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Abstract. In this study, one performs the stochastic dynamic analysis of nonlinear vibration of 

the fluid-conveying double-walled carbon nanotubes (DWCNTs) by considering the effects of 

the geometric nonlinearity and the nonlinearity of van der Waals (vdW) force. Based on the 

Hamilton’s principle, the nonlinear governing equations of the fluid-conveying DWCNTs are 

derived. In order to truly describe the random material properties of the DWCNTs, the Young’s 

modulus of elasticity of the DWCNTs is assumed as stochastic with respect to the position. By 

adopting the perturbation technique, the nonlinear governing equations of the fluid-conveying 

can be decomposed into two sets of nonlinear differential equations involving the mean value of 

the displacement and the first variation of the displacement separately. Then one uses the 

harmonic balance method in conjunction with Galerkin’s method to solve the nonlinear 

differential equations successively. Some statistical dynamic response of the DWCNTs such as 

the mean values and standard deviations of the amplitude of the displacement are calculated. It is 

concluded that the mean value and standard deviation of the amplitude of the displacement 

increase nonlinearly with the increase of the frequencies for both cases of coupling between 

longitudinal displacement and transverse displacement and uncoupling between them. However, 

the coefficients of variation of the amplitude of the displacement remain almost constant and 

stay within certain range with respect to the frequency. The calculated stochastic dynamic 

response plays an important role in estimating the structural reliability of the DWCNTs. 
 

Keywords: nonlinear vibration, fluid-loaded double-walled carbon nanotubes, random material 

properties, Galerkin’s method. 

 

Introduction  

 

A landmark paper regarding Carbon nanotubes (CNTs) by Iijima [1] has attracted worldwide 

attention due to their potential use in the fields of chemistry, physics, nano-engineering, 

electrical engineering, materials science, reinforced composite structures and construction 

engineering. Carbon nanotubes (CNTs) are used for a variety of technological and biomedical 

applications including nanocontainers for gas storage and nanopipes conveying fluids [2-4]. The 

single-elastic beam model [5-6] were widely adopted to study the dynamic behaviors of fluid-

conveying single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes 

(MWCNTs). Normally speaking, the beam models mentioned above are linear; however, the 

vdW forces in the interlay space of MWCNTs are essentially nonlinear. Furthermore, the slender 

ratios are normally large if the beam models are adopted, that is, the large deformation will 

occur. Therefore, it is quite essential to consider two types of nonlinear factors, namely, the 

geometric nonlinearity and the nonlinearity of vdW force in investigating the dynamic behaviors 

of fluid-conveying MWCNTs. Salvetat et al. [7] measured the flexural Young’s modulus and 

shear modulus using AFM test on clamped–clamped nanoropes, getting values with 50 % of 

error. Information related to statistical distributions of experimental data is also rare, and the 

important study from Krishnan et al. [8] provides one of the few examples available of 

histogram distribution of the flexural Young’s modulus derived from 27 CNTs. The Young’s 

modulus was estimated observing free-standing vibrations at room temperature using 

transmission electro-microscope (TEM), with a mean value of 1.3 TPa -0.4 Tpa / +0.6 TPa. 
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Uncertainty is also associated to the equivalent atomistic-continuum models adopted extensively 

in particular by the engineering and materials science communities. Therefore, to be realistic, the 

Young’s modulus of elasticity of carbon nanotube (CNTs) should be considered as stochastic 

with respect to the position to actually describe the random property of the CNTs under certain 

conditions. In the present study, we investigate the stochastic dynamic behaviors of nonlinear 

vibration of the double-walled carbon nanotubes (DWCNTs) conveying fluid by considering the 

effects of the geometric nonlinearity and the nonlinearity of van der Waals (vdW) force. Based 

on the Hamilton’s principle, the nonlinear governing equations of the fluid-conveying double-

walled carbon nanotubes are formulated. Two different cases of nonlinearity are considered; 

case one is to include the coupling between the longitudinal displacement and transverse 

displacement of the DWCNTs, on the other hand, case two is to neglect the coupling between 

them. The Young’s modulus of elasticity of the DWCNTs is considered as stochastic with 

respect to the position to actually characterize the random material properties of the DWCNTs. 

 

Nonlinear beam model for fluid-loaded DWCNTs 

 

 
Fig. 1. Fluid-loaded double-walled carbon nanotubes 

 

In Fig. 1, the double-walled carbon nanotubes (DWCNTs) are modeled as a double-tube pipe 

which is composed of the inner tube of radius R1 and the outer tube of radius R2. The thickness 

of each tube is h, the length is L, and Young’s modulus of elasticity is E. It is noted that the 

Young’s modulus of elasticity E is assumed as stochastic with respect to the position to actually 

describe the random material property of the DWCNTs. The internal fluid is assumed to flow 

steadily through the inner tube with a constant velocity U. Besides, the boundary conditions of 

the DWCNTs are assumed as clamped at both ends. Based on the theory of Euler-Bernoulli 

beam and a nonlinear strain-displacement relationship of Von Karman type, the displacement 

field and strain-displacement relation can be written as follows: 
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where x is the axial coordinate, t is time, 
i

u  and 
i

w  denote the total displacements of the ith tube 

along the x coordinate directions, ui and wi define the axial and transverse displacements of the 

ith tube on the neutral axis, 
i

ε  the corresponding total strain, and the subscript i = 1 and i = 2. 

