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Abstract. Accurate finite element (FE) modeling of mechanical structures is extremely difficult 
with unknown joints or boundary conditions. An alternative joint stiffness identification method 
that involves a hybrid of FE model and frequency response functions (FRFs) is presented. Firstly, 
the joint stiffness is assumed by experience and the mechanical structure is modeled with the FE 
method. Secondly, the FRFs at the concerned nodes of the structure are simulated and measured, 
respectively. Then the norm of residual FRFs between the simulations and measurements is 
calculated. Finally, a sensitivity-based iterative algorithm is derived for minimizing the norm of 
residual FRFs and the least square method is used to solve over-determined iterative equation. 
The joints stiffness parameters are identified through the iteration process, while the FE model is 
updated simultaneously. The proposed joint stiffness identification method is applied on a 
clamped beam assembly. The first three natural frequencies calculated by the FE model are 
compared with the measured values. The largest relative error of the simulation deceases from 
16.7 % to 2.5 % after the joint stiffness parameters are identified, which demonstrates the 
effectiveness of the presented method. 
 

Keywords: joint parameters identification, model updating, finite element method, frequency 
response function, joint stiffness. 
 
1. Introduction  
 

Structural systems are composed of substructures and joints. The overall dynamic 
characteristics of the structural system, such as natural frequencies, mode shapes, and non-linear 
response characteristics to external excitations, are affected largely by the joints. Accurate 
mathematical models representing the dynamic characteristics of structure systems have been 
required in the design and analysis stage. Although finite element (FE) analysis is a well-
established and accepted technique for the dynamic analysis of structural systems at the design 
stage, proper dynamic model still cannot be obtained if joint parameters are not accurately 
identified. For instance, the welded or less-than-rigid bolted joints in an assembly are often 
inappropriately modeled as rigid connections, which results in mismatch between FE analysis 
and experimental measurements.  

Identification of joint parameters is an important task in predicting the dynamic 
characteristics of structural systems. The main joint parameters considered in structural 
dynamics are stiffness and damping properties. Considerable studies have been conducted to 
extract joint properties from measured data. Measured modal parameters were used in early 
studies to identify the joint parameters. For example, Inamura and Sata [1] proposed an approach 
to identify the stiffness and damping properties based on the use of the complete mode shapes 
and eigenvalues. Kim et al. [2] used a condensed FE model and incomplete mode shapes to 
identify properties for a taper joint. These methods require accurate modal parameters which are 
difficult to extract, especially for structures containing closely spaced modes or large modal 
damping [3], and thus the application is limited. 

In order to circumvent the difficulties of extracting accurate modal parameters, some 
methods based on frequency response functions (FRFs) have been proposed to identify joint 
parameters. Tsai and Chou [4] proposed a method to obtain the properties of a single bolted joint 
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directly from the measured responses. Wang and Liou [5] improved Tsai and Chou’s method by 
simplifying the mathematics in the inverse operation. Ren and Beards [6] discussed the 
techniques for improving the accuracy of FRF-based joint identification method. Yang et al. [7] 
combined the substructure synthesis method with FRFs, and a coupled stiffness matrix was used 
to model a joint.   

Recently, Celic and Boltezar [8, 9] considered not only the mass, stiffness and damping 
effects, but also the effects of rotational degrees of freedom (DOFs). An improved joint-
identification method was presented with higher accuracy. The approach easily allowed an 
expansion to more DOFs or to a larger number of joints and therefore more FRFs were 
available. Furthermore, Wang et al. [10] developed a new unmeasured FRFs estimation method, 
which is capable of estimating all of the unmeasured FRFs. Since all of the FRFs are included, 
the identification accuracy and robustness are thus improved. 

The basic idea of the most above joint identification methods are the same, i.e. the joint 
properties can be extracted from the measured FRFs of the assembled structure and its 
substructures. However, such experimental methods may become impractical for the cases when 
some joints are not measurable. Other attempts were made to employ the FE model updating 
methods for the joint identification problems [5, 11]. Because a mechanical joint may simply be 
treated as a lumped element in a FE model, any general model updating technique can be 
essentially used to identify the joint parameters [12]. Model-based techniques that involve a 
hybrid of experimental data and FE model results have been widely used [12, 13]. The FE model 
was updated by estimating the mechanical joint parameters. 

In this study an alternative model-based joint parameters identification method using FRFs is 
presented. The basic idea is that the analytical FE model of a mechanical structure can be 
modified with the changes of joint parameters, which lead to an updated FE model, whose 
predicted FRFs can match well with the measured FRFs. A sensitivity-based iterative algorithm 
is introduced for minimizing residuals between simulations and measurements. The dynamic 
characteristics of the joints are identified through the iteration process, while the FE model is 
updated simultaneously. A clamped beam assembly example is provided to describe the 
identification procedure and to validate the proposed method. 

