fundamental frequency of perforated 

rectangular plate is formulated. Plates considered for study are having rectangular array of circular 

perforations. For modeling of material property variation function due to perforation, circular 

perforations are replaced by equivalent square perforations. With this approximation Heaviside 

step functions are used to express the variation of material properties of perforated plate. Further 

analytical model to determine fundamental frequency is formulated by using Rayleigh’s-Ritz 

method. Numerical analysis is carried out for plate with all edges clamped boundary condition. 

From the comparison of the FEM and numerical analysis results it is found that the proposed 

approach can be used for perforated plates with MRR greater than or equal to 0.852 with maximum 

error of 6-7 % in the fundamental frequency. Present approach can be equally applied to perforated 

plates with other boundary conditions also. 

Structural plates have a multitude of applications in the shipbuilding, aerospace, building and 

automobile industries. In these industries, complex real-life plate problems may need higher 

eigenfrequencies to be calculated rather than only fundamental frequency. Theoretical foundations 

of proposed approach can be further extended to find out the higher eigenfrequencies by using 

properly chosen shape functions. Thus numerical calculation of the higher frequencies from the 

proposed approach and their comparison with FEM or experimental results could be an objective 

of future research. 

References 

[1] O’Donnell W. J. Effective elastic constants for the bending of thin perforated plates with triangular 

and square penetration patterns. Journal of Engineering for Industry, Vol. 95, 1973, p. 121-128. 

[2] Forskitt M., Moon J. R., Brook P. A. Elastic properties of plates perforated by elliptical holes. 

Applied Mathematical Modelling, Vol. 15, Issue 4, 1991, p. 182-190. 

[3] Choi S., Jeong K. H., Kim T. W., Kim K. S., Park K. B. Free vibration analysis of perforated plates 

using equivalent elastic properties. Journal of the Korean Nuclear Society, Vol. 30, Issue 5, 1998, 

p. 416-423. 

[4] Wang W. C., Lai K. H. Hybrid determination of equivalent characteristics of perforated plates. 

Experimental Mechanics, Vol. 43, Issue 2, 2003, p. 163-172. 



975. AN ANALYTICAL MODEL TO DETERMINE FUNDAMENTAL FREQUENCY OF RECTANGULAR PLATE HAVING RECTANGULAR ARRAY OF 

CIRCULAR PERFORATIONS. KIRAN D. MALI, PRAVIN M. SINGRU 

596  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. JUNE 2013. VOLUME 15, ISSUE 2. ISSN 1392-8716  

[5] Burgemeister K. A., Hansen C. H. Calculating resonance frequencies of perforated panels. Journal 

of Sound and Vibration, Vol. 196, Issue 4, 1996, p. 387-399. 

[6] Patil D. C., Gawade S. S., Mali K. D. Dynamic response analysis of rectangular perforated plates 

with varying sizes of circular perforation holes. 14th International Congress on Sound and Vibration, 

Ed. B. Randall, Cairns, Australia, 9-12 July 2007.  

[7] Mali K. D., Singru P. M. Determination of the fundamental frequency of perforated plate with 

rectangular perforation pattern of circular holes by negative mass approach for the perforation. 

International Journal of Advanced Materials Manufacturing and Characterization, Vol. 1, Issue 1, 

2012, p. 105-109. 

[8] Mali K. D., Singru P. M. An analytical model to determine fundamental frequency of free vibration 

of perforated plate by using greatest integer functions to express non homogeneity. Advanced 

Materials Research, Vol. 622, 2013, p. 600-604. 

[9] Mali K. D., Singru P. M. An analytical model to determine fundamental frequency of free vibration 

of perforated plate by using unit step functions to express non homogeneity. Journal of 

Vibroengineering, Vol. 14, Issue 3, 2012, p. 1292-1298.  

[10] Younis M. I. Elements of lumped parameter modelling in MEMS. In: MEMS Linear and Nonlinear 

Statics and Dynamics, First Ed., Springer, ISBN 978-1-4419-6019-1, 2011, p. 132-133. 

[11] Kreyszig E. Unit step function. In: Advanced Engineering Mathematics, Eighth Ed., John Wiley India 

Pvt. Ltd., Daryaganj, New Delhi, 2006, p. 265-270. 

[12] Leissa A. W., Qatu M. S. Vibration of Continuous Systems. First Ed., McGraw Hill Professional, 

2011. 

[13] Chakraverty S. Vibration of Plates. First Ed., CRC Press, Taylor & Francis Group, Boca Raton, 2009, 

p. 56-135.  

[14] Szilard R. Theories and Applications of Plate Analysis: Classical Numerical and Engineering 

Methods. John Wiley & Sons, Inc., Hoboken, New Jersey, 2004. 

[15] Johri T., Johri I. Analysis of plate vibration under exponentially varying thermal condition. Modern 

Mechanical Engineering, Vol. 1, Issue 1, 2011, p. 1-5. 

[16] Laura P. A., Saffell Jr. B. F. Study of small amplitude vibrations of clamped rectangular plates using 

polynomial approximations. Journal of the Acoustical Society of America, Vol. 41, Issue 4A, 1967, 

p. 836-839. 

[17] Armenakas A. E. Appendix ‘A’ Mechanical properties of materials. In: Advanced Mechanics of 

Materials and Applied Elasticity, CRC Press, Boca Raton, FL, 2006, p. 907-908. 


