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Abstract. This paper presents a method to identify the instantaneous frequency of the time 

varying structures based on wavelet and state space methods by using free and forced vibration 

response data. Firstly, the second-order vibration differential equations are rewritten as the 

first-order state equations using state space theory. Secondly, both excitation and response 

signals are projected by the Daubechies wavelet scaling functions. Thus, the first-order state 

equations are transformed into linear algebraic equations using the orthogonality of the scaling 

functions. Lastly, the equivalent time varying state space system matrices of time varying 

structure are extracted directly by solving the linear equations. The instantaneous frequencies are 

determined via eigenvalue decomposition of the state space system matrices. The proposed 

identification algorithm is investigated with a four degrees-of-freedom spring-mass-damper 

model. Numerical simulations demonstrate that the proposed method is robust and effective for 

identification of the abruptly, smoothly and periodically changing instantaneous frequencies of 

time varying structures. 

Keyword: time varying structure, instantaneous frequency, identification, wavelet, state space. 

 

1. Introduction 

 

A number of approaches have been proposed for the dynamic parameters identification of 

linear systems in the literature over the past 30 years [1-4]. The input-output modal identification 

methods are developed based either on a set of Frequency Response Functions or on the 

corresponding Impulse Response Functions. For very large and flexible structures like bridge or 

dam, the forced excitation requires extremely heavy and expensive equipment very seldom 

available in most dynamic experiments. The output-only modal identification approaches have 

been developed by estimation of Power Spectral Density Functions or Correlation Functions of 

ambient excitation response data. Reference [5] presents a brief review of the evolution of 

Experimental Modal Analysis from Input-Output to Output-Only modal identification 

techniques and their applications in civil engineering. Some benchmark problems of civil 

engineering structures for the system identification and damage detection of civil structures have 

been established [6-7]. Many international participants have proposed different approaches to 

identify structural damage using different modal identification techniques. 

The Fourier transform (FT) can be considered as a decomposition of a signal into a linear 

combination of vectors given by Fourier coefficients. However this decomposition does not give 

time-localized information about the signal. The techniques based on the wavelet transform (WT) 

for structural damage detection have received considerable attention in recent years [8-9] 

because of their ability to decompose the measured signals in the frequency–time domain. The 

modal identification methods have been proposed to identify modal parameters base on wavelet 

analysis processing free responses of mechanical structures. The methods for estimating modal 

frequency and damping ratios have been proposed based on the continuous wavelet transform in 
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references [10-11]. Reference [12] chose the Cauchy wavelet and developed a procedure to 

identify natural frequencies and viscous damping ratios as well as mode shapes. Reference [13] 

makes use of the continuous wavelet transform to develop a complete procedure for 

identification of natural frequency, viscous damping ratio and mode shapes from free responses. 

The choice of the mother wavelet and its localization properties is discussed. The edge effect is 

highlighted by introduction of two real coefficients to allow this effect to be taken in to account 

during the identification process. 

The Hilbert transform (HT) also has the capability of decomposing measured signals in the 

frequency–time domain to extract the instantaneous frequency at every time instant. Therefore 

system identification methods based on the HHT are then developed to estimate the modal 

parameters of multi-degree-of-freedom (MDOF) systems including not only the natural 

frequencies, damping ratios, but also the mode shapes as well as the mass, stiffness and damping 

matrices of the linear systems in which the mode shapes may be real or complex [14-15]. Further, 

the Hilbert–Huang spectral analysis has been investigated for the health monitoring of structures 

and the damage detection of a benchmark problem. 

In light of the above-mentioned references, all modal identification approaches and their 

application in damage detection are developed only for the linear time-invariant (LTI) systems. 

However, structural systems accumulate damage under service load and environmental 

excitations. In such case, a linear time-varying (LTV) model should be able to capture the 

instantaneous characteristics of the system and to identify its damage [16-17]. 

The identification of linear time-varying systems has received increasing attention nowadays. 

