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Abstract. A new algebraic algorithm based on the concept of the rank of a sequence for the 
analysis of electrocardiography (ECG) signals is proposed in this paper. The task of the 
proposed algorithm is to develop strategy for finding the nearest algebraic progression to each 
segment of time series of the ECG parameters. ECG parameters of different duration were used 
to investigate the dynamics of different physiological processes in human heart during load. It 
indicates that proposed algebraic algorithm can be effectively used for the analysis of ECG 
parameters. Different behavior can be observed in fluctuations of ECG parameters in different 
fractal levels. 
Keywords: ECG parameters, the rank of sequence, algebraic progression. 

1. Introduction 

During the last years studies of the complexity in human body functioning prove to be an 
important area of research [1]. An integral evaluation model [2] based on the combination of the 
main functional holistic [3] systems of the human body – skeletal and muscle system (the 
performing system), cardiovascular system (the supplying system) and central nervous system 
(the regulatory system) has been developed several decades ago. Thus, all the three systems 
always react together during the adaptation processes in a human body; the general reaction of 
the body is always the combination of these systems’ responses. Reactions of the cardiovascular 
system to a constant load test (or a gradually increasing load test) can reveal the peculiarities of 
the functioning of all human body [4]. ECG parameters have different duration (larger structures 
could be associated with longer time scales) and could show the complexity in different fractal 
levels [5].  

A number of techniques have been used for the analysis of ECG complexity: spectral 
analysis [6], entropy-based algorithms (as for example, approximate entropy [7, 8], sample 
entropy [9, 10], multiscale entropy [1]), chaos-based algorithms (as for example, Lyapunov 
exponent [11], permutation entropy [12], Hankel matrix [10]), algorithms for Komologrov 
estimates (as for example, Lempel-Ziv [13], hidden Markov chains [14]) and other methods. 
These methods evaluate global features of processes and are not able to detect local features of 
dynamical processes.  

The rank of a sequence has been exploited for the evaluation of the complexity of certain 
ECG parameters [10]. Also, it has been used to express solutions of nonlinear differential 
equations in forms comprising ratios of finite sums of standard functions [15-17] and for the 
identification of the skeleton algebraic progression in time series [18, 19]. 

The main objective of this paper is to propose an algebraic algorithm based on the concept of 
the rank of a sequence [20] for the analysis of ECG signals. Our goal is to develop a strategy for 
finding the nearest algebraic progression to each segment of time series of the ECG parameters. 
We will suppose that the proposed algebraic algorithm can be effectively used for the analysis of 
ECG parameters.  

The developed algebraic algorithm was applied for the analysis of physiological processes in 
a bicycle ergometry test. ECG parameters of different durations were used for the investigation 
of dynamics of different physiological processes in human heart during the load. 



948. INVESTIGATION OF THE STABILITY OF FLUCTUATIONS IN ELECTROCARDIOGRAPHY DATA.  
DOVILĖ KARALIENĖ, ZENONAS NAVICKAS, AGNĖ SLAPŠINSKAITĖ, ALFONSAS VAINORAS 

292  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. MARCH 2013. VOLUME 15, ISSUE 1. ISSN 1392-8716  

2. The concept of the rank of a sequence 

Let us consider a sequence:  where elements  can be real or 
complex numbers. Then the sequence of Hankel matrixes is read as:  

 (1) 

The Hankel transform (the sequence of determinants of Hankel matrixes)  reads:  

 (2) 

Definition 1. The sequence  has a rank ; : 

 (3) 

if the sequence of determinants of Hankel matrixes has the following structure: 

 (4) 

where  and . 
Example 1. Let’s say ; . Then,  because the sequence of 

determinants of Hankel matrices reads . 
Definition 2. Let . Then the characteristic Hankel determinant for the 

sequence  is defined as [10]:  

 (5) 

The expansion of the determinant in Eq. (5) yields an -th order algebraic equation for the 
determination of roots of the characteristic equation: 

 (6) 

where  because . 

We have assumed, that  if  what is true when . 

Moreover, ; . Then the following theorem holds. 
Theorem 1. Let  and the recurrence indexes of roots  of 

the characteristic equation (Eq. (6)) are  accordingly;  
. Then the following equality holds true: 

 (7) 

The opposite statement also holds. If Eq. (7) holds true, then: 
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Rigorous proof of this theorem is given in [10].  
Definition 3. A sequence  is an algebraic progression if elements of that 

sequence can be expressed in the form of Eq. (7). 
Corollary 1. Eq. (7) can be rewritten in the following form: 

 (8) 

where ;  and  do not depend on . 
Corollary 2. In case when all roots of the characteristic equation are different, Eq. (7) 

obtains a more simple form: 

 (9) 

It can be also noted that coefficients  (or just ) can be found solving the linear algebraic 
system of equations (  are determined beforehand): 

 (10) 

This linear system of algebraic equations has one and the only one solution [20]. 
Corollary 3. Let  and the first  elements of that series are known. 

