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Abstract. The toughness of eutectic ceramic composites are obtained by multiple toughening mechanisms 

involving crack-bridging and pull-out of rod-shaped eutectics, as well as stress-induced transformation 

toughening. In the loading procedure, damage will emerge in the rod-shaped eutectic.The transformation 

toughening of eutectic ceramic composites are obtained by stress-induced transformation mechanisms. Firstly, 

defining a parabola transformation yield function, the transformation plastic strain increment is gotten by 

transformation plastic potential function. Secondly, the transformation region is determined by the stress field 

associated with a crack involves I-II combination. Thirdly, on base of weighted function method, the screening 

impact of transformation particles for mixed-mode I-II crack is gained. The result shows that the transformation 

toughening is associated with the fraction of the transformation particles, the elastic modulus of composite 

ceramic and the half width of transformation region. 

1. Introduction 

In various industrial fields, there is a great need for materials having high strength combined with high 
toughness. Directionally solidified eutectics contain a large amount of clean interfaces between two 
strongly-bonded phases with typical inter-phase spacing in the micron range, and these characteristics 
result in an improvement of some material properties. For instance, rods of oxide/oxide eutectics 
present a smooth surface and exhibit high strength and toughness, chemical stability in oxidizing 
environments as well as excellent thermal shock resistance [1]. The increase of the hardness or 
strength of the ceramics could be attributed to nano-submicron interphase spacing and the refinement 
of the eutectic grains, whereas high-energy, high-angle boundaries between rod-shaped grains could 
also introduce strong toughening mechanisms involving crack-bridging and pull-out of rod-shaped 
grains [2]. Experiments showed that there were two kinds of fracture models – fracture in the rod-
shaped eutectics and fracture in inter-eutectics regions. Because of the presence of nano-
submicrometer t-ZrO2 fibers and inter-phase spacing in the colony as well as micrometer t-ZrO2 
spherical grains in the inter-colony region, intensive coupled toughening of residual stress toughening, 
transformation toughening and transformation- induced microcrack toughening mechanisms was 
bound to occur [3]. The toughing mechanism of this composite material is not clear. To address these 
issues, we develop the transformation toughing model of the eutectic composite ceramic. 

2. The breaking stress of the damage eutectic 

 
Composites mainly composed of randomly-oriented rod-shaped eutectic grains; within the rod-

shaped grains, aligned nano-micron fibers are embedded. Overlooking the resistance of crystal lattice 
against dislocation motion, the micro strength formation of rod-shaped eutectics is computed by the 
dislocation pileup theory [4]. The damage variables are defined by the microstructure of rod-shaped 
eutectic with parallel nano/micro-fibers. The maximum strain criterion is used for determining the 
loading function. According to the attenuation characteristic of eutectic rigidity, the critical fracture stress 
of the damage rod-shaped eutectic is obtained by damage variable maximizing. 
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The breaking stress of the damage eutectic depends on the fraction, shape and diameter of fiber, 
and on the elastic modulus and free surface energy of matrix. 

3. Damage eutectic toughening 

At the crack surface, the bridging stress is [5]: 
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where, σf is the load undertaken by damage rod-shaped eutectic at far distance from crack, R is the 

radius of the damage rod-shaped eutectic, τ is the shear stress on the sliding part of the damage rod-

shaped eutectic, u is the crack opening displacement. α is the angle between the bridging damage 
eutectic and crack. While the crack opening is limited by the damage rod-shaped eutectic, some 
debonding of the damage rod-shaped eutectic takes place. The toughening can be discussed in two 
ways. In one, the load carried by the rod-shaped eutectic in the crack wake to produce a crack-closing 
force. This force reduces the stress intensity in front of the crack. Further, because of residual thermal 
stress, a frictional stress exists across some rod-shaped eutectic. The frictional work of damage 
eutectic pull-out adds to the material toughness. Consider the orientation and fraction of the damage 
rod-shaped eutectic. Suppose that the direction of the damage rod-shaped eutectic is three-dimensional 
position of completely random distribution. Based on the energy dissipation, taking aspect ratio 

( )/ 2L Rλ =  , the bridging toughening value of the damage rod-shaped eutectic can be calculated 
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The constant χ is determined by 
22
'E  and E [5]. 

When thermal residual stresses are present, this eutectic pull-out work can be appreciable. The 
residual stresses are manifested by a clamping force between eutectic and particles that overcome in 
accomplishing their final separation. The work done in this separation represents additional fracture 
work. The additional fracture work can be calculated on the basis of it arising from a frictional 

clamping force. That work Dividing by 
2

4
RdS π

=  (the acrossal area of the pulled-out eutectic) 

yields the fracture work per unit area. This can be equated to ∆J. Only a fraction ff of eutectics is 
subject to crack bridging. The pull-out work per unit area is transformed as 
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Analysis of the added toughness proceeds along lines used in analysing bridging toughening. We 

use ( )
1/2

C
K E J∆ = ∆  and ( )/ 2L Rλ = . The pull-out toughening value of the damage rod-shaped 

eutectic can be expressed as 
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Note that there is an implicit damage effect in equation (5). The elastic modulus 
22
'E  varies 
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inversely with damage variable. Thus, provided we are in the damage variable domain where pull-out 
toughening exists, the toughening is smaller for composite ceramic with the damage rod-shaped 
eutectic. 

