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Abstract. In this paper the problem of the dynamic stability of a stepped cantilever beam with 
additional discrete elements was investigated. The problem was solved by applying the mode 
summation method. The influence of the individual discrete elements as well as their locations 
along the beam on the possibility of a loss in dynamic stability by the investigated system was 
discussed. The considered beam was treated as an Euler- Bernoulli beam.  
Keywords: dynamic stability, Mathieu equation, eigenfunctions, stepped beam. 

1. Introduction 

Scientists’ interest in the stepped cantilever beam is dictated by the variety of its application 
in multiple engineering constructions. A stepped beam of this type can be found in structural 
building construction, different types of booms, cranes, masts, robots and manipulators. The 
above mentioned applications are often equipped with different additional elements which 
influence the dynamics of the whole system. The different axial loads in these types of 
applications can additionally lead to a significant increase in the amplitude in the cross-sectional 
oscillations and increase the risk of a loss in dynamic stability. Many works dealing with the 
dynamic stability of beams with additional discrete elements and with step changes in the cross-
section can be found in the literature. Aldraihem and Baz [1] considered the dynamic stability of 
beams with step changes in the cross-section under moving loads. The dynamic stability of an 
elastic beam was analysed by Cederbaum and Mond [2]. Chen and Yeh [3] analysed the 
parametric instability of an electromagnetically excited beam. The same authors [4] studied the 
dynamic instability of a column carrying a concentrated mass with oscillating motion along the 
column axis. Evensen and Evan-Iwanowski [5] carried out analytical and experimental research 
into the influence of a mass mounted at the end of a beam on the dynamic stability of the beam. 
Gürgöze [6] analysed the influence of a mass mounted at the end of a beam elastically supported 
along its axis. Hyun and Yoo [7] studied the dynamic stability of an axially oscillating cantilever 
beam by taking into consideration the stiffness variation. Majorana and Pellegrino [8] analysed 
the dynamic stability of an elastically supported beam (rotation and translation springs at the 
ends). Kar and Sujata [9] studied the parametric instability region of a cantilever beam subjected 
to a time-dependent axial force. The parametric instability regions of a cantilever beam with tip 
mass subjected to a time-varying magnetic field and axial force were analysed by Pratiher and 
Dwivedy [10]. Sato et al. [11] investigated the parametric vibrations of a horizontal beam loaded 
by a concentrated mass, which showed the influence of the beam weight and the inertia of a 
rotational mass on the beam vibrations. Sochacki [12] investigated a simply supported beam 
axially loaded by a harmonic force, showing the destabilising effect of the concentrated mass, 
spring and harmonic oscillator.  

This paper considers a stepped cantilever beam loaded by a longitudinal force in the form  
. Additionally, a mass, a translational and rotational spring and a discrete 

element with rotary inertia were connected to the beam at a chosen position between the 
supports. A change in the cross-section was made at a selected place on the beam length. 
Additionally, the undamped harmonic oscillator can be attached at a point where the cross-
section of the beam changes. The considered beam was treated as a Bernoulli – Euler beam. The 
problem of dynamic stability was solved using the mode summation method. The applied 
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research procedure allowed the dynamics of the tested system to be described with the use of the 
Mathieu equation in the form . The influence of the additional 
mass, translational and rotational springs, the rotary inertia of the discrete element and the 
undamped harmonic oscillator and their positions on the beam on the value of coefficient  in 
the Mathieu equation was investigated. Similarly, the influence of step changes in the cross-
section of the beam and its position along the beam length on the value of coefficient  was 
investigated. In this way the possibility of a loss of dynamic stability by the investigated systems 
was determined.  

2. Mathematical model of beam vibrations 

A diagram of the considered beam is presented in Fig. 1. 
The vibration equation for two parts of the beam is known and has the following form: 

(1) 

where: ,  – forcing frequency,  – density,  – cross-section area,  
 1, 2 – i-th part of the beam. 
The geometrical boundary conditions, continuity condition as well as natural boundary and 

matching conditions, where the discrete elements are attached, are as follows:  

(2) 

During the vibrations, the displacement of the beam and oscillator mass takes the form: 

 1 2  (3) 
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 (4) 

where  and  are displacement amplitudes  and , while  is the natural frequency of 
the cantilever stepped beam with discrete elements. 