Some efforts have been made in extending the discrete time state-space identification algorithm 

from linear time-invariant systems to linear time-varying systems from the 90s [18-19]. A 

subspace-based identification algorithm that uses free responses to identify successive discrete 

transition matrices and use eigenvalues of the estimated transition matrices to characterize 

properties of the linear time-varying systems has been proposed [20]. Experimental verification 

studies on an axially moving cantilever beam were addressed in reference [21]. Reference [22] 

proposes a new adaptive tracking technique based on the least-squares estimation approach to 

track the abrupt change of the time-varying structural parameters. The wavelet-based 

identification approach for the analysis of linear time-varying systems was presented [23]. The 

identification algorithm focuses on the identification of the damping and stiffness parameters 

associated with the differential equation model relating input and the output measurements, 

which has been discretized following a Galerkin procedure using wavelet based [24]. The 

Hilbert transform technique has been investigated to identify system instantaneous modal 

parameters for nonlinear systems. For MDOF structures, an identification algorithm of linear 

time-varying system based on the Hilbert Transformation and empirical mode decomposition 

has been developed using free and forced vibration response data [25]. The proposed technique 

is capable of tracking slow, abrupt and periodic changes of damping and stiffness coefficients of 

systems. 

In this paper, we propose a wavelet-based state-space identification approach for 

time-varying structures. We model the LTV structure using the state space method and extract 

the instantaneous frequency by wavelet analysis. The Daubechies wavelet analysis is introduced 

to the state space model, thus the first-order state equations can be transformed into linear 

algebraic equations using the orthogonality of the scaling functions and the time varying 

dynamic parameters can be directly estimated via solving the linear algebraic equations. More 

importantly, this improvement of combined use of two methods (wavelet and state-space) 

successfully avoids computing the connection coefficient between wavelet scaling functions and 

the derivative of wavelet scaling functions both of the first and second order. This improvement 

is able to save the computation time for the identification procedure. 
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2. State-space model of LTV structures 

 

The vibration equation of a p degrees-of-freedom LTV structure can be expressed as: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )tbutxtKtxtEtxtM =++ ɺɺɺ           (1) 

 

in which ( )tM , ( )tE  and ( )tK  are pp×  time-dependant mass, damping and stiffness 

coefficients matrices of the system respectively, ( )tx  is the 1×p  displacement vector, b  is 

the inp×  input shape matrix, ( )tu  is the 1×in  input force vector, and in  denotes the 

number of input force signals. The output equation for the same LTV structure can be represented 

as: 

( ) ( ) ( ) ( )txCtxCtxCty dva ++= ɺɺɺ             (2) 

where ( )ty  is the 10 ×n  output vector, which can be a combination of different types of 

responses, aC , vC , dC  are the output matrices for the measurement of acceleration, velocity 

and displacement, respectively, 0n  is the number of output signals. Equations (1) and (2) can be 

transformed into the state space equation as follows: 

( ) ( ) ( ) ( ) ( )tutBtztAtz +=ɺ              (3) 

( ) ( ) ( ) ( ) ( )tutDtztCty +=              (4) 

in which ( )tz  is the pn 20 ×  state vector, ( )tA  is the pp 22 ×  system matrix, ( )tB  is the 

inp×2  input matrix, ( )tC  is the pn 20 ×  output influence matrix and ( )tD  is the inn ×0  

direct transmission matrix, respectively. They are expressed as: 

( ) ( ) ( ) ( ) ( )







−−
= −−

tEtMtKtM
tA

11

0 Ι
          (5) 

( ) ( )[ ]TbtMtB 10 −=               (6) 

( ) ( ) ( )
( ) ( )

T

av

ad

tEtMCC

tKtMCC
tC 









−

−
=

−

−

1

1

            (7) 

( ) ( )btMCtD a

1−=               (8) 

3. Signal project using the Daubechies wavelet  

Daubechies wavelet, with the vanishing moments of ,N  could be called dbN  wavelet. The 

state vector )(tz  can be projected by using scaling functions of dbN  wavelet at resolution j : 

∑ −⋅=
k

2/
)2(2~)( kttz

jj

k φα             (9) 
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where integers Zk ∈ are translation factors, kα
~ are the approximation coefficients, 

)2(2)( 2

, kt jj

kj −= φφ  are Daubechies scaling functions. Let tr j2= , 2/2~ j

kk αα =  and 

equation (9) is rewritten as follows: 