4. Transformation toughening and fracture toughness of ceramic composite 

In the ceramic composite containing damage eutectics and transformation particles, the transformation 
may be triggered by the stress field associated with a crack. As the crack advances, tetragonal particles 
transform to the monoclinic form in a zone above and below the fracture plane. The work expended in 
effecting this transformation adds to the material toughness. 

For the transformation toughening, the comprehensive transformation criterion [6] was used to 
describe the plastic behavior of partially stabilized zirconias. The transformation yield condition was 
defined by the macro equivalent stress and average stress. For the tectic ceramic composite, there are 
rod-shaped eutectics around transformation particles, so the transformation yield condition is not only 
related to the macro equivalent and average stresses, but also the difference between the maximum 
tensile stress and compressive stress. Based on the experiment, the parabola transformation yield 
function is defined as follow: 
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where, 
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1
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3
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determined by the stress field associated with a crack. 
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deviator tensor. 
According to potential function method, the gradient of plastic strain tensor are gotten from Eq. (6): 
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In the general case of material fracture, the stress field associated with a crack involves I-II 
combination. 
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Substituting equation (8) into equation (6), we can obtain the radius of transformation region of 
stationary crack 

 

( ) ( ) ( )

2 2

I

2 22 2 2 2
2 2 1 2 1 1

K e
r

a g b e g g b eπ υ υ υ

 
=      + + − + + +

  

   (9) 



FRACTURE TOUGHNESS OF CERAMIC COMPOSITE CONTAINING DAMAGE EUTECTICS AND TRANSFORMATION PARTICLES.  

XINHUA NI, YUNWEI FU AND LONG ZHANG 

 ©VIBROENGINEERING. VIBROENGINEERING PROCEDIA. NOVEMBER 2013. VOLUME 2. ISSN 2345-0533 155 

where, 
k

b
a
= , 2

1 2 3
e e e eα α= + + , II

I

K

K
α = , cos sin

2 2
g

θ θ
α= − ,  

( )2 2 2

1

1 1
e 4 4 1 cos sin

3 2 4

θ
υ υ θ= − + + , ( )2

2

1 1
e 4 4 1 sin sin 2

3 2
υ υ θ θ= − + − + , 

( )2 2 2

3

1 3
e 4 4 1 sin sin 1

3 2 4

θ
υ υ θ= − + − + . 

As the crack advance, tetragonal particles transform to the monoclinic form in a zone lying ±H 

above and below the fracture plane. The H can be determined for equation (4). Let 
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On base of weighted function, the transformation fracture enhancements of mode I and mode II are 
calculated as follow [7, 8] 
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where 
j

n  is the direction consine. The plastic strain tensor are gotten. 
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In equation T

kk
ε  is the corresponding martensite transformation strain, ft is the fraction of the 

triclinic phase in the distance ±H above and below the fracture plane that transforms martensitically. 
We can acquire the weight function of mode I [7] 
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The weight function of mode II is [8] 
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Substituting equations (13) and (15) into equation (11), we have 
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where, A is the area of transformation region. 
Substituting equations (13) and (16) into equation (12), we obtain 
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For the giving II
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 and k
a

, equation (17) is integrated in the transformation region of steady-

state growing crack given by equation (10). We gain to the toughening effects of mode I crack. 
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On integrating equation (18) in the transformation region of steady-state growing crack given by 
equation (10) the transformation region, we get the toughening effects of mode II crack 
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Here ∆1 and ∆2 are constants relating to υ , II
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. For mixed-mode I-II crack, using the 

strain energy release rate criterion, we obtain the fracture enhancement of transformation. 
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Substituting equations (19) and (20) into equation (21), the expression for the transformation-
effected toughness can written as 
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The transformation toughening is associated with the fraction of the transformation particles, the 
elastic modulus of composite ceramic and the half width of transformation region. 

Experiments showed that there were two kinds of fracture models – fracture in the rod-shaped 
eutectics and fracture in inter-eutectics regions. Because of presence of nano-submicrometer fibers and 
inter-phase spacing in the eutectic as well as micrometer transformation particles in the inter-eutectic 
region, intensive coupled toughening of damage eutectic-induced crack bridging toughening, eutectic 
pull-out toughening and transformation toughening. For the coupled toughening mechanisms 
discussed above, the added toughness scales with the inherent matrix toughness (i.e. Km). Thus, the 
fracture toughness KC of ceramic composite is 

 
1 2 3C m C C C

K K K K K= + ∆ + ∆ + ∆    (24) 

5. Conclusions 

(1) According to the attenuation characteristic of eutectic rigidity, the critical fracture stress of the 
damage rod-shaped eutectic is obtained by damage variable maximizing. Bridging toughening 
mechanism and pull-out toughening mechanism of damage rod-shaped eutectics are constructed. 

(2) Defining a parabola transformation yield function, the transformation plastic strain increment is 
gotten by transformation plastic potential function. Based on the strain energy release rate criterion, 
the method of weight function is used to predicate the fracture enhancement of mixed-mode I-II crack 
in eutectic ceramic composites. 

(3) Based on the crack-bridging and pull-out toughening mechanisms of damage rod-shaped 
eutectics, as well as stress-induced transformation toughening mechanism, the added toughness scale 
with the inherent matrix toughness, the theoretical formula of fracture toughness of the eutectic 
ceramics composite is determined. 
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