 
Fig. 1. Model of the beam with step changes in the cross-section with additional discrete elements 

Substituting (3) and (4) into equations (1) and into conditions (2) one can obtain (for ): 

(5) 

and 

 
 

 
 

   
 

(6) 
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where the Roman numerals denote differentiation with respect to . 
The general solution to equations (5) takes the form:  

(7) 

where  are constants (  1, 2, 3, 4) and: 

(8) 

where: , ,  1, 2. 
The equations of vibrations (5) together with the boundary conditions (6) allow the boundary 

value problem of the investigated beam to be formulated. The natural frequency  and 
eigenfunctions of the beam  are determined by solving the boundary value problem. 

After substituting equations (7) into (6), one obtains a system of nine homogenous equations 
for the unknown constants , which can be written in matrix form as: 

(9) 

where:   , (  1, 2, …, 9) and   , ,  T. 
For a non-trivial solution to equation (9), the determinant of the matrix   is set equal to 

zero, yielding the frequency equation: 

(10) 

The non-zero elements  of matrix   are given as follows: 

 
 

 
 

 
   
   

    
   

        
 
   

          
          

    
    

     
      

 
       
    

(11) 

where: , , , . 
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3. The solution to the problem of the dynamic stability of the beam 

The solution to equation (1) is assumed to be in the form of eigenfunction series:  

(12) 

where    are unknown time functions and  are the normalized eigenfunctions of the 
free frequencies of -th parts of the beam which satisfies: 

(13) 

where:      and 

,  1, 2. 
Substituting solutions (12) into equation (1) one can obtain: 

(14) 

After multiplying by , one can receive: 

(15) 

By analogy, from equations (5), after multiplying by , one can obtain:  

(16) 

then (15) takes the following form: 

(17) 

As only the basic parametric resonance with the first natural frequency of the beam is taken 
into account in this paper, further analysis considers the first term of the sum from equations 
(12). Hence, after integrating equations (17), the following form was obtained for the whole 
beam and the first term: 
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(18) 

Appropriate transformations of equation (18) and the substitution of  by a new variable 
 lead to the following form of the Mathieu equation:  

(19) 

where: , , dots denote differentiation with respect to .  

The periodical solutions to the Mathieu equation (19) are known as the Strutt’s card (see: 
Timoshenko and Gere [13]). These solutions allow us to determine the stable and unstable 
regions of the solutions. The numerical values of  and  each time determined whether the 
position of the solution is in the stable or unstable region. However, it must be stated that the 
probability of obtaining a stable solution is higher in the case of a lower value of coefficient , at 
the determined value of . On the stability card, coefficient  takes positive and negative values 
symmetrically in relation to axis  for  0. In this paper the analysis of changes in coefficient 

 was carried out assuming . In the mathematical model of vibrations of the stepped 
cantilever beam, the influence of damping on the dynamic stability of the tested system has been 
omitted. Consideration of damping leads to constraint of the regions of the stable solutions in the 
Strutt’s card. Then, a loss in the dynamic stability takes place for the higher values of 
parameter . 

4. The results of numerical computations  

Computations were carried out assuming the following dimensionless quantities: 

(20) 

where  – the critical load of the tested beam with a constant cross-section. 
The final results of the tests were selected to represent the correlation between the size of the 

descrete element (change in the value of the specific size characteristic for this element), as well 
as the influence of a change in the location of the attachment point for the same element along 
the beam length on the values of coefficient  in the Mathieu equation. Computations were 
performed for the following data:  0.05,  0.05,  1.085. 

The influence of an increase in the characteristic quantity for an element attached to the 
beam in relation to its dynamic stability is presented in Figures 2-7. The final results were 
acquired when the descrete element was attached to the beam within a distance of  0.2 (at the 
point where the cross-section changes and in the case of the element with rotary inertia). In all 
other cases, the discrete element was attached to the beam within a distance of  0.8. 

In the Strutt’s card, the point of data  is a picture of the solution to equation (19) for a 
system with specified physical and geometrical data and a specific frequency of an exciting 
force. Exemplary results of research into the system, presented in Figs. 2-7 in the form of 
straight lines, come from the changes in the frequency of the exciting force. 
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Fig. 2. Exemplary positions of solutions to the Mathieu equation (19) for chosen values of mass :  

 1  ,  0.6  ,  0.2 .  