 
2. The joint parameter identification method 
 
2. 1. The sensitivity-based iterative algorithm 
 

The principle of sensitivity-based iterative algorithm can be described in the form of: 

[ ]{ } { }S u ε∆ = , (1) 

where [ ]S  is the sensitivity matrix, { }u∆  is the vector of joint parameters or updated parameters, 

and { }ε  is the residual i.e., the difference between the analytical and measured dynamic FRFs. 

Such system of equations is often over-determined and solved by using least squares method. 
After solving Eq. (1), the vector of joint parameters { }u∆  is obtained and the FE model is 

updated. Following an eigen-solution of the updated FE model, a new residual is obtained. This 
process of solving and updating the system are repeated until the residual is zero or smaller than 
a defined threshold.  

The existence of residuals and their theoretical treatment rely on the assumption that the 
analytical FE model (a ) and the experimental test specimen (x ) can both be represented by: 

 

( ) ( ){ } ( ){ }a a aZ X Fω ω ω  =      ( ) ( ){ } ( ){ }x x xZ X Fω ω ω  =  , (2) 
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where [ ]Z is the dynamic stiffness, { }X  and { }F  are the displacement (or output) and force (or 

input) vectors. The dynamic stiffness matrices of the analytical FE model and experimental test 
specimen are given as:  

( ) [ ] [ ] [ ]2a a aaZ K M j Cω ω ω  = − +      ( ) [ ] [ ] [ ]2x x xxZ K M j Cω ω ω  = − +  .  

The model updating algorithm is derived from the input residual ( ){ }Fε ω  between the 

analytical and measured forces in the form of: 

( ){ } ( ){ } ( ){ }a x
F F Fε ω ω ω= − . (3) 

Using Eq. (2) and assuming that the thv  DOF is excited by the force of unit magnitude, the 

force residual { }jF
v

ε  at a selected frequency point jω  may be equivalently defined as: 

{ } { } ( ) ( ){ }1
j

a x
F j jv vv

Z Hε ω ω = −   , (4) 

where { }1 v
 is unity at the excitation point v  and zero elsewhere, ( ){ }x

j
v

H ω  is the experimental 

FRF vector at the selected frequency point jω . 

Similar to the input residual equation Eq. (4), the residual FRF { }jH
v

ε  at the selected 

frequency point jω  between the analytical and experimental FRFs can be given as: 

{ } ( ){ } ( ){ }
j

a x
H j j

v vv
H Hε ω ω= − . (5) 

With the analytical FRF matrix ( )a
jH ω 

  , the residual FRF { }jH
v

ε  can be expressed in 

another form as: 

{ } ( ) { }j j

a
H j F

v v
Hε ω ε =   . (6) 

Assuming that the force residual { }jF
v

ε is a function of the updated parameter vector 

{ } { }1 2, ,..., ,..., ,
u

T

i Nu u u u u=  then the linear approximation of { }jF
v

ε  is obtained as: 

{ } { }( ){ }
{ }

0

1

u
j

j j

N
F

v
F F i

v v i i

u u
u

ε

ε ε

=

∂

= + ∆
∂
∑ , (7) 

where { }0u  is the initial value of { }u , iu∆  is the change of the joint parameters iu , N
u

 is the 

number of updated parameters. 
Substituting Eq. (7) into Eq. (6) leads to: 

{ } { }( ){ } ( )
{ }

0

1

u
j

j j

N
Fa v

H H j i
v v i i

u H u
u

ε

ε ε ω

=

∂
 = + ∆  ∂
∑  (8) 

The next step is to solve the equation { } 0
jH

v
ε = , i.e.: 

{ }( ){ } ( )
{ }

0

1

0
u

j

j

N
Fa v

H j i
v i i

u H u
u

ε

ε ω

=

∂
 + ∆ =  ∂
∑ . (9) 

Eq. (9) can be reduced to the form of [ ]{ } { }S u ε∆ = , where the sensitivity matrix [ ]S , the 

vector of joint parameters or updated parameters { }u∆  and the residual FRF { }ε  are: 
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[ ] ( )
{ } { } { }

1 2

, , ,
j j j

u

F F Fa v v v
j

N

S H
u u u

ε ε ε

ω

 ∂ ∂ ∂
  =    ∂ ∂ ∂
  

⋯  
 

{ }

1

2

uN

u

u
u

u

∆ 
 ∆ 

∆ =  
 
 ∆ 

⋮
 

 

{ } { }( ){ }0

jH
v

uε ε= − .  

2. 2. The proposed model-based joint parameters identification scheme 
 

The basic idea of the proposed model-based joint parameters identification is that the 
analytical FE model of a mechanical structure can be modified with changes of joint parameters, 
and these changes lead to an updated FE model, whose predicted FRFs can match well with the 
measured FRFs. 