∑ =−=
k

k rZkrtz )()()( φα             (10) 

The first derivative of scaling function to time t  is: 

 

)(2
)(

kr
t

kr j −=
∂

−∂
φ

φ
ɺ              (11) 

Substitute equation (11) into the state space equation (3): 

)()(2)( rZkrtz
k

k

j ɺɺɺ =−= ∑ φα             (12) 

4. Algorithm for instantaneous frequencies identification  

4. 1 Transforming the state equations to linear algebraic equations 

Substituting equations (10), (11) and (12) to state equations (3) and (4), we have: 



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     (13) 

Here let 2/2
~ j

kk ββ = , 2/2~ j

kk γγ = , in which kβ
~
 and kγ

~  are the approximation 

coefficients of )(tu  and ( )ty , having been multiplied by )( lr −φ , and taking the inner product 

of both side of equation (13): 


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Using the translation orthogonality of the scaling functions ∫ =−− lkdrlrkr δφφ )()( , the 

equation (14) is rewritten as: 
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
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in which drlrkrkl )()()1( −−= ∫− φφΓ ɺ  are the connection coefficients. Without loss of the 

generality, it is assumed that the length of the signal )(tx  is ,
f

t Z∈  hence we have nt f

j =2 . 

When the translation factors ]22,22[ −++−= NlNlk  and the integers 1,,1,0 −= nl ⋯ , the 

connection coefficients )1(

kl−Γ  are nonzero. If the systemic mass has been known, the system 

matrix )(tA  and the output influence matrix )(tC  can be identified by solving the linear 

equations. 

4. 2 Free vibration case 

When the excitation force term of the equation (1) is zero, the differential equations can be 

simplified. In sate equations, system matrix ( )tA  and output influence matrix ( )tC  are 

time-dependent. However, input matrix ( )tB  and direct transmission matrix ( )tD  do not exist 

any longer. According to the section 3, state vector )(tz  and the output )(ty  can be projected 

by using scaling functions of dbN  wavelet at resolution j , then doing variable substitution 

and doing first derivative to scaling function )(⋅φ . Following the procedures of section 4.1, 

introducing signals’ Daubechies wavelet projection to the free vibration state equations: 




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
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−−=−−

−−=−−
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     (16) 

taking the inner product of both sides of equation (16), after having been multiplied by )( lr −φ , 

using the orthogonality of the translates of the scaling functions, equation (16) is rewritten to: 







=

=∑ −

lll

k

llklk

j

C

A

αβ

αΓα )1(
2

             (17) 

where the connection coefficients )1(

kl−Γ , translation factors k  and the integers l  all have the 

same definitions to the section 4.1. 

Solving the linear equations above, the time-varying system matrix )(tA  and output 

influence matrix ( )tC  can be determined. 

4. 3 Procedures for instantaneous frequency identification  

Taking the eigen decomposed to the systemic state matrix )(tA  at different time instant: 

)()()()( 1 ttttA −= ψΛψ              (18) 
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where )(),(()( ttdiagt
ii

∗= λλΛ ppC 22) ×∈  is a diagonal matrix, ppCt 22)( ×∈ψ  is a matrix of 

eigenvector, )(1)(2)(2)()(),(
2

ttjtttt iiiiii ζπωπωζλλ −±−=∗
, where )(tiω , )(tiζ  are natural 

circular frequency and damping ration respectively, which can be defined as following, in which 

pi ,,1⋯=  indexes the modal order: 

22 )))((Im()))((Re(
2

1
)( ttt iii λλ

π
ω +=           (19) 

)(2

))(Re(
)(

t

t
t

i

i
t πω

λ
ζ

−
=               (20) 

5. Numerical simulations 

A 4-DOF LTV model (Fig. 1) is used for the case study. 

The lumped mass coefficients are 
1 2 3 4

1kg.M M M M= = = =  

The damping coefficients are 
1 4

0.6Ns/m,E E= =  
2
0.65Ns/m,E =  

3
0.7Ns/mE = . 

The stiffness coefficients are 
1 2 3 4

40000N/sK K K K= = = = . 