 
Fig. 3. Exemplary positions of solutions to the Mathieu equation (19) for chosen values of elasticity 

coefficient :  100  ,  20  ,  10  

 
Fig. 4. Exemplary positions of solutions to the Mathieu equation (19) for chosen values of :  

 2  ,  1  ,  0.1  

 
Fig. 5. Exemplary positions of solutions to the Mathieu equation (19) for chosen values of : 

 100  ,  10  ,  1  
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Fig. 6. Exemplary positions of solutions to the Mathieu equation (19) for chosen values of the elasticity 

coefficient of oscillator  for  0.2:  10  ,  2  ,  1  

 
Fig. 7. Exemplary positions of solutions to the Mathieu equation (19) for chosen values of relations : 

 0.5  ,  0.2  ,  0.1 .  

 
Fig. 8. The influence of the mounted position of mass  on the beam and its values on the value of 

coefficient  for  1  ,  0.6  ,  0.2  

 
Fig. 9. The influence of the position of a translational spring with elasticity coefficient  mounted on the 

beam on the value of coefficient  for  20  ,  10  ,  1  
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Fig. 10. The influence of the position of an element with rotary inertia  mounted on the beam on the value 

of coefficient  for  2  ,  1  ,  0.1  

 
Fig. 11. The influence of the position of a rotational spring with elasticity coefficient  mounted on the 

beam on the value of coefficient  for  100  ,  10  ,  1.  

 
Fig. 12. The influence of the oscillator mounting location on the beam and the value of the elasticity 

coefficient  on the value of coefficient  for  0.2:  1  ,  2  ,  10  

 
Fig. 13. The influence of the location of changes in the cross-section l of the beam on the value of 

coefficient  in the Mathieu equation for  0.5  ,  0.2  ,  0.1  
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The influence of the location of the attached discrete element along the beam length on the 
value of coefficient  in the Mathieu equation is shown in the next set of figures (Figs. 8-13). 
The values, characteristic for each of the discrete elements, were changed in the same way as in 
the case of the tests whose final results were presented in Figs. 2-7. 

5. Conclusions 

The formulation and solution to the problem of the dynamic stability of a stepped cantilever 
beam with attached additional discrete elements was presented in the paper. The value of 
coefficient  in the Mathieu equation (19) was assumed as the possibility of a loss in dynamic 
stability by the beam. Analysis of the influence of individual discrete elements on the dynamic 
stability of the tested system was carried out on the basis of the formulation of and solution to 
the problem. 

Analysing the presented research results one can notice, that in the case of the cantilever 
beam, an increase in the attached concentrated mass as well as the moment of inertia  of the 
element with rotational inertia (Figs. 2, 4) is disadvantageous. In these cases, the attachment of 
the given element in an optional location along the beam length caused an increase in the value 
of coefficient  in the Mathieu equation. An increase in the values of the characteristic quantities 
for the remaining discrete elements resulted in the stability of the system (a decrease in the value 
of coefficient  – Figs. 3, 5, 6 and 7).  

Analysis of the influence of the attachment point of a given discrete element to the beam on 
its dynamic stability allowed the following statements to be formulated. 

In the case of concentrated mass (Fig. 8), the most disadvantageous position was its 
attachment at the free end of the beam. The location of the attachment point of the element with 
rotational inertia to the beam had an essential influence on its stability. The system was 
stabilised, reaching minimal value  in dependence on value , when the distance from the 
restrain place was increased. A further increase in distance  caused the destabilisation of the 
system (Fig. 10). Similarly, the position of a rotational spring with elasticity coefficient  
(Fig. 11) influenced the dynamic stability of the system. But in this case, the system was 
stabilised, reaching minimal value  at the free end of the beam for the small value of  

 with an increase in .  
Attaching a translational spring (Fig. 9) to the beam unequivocally influenced the stability of 

the system cantilever beam – discrete element. Assuming the same elasticity coefficient , 
higher stabilisation was obtained with an increase in parameter . Parameter  characterised the 
distance between the spring clamping and the point of beam restraint. Similar stability was 
obtained by an increase in the elasticity coefficient of the spring of the harmonic oscillator 
attached to cantilever beam . In this case, for a constant value of coefficient , the tested 
system was less stable the further the location of the oscillator from the point of beam restraint 
(Fig. 12). This was connected to the fact that the research was carried out for a constant value of 
oscillator mass which destabilized the tested system. Modification of the point of change in the 
beam cross-section and modification of this change (increase in coefficient ) stabilized the 
tested system. In this case it was obvious because a change in the point of the beam cross-section 
was connected to a simultaneous increase in the length of the beam with a higher 
cross-section (Fig. 13). 
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