On the basis of the sensitivity-based iterative algorithm, the proposed joint parameters 
identification scheme is given in Fig. 1.  

 
Fig. 1. The flow chart of the proposed scheme 

 
The joint stiffness identification scheme starts from analytical modeling of the mechanical 

structure. For the complex structural systems, the joint dynamics between each substructure are 
usually unknown and therefore initial joint parameters are assumed by experience. To identify 
the joint parameters successfully, the measured FRFs with high accuracy are essential. Dynamic 
response tests at joints and referenced points are needed. Due to the constraints of experiment 
conditions, only the FRFs of translational DOFs can be measured directly while FRFs of 
rotational DOFs are usually estimated as described in [14].  

After data is prepared, the analytical FRFs are compared with the measured FRFs at the 
referenced points. The norm of the residual (ε ) between the analytical and measured FRFs is 

calculated. As the initial FE model is usually not accurate, the norm of the residual FRFs is 
larger than the threshold e. Then the iterative procedure starts from solving Eq. (9) with the least 
squares method. After the solution, the vector of joint parameters is obtained. With the solved 
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joint parameters, the FE model of the mechanical structure is updated. Following an eigen-
solution of the updated FE model, new analytical FRFs are obtained and the norm of the residual 
FRFs is refreshed. Then the norm of the residual FRFs is compared with the threshold again. 
This process of solving and updating the system are repeated until the norm of the residual is 
smaller than the defined threshold e. Then the iterative process stops, and the unknown dynamic 
characteristics of the joints are identified successfully. 

 
3. Application case 
 

A clamped beam assembly is used to validate the proposed joint parameters identification 
method. The clamped beam assembly consists of one beam with circular cross section and a 
vise, as shown in Fig. 2. The FRF tests of the beam were conducted by using a PCB hammer and 
several accelerometers. The FRFs were measured by applying an impact force on the surface 
and recording the vibration response at the opposite part. The measurements were made by 
CutPro-MalTF® with the sampling frequency of 8000 Hz. The material properties of the beam 
are listed in Table 1.  

 

 
Fig. 2. The clamped beam assembly 

 
Table 1.  Material properties of the beam 

Length (mm) Diameter (mm) Young’s Modulus (N/m2) Poisson’s ratio Density (kg/m3) 
383 25 2.1×1011 0.3 7800 

 
As the mass of the vise is much larger than the beam, the modeling of the vise is avoided. 

Timoshenko beam element is used and thus accounted for the effects of shear on the vibration of 
the beams. The motion of each node is described by three translational ( zyx δδδ ,, ) and two 

rotational ( zy γγ , ) DOFs, as shown in Fig. 3. 
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Fig. 3. The Timoshenko beam element 
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Firstly, as the beam is clamped firmly, the joint between the beam and the vise is considered 
to be rigid connection in a traditional way. Fig. 4 is the FE model of the clamped beam assembly 
with rigid connection. The beam is divided into 10 elements in total. 

 

Rigid connection

Timoshenko beam element

 
Fig. 4. FE modeling of the clamped beam assembly (rigid connection) 

 
The comparison between the simulated and the experimental FRFs in the free-end are shown 

in Fig. 5. It can be seen that the simulation deviates from the experiment apparently. The 
comparison of natural frequencies between the simulation and the experiment is listed in Table 
2. The largest relative error of the simulated natural frequencies is 16.7 %, which is 
unacceptable. From Fig. 5 and Table 2 in the manuscript, it can be seen that all the simulated 
natural frequencies are larger than the measured values for the first three modes. This means that 
the actual connection between the beam and the vise is less-than-rigid. Therefore, it is not 
reasonable to simplify the joint as rigid connection during the FE modeling process. 
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Fig. 5. The comparison of FRFs between the simulation and the experiment (rigid connection) 

Table 2. The comparison of natural frequencies (rigid connection) 

The order of modes Experiment (Hz) Simulation (Hz) Relative error (%) 
1 120 140 16.7 
2 762 862 13.1 
3 2101 2357 12.2 

 
Then, the joint properties between the beam and the vise are included, as shown in Fig. 6. 

Joint stiffness is modeled by using two equivalent springs in translational and rotational 
directions, respectively, and expressed in a matrix form as  

11 12

21 22

J J
J

J J

k k

k k

 
=  
 

K , 

where the translational stiffness 11
Jk , the rotational stiffness 22

Jk  and their coupling 12
Jk  or 21

Jk  are 

included. 
The joint damping can be added in the same manner as joint stiffness. However, due to the 

nonlinear complexity of the damping, the damping matrix is ignored when modeling the system. 
The modal damping ratios are obtained by experimental modal analysis. 
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The next step is to identify the joint stiffness of equivalent springs. The proposed joint 
parameters identification method is applied here. The global stiffness matrix of the clamped 
beam assembly can be written as 

x a J
= +K K K , 

where aK  is the analytical stiffness matrix of the beam. 
 