The free and forced vibration response sequences are calculated from numerical solution of 

the equation of motion using Newmark-beta method. The free vibration response is simulated 

with an initial displacement at the four lumped masses as ,03,21 =，x  mx 05.04 = , while the 

initial velocity and acceleration are all zero. Two types of forced responses are calculated under 

multi harmonic excitation and random excitation with an all-zero initial condition. The multi 

harmonic excitation is ( )Ttttttu ππππ 104sin,76sin,32sin16sin*200)( ，= and the random 

excitation acting at four lumped masses, which is a normal distribution random value with mean 

zero and standard deviation fifty. In this example, we choose 3db  Daubechies wavelet, and the 

resolution 11=j , so the sampling frequency of the time series data is =j2 2048 Hz. 

 

Fig. 1. 4-DOF lumped mass model 

Different kinds of parameters with different kinds of time-varying cases (abrupt, smooth and 

periodic) are investigated. The instantaneous frequencies are identified using the proposed 

method from the free and forced responses (multi harmonic and random excitation). 

Case A. Mass coefficient and single stiffness coefficient are time varying. 

ttM 01.01)(4 −= ; 2

40000,0 0.375,

32000,0.375 0.75,
( )

32000 4000sin1.33 ,0.75 2.25,

32000 2000 ,2.25 3.

t

t
K t

t t

t t

π

≤ ≤
 < ≤

= 
+ < ≤

 − < ≤
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The remaining parameters are invariant. 

Figs. 2 and 3 provide the identified instantaneous frequency of the LTV system. Four 

frequencies can be tracked well using both free and forces responses. However, it is noted that 

there exists larger identification error at the time instance when the system parameters have an 

abrupt change. This indicates that the proposed algorithm has poor capability in tracking abrupt 

variations because of combining a number of time points during the calculation procedure of 

solving linear equations. 

 

Fig. 2. Identified instantaneous frequencies (1st and 2nd order) 

 

Fig. 3. Identified instantaneous frequencies (3rd and 4th order) 

 

Case B. Mass coefficient and multi stiffness coefficients are time varying. 

 

ttM 01.01)(4 −= ; 2

40000,0 0.375,

32000,0.375 0.75,
( )

32000 4000sin1.33 ,0.75 2.25,

32000 2000 ,2.25 3,

t

t
K t

t t

t t

π

≤ ≤
 < ≤

= 
+ < ≤

 − < ≤

 

4

40000,0 0.375,

28000,0.375 0.75,
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28000 2000 , 2.25 3.

t

t
K t

t t

t t

π

≤ ≤
 < ≤

= 
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The remaining parameters are invariant. 

Case C. Mass, damping and stiffness coefficients are time varying. 
 

ttM 01.01)(4 −= ; ttE 05.06.0)(1 += ; 2

40000,0 0.375,

32000,0.375 0.75,
( )

32000 4000sin1.33 ,0.75 2.25,

32000 2000 ,2.25 3.

t

t
K t

t t

t t

π

≤ ≤
 < ≤

= 
+ < ≤

 − < ≤

  

The remaining parameters are invariant. 

A comparison is shown in Figs. 4 -7 between the true value and the identified value. Results 

indicate that the proposed algorithm has a good capability of tracking the time-varying frequency 

of the LTV system. The estimated results from free vibration responses are more accurate than 

those from the forced responses during the whole identification time period. 

 

Fig. 4. Identified instantaneous frequencies (1st and 2nd order) 

 

Fig. 5. Identified instantaneous frequencies (3rd and 4th order) 
 

6. Conclusions 

 

We presented a new technique to identify the instantaneous frequency of the LTV system 

from free or forced responses data using wavelet and state space methods. The proposed 

algorithm not only successfully avoids computing the connection coefficient between wavelet 

scaling functions and the second order derivative of wavelet scaling functions, but also 
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significantly reduces the computation time in comparison to many subspace algorithms and time 

series recursive algorithms. A 4-DOF discrete model with three kinds of cases (abrupt, smooth 

and periodic) was investigated. Numerical results demonstrate that the proposed algorithm has a 

good capability for tracking the changes of instantaneous frequency of the LTV system. 

 

Fig. 6. Identified instantaneous frequencies (1st and 2nd order) 

 

Fig. 7. Identified instantaneous frequencies (3rd and 4th order) 
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