Then it is possible to use Eq. (6), Eq. (10) and Eq. (7) to calculate all elements of that sequence. 
Corollary 4. Suppose Eq. (3) holds true. It can be stated that accordingly to Eq. (8) the 

following equality holds true: 

 

(11) 

where ; ;  do not depend on j and: 

 (12) 

Consequently, the rank of the subsequence  with all ,  is equal to: 

 (13) 
 

Next, the inverse task will be needed. It is important to obtain the algebraic progression of 
sequence  then an algebraic progression  (Eq. (11)) and parameters ,  are 
determined. Thereby, accordingly to Eq. (12)  can be expressed in the form:  
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 (14) 

where ,  and  
But value of  it is the only possible (it is then ) in the algebraic progression of  

: 

 (15) 

where values  can be selected minimizing the root mean square error (RMSE):  

 
(16) 

 

where  which allows to estimate the value of . 
It should be noted that coefficients  (Eq. (15)) can be found by solving the linear 

algebraic system of equations. 
Corollary 5. It can be admitted that the concept of the rank of the sequence given above can 

be applied to finite length sequences in practice. If the sequence  of length  is 
given so the sequence of Hankel matrices is: . We have to assume that 
the rank of the sequence is not defined if . 

Corollary 6. In application of Theorem 1 it is important to distinguish the: 
a)  - stationary component;  

b)  - stimulant component; 

c)  - inhibitory component; 

of time series which consists of the complexity of content of time series: 

 (17) 

It must also be stated that roots  of the characteristic equation (Eq. (6)) can 
be placed on the unit circle (Fig. 1).  

 
Fig. 1. (a) – stationary behavior – on the unit circle ; (b) – stimulant behavior – outside of the unit 

circle ; (c) – inhibitory roots are inside the unit circle  
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Example 1. Let us consider the following sequences:  
a) , 
b) , 
c) . 
Let us compute the rank and find roots  of the characteristic equation 

(Eq. (6)) of sequence , . It is clear that  because the sequence of 
determinants of Hankel matrices reads: 1, 10,  -66.52, -0.57 . Then Hankel algebraic 
equation (Eq. (6)) is: 

 

Its roots are: ,  Roots are placed on the 
unit circle (Fig. 2, (a)).  

Analogously, roots  can be found from the characteristic equations for 
other sequences , , . 

Note that the given sequence  has a stationary component because its roots are located on 
the unit circle (Fig. 2(a)), the sequence  – a stimulant component because its roots are placed 
outside the unit circle (Fig. 2(b)), and the sequence  – an inhibitory component as its roots are 
placed inside the unit circle (Fig. 2(c)). 

 
Fig. 2. The location of the roots of the Hankel algebraic equation for each given sequence (a), (b) and (c) 

3. Algebraic method for the analysis of ECG parameter  

Let us assume that  is the time series of ECG parameters of length  
consisting of several segments of algebraic progressions (Eq. (7)). We will construct algebraic 
method for the ECG parameter analysis.  

The segmentation algorithm for algebraic progressions is constructed in [9] where numerical 
sequences (without noise) were segmented into non-overlapping contiguous segments by 
constructing algebraic progressions of each segment. Unfortunately, time series of ECG 
parameters usually are noisy and the proposed method can’t be applied directly.  

Let a time series of ECG parameters  be segmented manually into  non-overlapping 
contiguous segments ,  where 

 is the start and  – the end position of each segment  (Fig. 3). Let us construct an algorithm 
for finding algebraic progression of each segment . 

Let us assume that  is the rank (then Theorem 1 can be applied),  is the start position 
and  – the step of the regular grid in the interval of the subsequence  Then we can 
construct  different subsequences , , , with different 
combinations of parameters ,  and  can be generated according to equality: 

, where  – is the given last position of subsequence . 
It can be noted that correspondingly to Eq. (11)  different algebraic progressions of each 
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subsequence  can be observed: 

 (18) 

 
Fig. 3. The segmentation of an ECG signal into k non-overlapping contiguous segments 

Let us construct an algebraic progression Eq. (18) of subsequence . We have assumed that 
the rank of the algebraic progression  is  and parameters ,  are known (the initial step 
of the regular grid in the interval of each subsequence must be at least ). Then the 
characteristic Hankel determinant (Eq. (5)) takes the form: 

 (19) 

and yields roots . The linear system of equations is constructed using Eq. (8); its 
solution produces coefficients ; . Finally, the algebraic progression  reads: 

 (20) 

It can be concluded that according to Eq. (20), Eq. (12) and Eq. (15) algebraic progression of 
subsequence  can be obtained: 

 (21) 

We have assumed that Eq. (21) is the closest algebraic progression of segment  if the 
following equality holds true: 

 (22) 



948. INVESTIGATION OF THE STABILITY OF FLUCTUATIONS IN ELECTROCARDIOGRAPHY DATA.  
DOVILĖ KARALIENĖ, ZENONAS NAVICKAS, AGNĖ SLAPŠINSKAITĖ, ALFONSAS VAINORAS 

  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. MARCH 2013. VOLUME 15, ISSUE 1. ISSN 1392-8716 297 

where  is the minimal value of  values; , , 
0  – the start and  – the end positions of sequence  and 

estimations: , , , where , ,  – estimations which were used to 
obtain the minimized algebraic progression , . 