Notice that tube 1 is the inner tube while tube 2 is the outer tube. The potential energy V stored 

in a DWCNTs and the virtual kinetic energy T in the DWCNTs as well as the fluid inside the 

DWCNTs are individually written as follows: 
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where 
1 1w xθ = −∂ ∂ , Ii and mi are the moment of inertia and the mass of the ith tube per unit 

length; 
tρ  is the mass density of the beam material; 

fρ  is the mass density of the fluid inside 

tube 1; ( )
2

2

1 1 1
A R h Rπ  = + −   and ( )

2
2

2 2 2
A R h Rπ  = + −   are the cross-sectional areas of 

tube 1 and tube 2, respectively, and 
2

1f
A Rπ=  is the cross-sectional areas of the fluid passage in 

tube 1. Based on Hamilton’s principle, the variational form of the equations of motion for the 

DWCNTs can be given by: 
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where the virtual work due to the vdW interaction and the interaction between tube 1 and the 

flowing fluid is given by: 

 

( )
2 2

2 21 1
1 1 2 1 12 20 0 0

cos  +  sin
L L Lw w

P MU dx w P dx w MU dx u
x x

δ θ δ δ θ δ
 ∂ ∂

Ψ = − − − ∂ ∂ 
∫ ∫ ∫    (5) 

 

P is the nonlinear vdW force per unit length in the interlayer of the DWCNTs. The interlayer 

potential per unit area ( )δΠ  can be expressed in terms the interlayer spacing δ as follows: 

 

( )
4 10

0 00.4K
δ δ

δ
δ δ

    
Π = −    

     

          (6) 

 

the vdW force P is then obtained by considering the lowest-order nonlinear term in Taylor 

expansion of U, which is written as [9]: 
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where:  

K = −61.665 meV/atom; 
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 and 

0 0.34 nmδ =  is the equilibrium interlayer spacing. 
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By utilizing the Eqs. (4-5) and considering the boundary conditions of the clamped ends, and 

the assumption that all variables and derivatives are zero at 
0

t t=  and 
1

t t= , all the terms 

involving [ ]
0

L
⋅  and [ ] 1

0t

t
⋅  vanish. In addition, considering the moderate large-amplitude deflection, 

1
cos 1θ ≈  and 1

1
sin

w

x
θ

∂
≈ −

∂
 are adopted in the following derivation. In the present study, the 

boundary conditions of the DWCNTs are assumed as clamped, therefore, the following 

boundary conditions can be written for the axial displacement: 

 

( ) ( ) ( ) ( )1 1 2 20, , 0,   0, , 0u t u L t u t u L t= = = =        (8) 

 

Furthermore, we deal with two cases in the formulations. Case one is that the coupling 

between the axial displacement iu  and transverse displacement iw  is considered and case two 

is that the coupling between iu  and iw  is neglected. First of all, the case considering the 

coupling between iu  and iw  is investigated. By neglecting the rotation inertia and utilizing Eqs. 

(4-8), after some tedious derivations we can obtain the coupled nonlinear governing equations 

for the free vibration of DWCNTs conveying fluid as follows: 
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For case two, the formulation neglecting the coupling between 
i

u  and 
i

w  is investigated. 

Once again, by neglecting the rotation inertia and utilizing Eqs. (4-8), after some tedious 

derivations we can obtain the coupled nonlinear governing equations for the free vibration of 

DWCNTs conveying fluid, for simplicity, the whole derivations for case two is not presented 

explicitly. In the following derivations, only case one is depicted explicitly. 

 

Case one: considering the coupling between 
iu  and 

iw  

 

In the present study, the Young’s modulus of elasticity E(x) is considered as stochastic with 

respect to the position to actually characterize the random properties of the DWCNTs and it is 

assumed as Gaussian distributed. Applying the perturbation technique on the Young’s modulus 

of elasticity E(x), the following equations can be written: 

 
0( ) ( ) ( )IE x E x E xε= + +⋯           (11) 

 

where )(0 xE  is the mean value of the Young’s modulus of elasticity E(x), ε  is a zero-mean 

small parameter, and ( )
I

E xε  is the first variation of the Young’s modulus of elasticity E(x). 