Springs

Timoshenko beam element

 
Fig. 6. FE modeling of the clamped beam assembly (flexible connection) 

When only DOFs in XY or XZ plane are considered, the analytical stiffness matrix of the 
beam with N  nodes is given as 

 

1,1 11

2,1 21 2,2 22

1, 1

,1 ,2 , 1 ,

J

J J

x

N N

N N N N N N

k k S

k k k k Y

M

k

k k k k
− −

−

 +
 

+ + 
 

=  
 
 
 
  

K
⋮ ⋮ ⋱

⋯

. 

where the first node of the beam is connected with the vise and the unknown variables are 

{ }
11

21

22

J

J

J

k

u k

k

 
 

∆ =  
 
 

. 

The measured FRF 21,21H  at the free end (i.e., the 10th node) is chosen as the object FRF of 

the joint parameter identification algorithm, that is, the residual FRF is 

21,21 21,21 21,21( ) ( ) ( )a x
H H Hε ω ω ω= − . 

Since the stiffness of the rotational DOF (22
Jk ) is included in the joint stiffness matrix, the 

measured  FRFs of the rotational DOFs are needed. Due to the high cost to obtain the rotational 
FRFs, we use the experimental translational FRFs to derive the rotational FRFs through a 
mathematical manipulation as described in [14]. 

Fig. 7 shows the convergence history of the norm of the residual FRF (ε ). After 30 

iteration steps, the trend of the residual FRF becomes stable and acceptable. 
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Fig. 7. The convergence history of the FRF residual (flexible connection) 
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The identifying process of the joint stiffness is displayed in Fig. 8. In five iteration steps, the 
translational stiffness 11

Jk  (Fig. 8a) and the rotational stiffness 22
Jk  (Fig. 8c) converges to 

5.05×109 N/m and 1.52×106 N/m, respectively. However, the coupling stiffness 12
Jk  (Fig. 8b) 

doesn’t converge and the updated stiffness becomes 3.44×107 N/m in 30 iteration steps. The 
changes of joint stiffness are listed in Table 3. 
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(a) The translational stiffness 11
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(b) The coupling stiffness 12
Jk  
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(c) The rotational stiffness 22
Jk  

Fig. 8. The identifying process of joint stiffness (flexible connection) 
 

Table 3. The change of joint stiffness 

Joint stiffness Initial stiffness (N·m-1) Identified stiffness (N·m-1) 

11
Jk  1.0×108 5.05×109 

22
Jk  0 1.52×106 

12
Jk  0 3.44×107 

 
The comparison of the FRFs in the free end of the clamped beam assembly is shown in Fig. 9. 

The initial simulated FRF is obtained with the initial stiffness, which is quite different from the 
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measured FRF. With the identified joint stiffness, the FE model of the clamped beam assembly 
is updated, and the updated FRF matches with the experimental FRF very well. 

 The comparison of natural frequencies between the simulation and the experiment is listed 
in Table 4. The largest relative error of the simulation is 2.5 %, which demonstrates that the 
identified joint stiffness parameters are reasonable. Therefore, the updated FE model can 
describe the dynamic properties of the clamped beam assembly reliably. 
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Fig. 9. The comparison of FRFs at the free end of the clamped beam assembly 
 

Table 4.  The comparison of natural frequencies (flexible connection) 

The order of modes Experiment (Hz) Simulation (Hz) Relative error (%) 
1 120 123 2.5 
2 762 761 -0.1 
3 2101 2088 -0.6 

 
Conclusions  
 

A model-based joint parameters identification method using FRFs has been described. The 
method takes advantages of both the FE model and the experimental FRFs. Sensitivity-based 
iterative algorithm is the kernel of the proposed method. The least square method is used to 
solve the over-determined iteration equation. The dynamic characteristics of the joints are 
identified through the iteration process, while the FE model is updated simultaneously.  

Since the FRF data is used, the difficulties of extracting accurate modal parameters are 
avoided, and it becomes much easier to form an over-determined equation for the iteration. 
Therefore, the ill-conditioned problem of the iteration equation is avoided. 

The proposed method has been applied to identify the elastic constraints imposed on a beam. 
The first three natural frequencies calculated by the FE model are compared with the measured 
values, and the largest relative error of the simulation deceases from 16.7 % to 2.5 % after the 
joint dynamics are identified reasonably. Meanwhile, the simulated FRFs of the updated FE 
model match with the experimental FRF very well.  

Finally, it should be pointed out that even though the given example is focused on the joint 
stiffness identification of a simple beam assembly, the proposed method is applicable to other 
mechanical structures as well. Damping parameters of the joint have not been studied in this 
paper, which will be addressed in the future work. 
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