After all algebraic progressions of each given ECG fragment  are known, depending on the 
parameter  (Fig. 4(a)) where the counts of roots placed outside are calculated, inside and 
on the unit circle of each segment .  

 
Fig. 4. (a) The location of roots of the algebraic progression for the segment ; (b) separation of 

components (roots) of algebraic progression of segment  depending on parameter  

Table 1. Parameters of algebraic progression of segment (1,96) 
   

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

2.1828 + 3.4626i 
2.1828 - 3.4626i 

-0.2770 + 1.5266i 
-0.2770 - 1.5266i 
-0.8647 + 0.6812i 
-0.8647 - 0.6812i 

-1.0244 
-0.9154 + 0.3854i 
-0.9154 - 0.3854i 
-0.5753 + 0.8142i 
-0.5753 - 0.8142i 
-0.2920 + 0.8805i 
-0.2920 - 0.8805i 
0.1204 + 0.9043i 
0.1204 - 0.9043i 
0.6357 + 0.8632i 
0.6357 - 0.8632i 
0.6456 + 0.7069i 
0.6456 - 0.7069i 
0.8012 + 0.3146i 
0.8012 - 0.3146i 

1.0011 
0.9699 + 0.1497i 
0.9699 - 0.1497i 

0.0000 + 0.0000i 
0.0000 + 0.0000i 
-0.0000 - 0.0000i 
-0.0000 + 0.0000i 
0.0000 + 0.0000i 
0.0000 - 0.0000i 

-0.0000 + 0.0000i 
-0.0001 + 0.0000i 
-0.0001 - 0.0000i 
-0.0008 - 0.0005i 
-0.0008 + 0.0005i 
-0.0016 - 0.0001i 
-0.0016 + 0.0001i 
-0.0004 + 0.0005i 
-0.0004 - 0.0005i 
-0.0001 - 0.0001i 
-0.0001 + 0.0001i 
-0.0026 + 0.0030i 
-0.0026 - 0.0030i 
-0.0054 + 0.0079i 
-0.0054 - 0.0079i 
0.2128 - 0.0000i 
0.0101 + 0.0034i 
0.0101 - 0.0034i 

Example 2. Providing the time series of RR parameter of ECG signal are given and the 
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signal is manually segmented into 11 non-overlapping contiguous segments ,  
 (Fig. 3) and all algebraic progression of each segment ,  are found. 

Parameters of the algebraic progression of segment  are presented in Table 1. 
Roots  are placed on the unit circle (Fig. 4). It was calculated (with ) 
5 stationary, 9 stimulant and 10 inhibitory components of the analyzed segment  (Fig. 4(b)).  

4. Experiment and results 

Ten healthy participants (20,1 ± 2,23) volunteered to take part in this study, where a bicycle 
ergometry test was performed and the ECG was recorded continuously during the whole test of 
12 leads synchronously. Only males with experience in sprint (practicing more than 2 years) 
were chosen, as the cardiovascular systems reactions to physical load differ with gender. This 
was done in order to obtain relatively homogenous group for getting more comparable data. 
When arriving at the laboratory, participants were asked to dress in shorts and wear trainers.  

Before performing the bicycle ergometry test all the participants were informed verbally and 
all their questions were answered. All participants underwent the same test protocol which 
consisted of three main parts – rest, load and recovery. In this study the rest part took 1 minute 
while a participant was just sitting on the bike without pedaling. After the rest proceeded 
physical work that included computer-based bicycle ergometry test based on provocative 
incremental increase of the load. Bicycle ergometry test started with 50 W and in every minute 
the load was increased by 50 W. The test was continued up to 250 W that made 5 minutes of 
pedaling at 60 cycles per minute. Although the maximum load hasn’t been reached, the test 
should have been ended earlier if the distressing cardiovascular symptoms appeared. Finally, the 
last part of the protocol was recovery that took five minutes. The total time of the protocol lasted 
eleven minutes (Fig. 5-7). During the bicycle ergometry test electrocardiogram (ECG) was 
registered. For synchronous recording of 12-lead ECG a computerized ECG analysis system 
“Kaunas-load” was employed.  