Similarly, the displacement 1 2( ),  ( )w x w x  of the DWCNTs can be written as follows: 
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0

1 1 1( ) ( ) ( )Iw x w x w xε= + +⋯          (12) 

0

2 2 2( ) ( ) ( )Iw x w x w xε= + +⋯          (13) 

 

where 0 0

1 2( ),  ( )w x w x  are the mean values of displacement of the inner and outer tubes 

separately. Substituting Eqs. (11-13) into Eqs. (9-10), we can obtain the following two coupled 

equations based on the zero order of ε: 
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Based on the first order of ε, we can achieve the following two coupled equations: 
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First of all, we have to solve 0 0
1 2,  w w  in Eqs. (14-15). By applying the harmonic balance 

method and Galerkin’s method and substituting 0

1
( ) sin( )  ( 1, 2)

i i
w A x t iφ ω= =  into Eqs. (14-15), 

after some tedious derivations the relationship between the amplitude Ai and the resonant 

frequency ω of the lowest-order mode ( )1 xφ  can be achieved as follows: 
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where: 
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where 
1( )xφ  is the first vibration mode of the corresponding linear system, which can be 

expressed as follows for  the clamped-clamped boundary conditions as follows: 
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After solving coupled Eqs. (18-19) for the amplitudes A1, A2, we can obtain 0 0

1 2,  w w  readily. 

Substituting 0 0

1 2,  w w  into Eqs. (16-17), and adopting the same technique for solving 0 0

1 2,  w w , 

finally we can obtain 
1 2,  I Iw w  without any difficulties except the derivations are somewhat 

lengthy. 

 

Numerical examples and discussion 

 

In the numerical computations, the clamped-clamped boundary conditions are considered for 

the DWCNTs conveying fluid. The inner and the outer tubes are assumed to have the same 

Young’s modulus, the same thickness and the same mass density. The numerical values of the 

parameters are adopted as follows: Mean value of Young’s modulus E = 1 Tpa, tube thickness 

0.34 nm,h =  mass density 32300 Kg/m ,ρ =  the mass density of water flow is 

31000 Kg/m ,fρ =  the inner radius 
1 0.7 nmR =  and the outer radius 

2 1.04 nmR =  and mean 

square values of ε is assumed as 
2

0.01.E ε  =  
 The relations of the mean value of amplitude 

versus frequency are depicted in Fig. 2. The mean value of the amplitude increases with the 

increase of the frequencies for both cases of coupling between longitudinal displacement u and 

transverse displacement w and uncoupling between them. It is certainly reasonable that the 

relation between the mean value of the amplitude and the frequency is nonlinear; in addition, the 

mean value of the amplitude of the outer tube is larger than that of the inner tube. Furthermore, it 

is noted that the mean value of the amplitude with considering the coupling is larger than that 

with uncoupling for the fixed frequency. In Fig. 3, the standard deviation of the amplitude is 

plotted with respect to the frequency for both coupling and uncoupling cases. As it can be seen 
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from the figure that the standard deviation of the amplitude increases nonlinearly with the 

increase of the frequencies, and it is noted that the standard deviation of the amplitude of the 

outer tube is larger than that of the inner tube. In Fig. 4, the coefficient of variation of the 

amplitude is depicted with respect to the frequency. It is interesting to notice that the coefficients 

of variation of the amplitude of the inner and outer tubes for both coupling and uncoupling cases 

are around 0.10 to 0.12.  
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Fig. 3. Standard deviation of amplitude versus frequency 
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Conclusions 

 

In the present study, we investigate the stochastic dynamic behaviors of nonlinear vibration 

of the double-walled carbon nanotubes (DWCNTs) conveying fluid by considering the effects 

of the geometric nonlinearity and the nonlinearity of van der Waals (vdW) force. Based on the 

Hamilton’s principle, the nonlinear governing equations of the fluid-conveying double-walled 

carbon nanotubes are formulated. Two different cases of nonlinearity are considered; case one 

is to include the coupling between the longitudinal displacement and transverse displacement of 

the DWCNTs, on the other hand, case two is to neglect the coupling between them. The 

Young’s modulus of elasticity of the DWCNTs is considered as stochastic with respect to the 

position to actually characterize the random material properties of the DWCNTs. By using the 

perturbation technique, the nonlinear governing equations of the fluid-conveying double-walled 

carbon nanotubes can be decomposed into two sets of nonlinear differential equations involving 

the mean value of the displacement and the first variation of the displacement separately. Then 

the harmonic balance method and Galerkin’s method are used to solve the nonlinear differential 

equations successively. Some statistical dynamic response of the DWCNTs such as the mean 

values and standard deviations of the amplitude of the displacement are computed. It can be 

concluded that the mean value and standard deviation of the amplitude of the displacement 

increase nonlinearly with the increase of the frequencies for both cases of coupling between 

longitudinal displacement and transverse displacement and uncoupling between them. 

However, the coefficients of variation (COV) of the amplitude of the displacement remain 

almost constant and stay within certain range with respect to the frequency. It is noted that the 

computed stochastic dynamic response plays an important role in estimating the structural 

reliability of the DWCNTs. 
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