During rest, load and recovery were evaluated ECG parameters: RR interval (the interval 
between two beats of heart), JT interval (interval corresponds to the electric systole of heart and 
the shortening of JT interval is associated with intensity of metabolic processes in heart), QRS 
complex (describes inner heart regulation system).  

The aim of this experiment was to explore the local changes of different ECG parameters in 
dynamic.  

It is necessary to remind that ECG parameters that are examined reveal different complexity 
levels, e.g. RR interval helps to characterize the state of organism in regulatory level, JT interval 
represents the metabolic reactions of the systems and QRS reflect the intrinsic regulatory state of 
the organ.  

The test was performed in eleven minutes where 1 minute represented rest interval, 2-6 the 
load minutes and 6-11 were the interval of recovery of the test (figure 5-7 x-axes). In every 
minute of the test the normalized values of those different processes (inhibitory (value - ), 
stationary (value - ) and stimulant (value - )) were calculated (y-axes) dividing Hankel 
algebraic equation roots of each process by the total number of Hankel algebraic equation roots 
which were placed on the circles. The procedure to find normalized values of inhibitory, 
stationary and stimulant process was separately performed for RR interval (Fig. 5), JT interval 
(Fig. 6) and QRS interval (Fig. 7). 

From the data it can be seen that at the beginning of the physical load starts the inhibitory 
process begin to lead and is mostly expressed at the last minute of the load in this case it is an 
interval from minute 5 to 6, Fig. 5(a), Fig. 6(a) and Fig. 7(a). As expected, the influence of the 
stimulant process decreases (Fig. 5(c), Fig. 6(c) and Fig. 7(c)) especially in the last minute of the 
load. This phenomenon can be explained physiologically - working muscles try to satisfy the 
expanded energetic demand during the physical load while other organs of the human body have 
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to adapt to lowered supply. 

 
Fig. 5. Inhibitory (a), stationary (b) and stimulant (c) processes and their fluctuations in RR interval 
dynamic during bicycle ergometry test. The test was performed in eleven minutes where 1 minute 

represented  rest interval, 2-6 the load minutes and 6-11 were the interval of recovery of the test ( -axes) 

 
Fig. 6. Inhibitory (a), stationary (b) and stimulant (c) processes and their fluctuations in JT interval 
dynamic during bicycle ergometry test. The test was performed in eleven minutes where 1 minute 

represented rest interval, 2-6 the load minutes and 6-11 were the interval of recovery of the test ( -axes) 

 
Fig. 7. Inhibitory (a), stationary (b) and stimulant (c) processes and their fluctuations in QRS interval 

dynamic during bicycle ergometry test. The test was performed in eleven minutes where 1 minute 
represented rest interval, 2-6 the load minutes and 6-11 were the interval of recovery of the test ( -axes) 

Another interesting finding related to complexity of ECG intervals RR, JT and QRS is the 
delay in recovery processes. In the first minute of recovery RR interval shows contrary situation 
of influencing process – stimulant processes rapidly increase (Fig. 5(c) from 6-th to 7-th minute) 
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while inhibitory process reacts (Fig. 5(a) from 6-th to 7-th minute) to opposite direction. For JT 
and QRS intervals it is clear expressed delay of stimulant processes in recovery interval 
(Fig. 6(c), Fig. 7(c) 7-th to 8-th minute). It can illustrate that recovery processes are not 
synchronous in different human body systems.  

Stationary processes (Fig. 5(b), Fig. 6(b), Fig. 7(b)) vary insignificantly during the load and 
the first four minutes of recovery. It suddenly goes up and reaches its highest value at the last 
minute of recovery becoming the predominant process influencing the RR, JT and QRS intervals 
dynamic. This fact may confirm that the recovery processes are over.  

5. Conclusions 

In analysis of medical or biological investigations it is important to separate data sequences 
into intervals where similar physiological situations could be observed. In living human body 
changes of physiological conditions could be very quick and application of statistical 
technologies or Fourier transform analysis is not always possible. Proposed algebraic analysis 
could be a technology which can help in analysis of short intervals of data which allows 
revealing of intervals with stable or unstable physiological features.  

In this paper we proposed an algebraic algorithm based on the identification of algebraic 
progression of sequence of each segment of ECG data. 

The human organism could be comprehensible as a complex system that reacts to physical 
load. The proposed analysis of reactions to physical load could single out different behavior in 
fluctuations of ECG parameters in different fractal levels. 

In case muscles start to monopolize the organism functions, especially during the maximum 
loads, the suppressive processes became dominant. Increase in stationary processes could reveal 
the end of recovery processes after the load. 

The practical experience has shown that the proposed algebraic algorithm can be effectively 
used for the analysis of ECG parameters although ECG signals are contaminated with noise.  
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