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Abstract. This article attempts to analyze the Hopf bifurcation behavior of a railway wheelset 
in the presence of dead-zone and yaw damper nonlinearities. A model that is more precise than 
Yang and Ahmadian is investigated. Using Bogoliubov-Mitropolsky averaging method and 
critical speed, the amplitude of the limit cycle in the presence of the mentioned nonlinearities is 
taken into consideration. To solve these nonlinear equations analytically, the integration interval 
has been divided into three sub-domains. Two-dimensional bifurcation diagrams are provided to 
illustrate the mechanism of formation of Hopf bifurcation. These diagrams can be used for 
design of stable wheelset systems. 
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Introduction 

High-speed railway vehicles are assuming an ever-increasing importance in today’s 
transportation infrastructures. As the velocity of rail vehicle increases, the vehicle becomes less 
stable and ultimately exhibits rigorous oscillations, namely “Hunting”. It has been only last two 
decades that analyses have been made incorporating some of the more important nonlinearities 
that lead to the occurrence of the hunting, such as clearances between components, the wheel 
flange contacting forces, dry friction in suspension components etc. Yang and Ahmadian [1] 
reported that De Pater [2] used Krylov and Bogoliubov [3] method to examine limit cycle 
behavior of a two-axle bogie with cylindrical wheels. Law and Brand [4] used the same method 
to analyze the dynamics of a single wheelset having curved wheel profiles and flange contact, 
where they modeled the effects of this flange force by a linear rail spring with a dead-band 
equal to the flange clearance. 

The nonlinear studies led to more advanced research that used bifurcation and chaos theory 
in dynamic systems. Huilgol [5] first investigated the Hopf bifurcation in a wheelset, in the 
presence of the nonlinear contact force between the wheel and the rail. Later, Lohe and Huilgol 
[6] found an asymmetric oscillation in their numerical simulation. Subsequently, a group of 
scientists led by True Hans [7] further studied the bifurcations in two rail bogie models, where 
nonlinear creep force and dead-band wheel/rail contact force are considered. They found 
periodic, bi-periodic and chaotic behavior in this model and stated that subcritical Hopf 
bifurcation is popular in rail vehicles. The relationship between the damping and the critical 
hunting speed of a truck has been studied by Wickens [8, 9]. Chung and Shim [10] studied the 
Hopf bifurcation in a rail bogie. They found that introducing hysteretic nonlinearity leads to 
supercritical bifurcation. Pombo and Ambrósio [11] analyzed the implementation of a multi 
joint wheel–rail contact model to railway dynamics in small radius curved tracks. Yang and 
Ahmadian [12] analyzed Hopf bifurcation in a wheelset in the presence of nonlinear yaw 
damper in a primary suspension system. 

The flange force is modeled as a linear spring besides a nonlinear fourth order damping 
including a dead-zone due to the wheel/rail clearance. Sedighi et al. [13-18] have modeled the 
dead-zone nonlinearity and other discontinuities using continuities based function to facilitate 
the severe computational issues that are encountered in the analytical investigations of nonlinear 
problems. This investigation emphasizes the influences of suspension nonlinearities and the 
wheel/rail interface nonlinearities on Hopf bifurcation. Frequency of the limit cycle is found 
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analytically. Also using the Averaging method a relation between the limit cycle amplitude and 
parameters of the system is introduced. These relations lead to several analytical criteria for 
prediction of possibility of hunting behavior. Two-dimensional bifurcation diagrams are 
depicted to study the Hopf bifurcation in the system. 

Governing equations of motion of a single-axle wheelset 

The wheelset is considered to be a 4 degrees of freedom system and is illustrated in Fig. 1.  

 
Fig. 1. Free-body diagram for wheelset 

 
The equations of motion are organized using Newton's second law of motion for x, y, z and 

ϕ  as follows: 
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33 11 12 12 22, ,xp x yp y sp zp y spF f F f f M f fξ ξ ξ ξ ξ=− =− − = −  (5) 
 
and ξ  is the Kalker's creepages, for roll, pitch and yaw rates of the left and the right contact 

planes. Fig. 2 provides that the suspension forces in the lateral direction, ,s yF  and the 

suspension moments in the vertical direction, ,s zM , acting on the wheelset: 
2

, ,2 2 , 2s y y y s z xF K y C y M K b ψ=− − =−ɺ  (6) 

 
Fig. 2. The wheelset model 
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The nonlinear longitudinal yaw damping force dF  and the flange contact force TF  is 

described as follows: 
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where V b
ψ

ψ=
ɺ  and the coefficients 1C  to 4C  are obtained from experimental tests on the 

actual dampers by [12]. The constant rK  is the wheel/rail contact lateral stiffness, and δ  is the 

flange clearance. Assuming 0, , l ry a R R R Rϕ λ λϕ= = = =
ɺ ɺ , the vertical wheelset 

displacement equation of motion can be also neglected. Thus equations of motion are reduced 
as follows: 
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Comparison between equation (8) with results of Yang and Ahmadian indicated that the 

term ( )
0

wy wx

V
I I y

a R

λ
− ɺ  has been omitted and the Eulerian acceleration term was deletion in 

their paper. As illustrated in the result section, this term changes the critical speed of the 
system. 

Analytic behavior of the nonlinear model 

Based on the achieved results for cV  and ω  in the numerical simulations, the nonlinear 

behavior of the system can be analyzed using the Averaging method, Expanding ( )A V about 

cV  and combining equations (10) and (11) gives: 

( ) ( ) ( ) ( ) { }0 1 1 2 4, , , , , 0, ,0,
T

cX A V X F X F X BX F X f fε µ ε µ ε= + = + =ɺ (10)

In which the parameters 2 4,f f  are nonlinear functions in terms of dead-zone and nonlinear 

yaw dampers. The eigenvectors of ( )0 cA V and ( )0
T

cA V  corresponding to iω±  are 

12 iξ α β= ±  and 12 p iqη = + , respectively. Using the Averaging method [3], we can obtain 

the approximate solution of equation (10) as follows: 

where ( )1tgγ β α−

=  and the time dependent variables a  and ϕ  are defined as: 

( ) ( )2 22 cos sin 2 cos ,X a aα ϕ β ϕ α β ϕ γ= − = + +  (11)

( ) ( )1 1,
da d
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ϕ
ε ω ε= = +  (12)
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Using symbolic calculations, the functions ( )1H a  and ( )1G a  can be expressed as: 

The steady state solution (limit cycle) occurred if ( )1 0H a = . Equation (13) can be used to 

examine the amplitude and the phase of the limit cycle. To solve for the amplitude of the 
stationary limit cycle, we assume: 

which has the nontrivial solution 1a . To solve equation (14) for 1a , it is divided to three sub-

domain intervals as shown in Fig. 3: 
 

 

where the term S  in the integral domain is 2 22aδ α β+ . To solve for the frequency of the 

limit cycle, we obtained 1a  from (14) and substituted in (13): 

therefore the long-term behavior of the system can be obtained by substituting solution equation 
(14) for a  into equation (11) that is given as follows: 

where ( )1
1 1tgϑ α β−

= , the theoretical as well as the numerical simulation limit cycle are 

indicated in Fig. 4. This figure confirms the soundness and effectiveness of the introduced EFs. 
 

 
Fig. 3. Discretization of lateral contact force for analytical approach 
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Results 
 

In order to analyze the influence of the system parameters on the hunting behavior, we solve 
equations (8) and (9) numerically. By varying forward speed V  and plot stable response of the 
lateral displacement vs. speed, bifurcation diagrams generate as shown in Figs. 5-11. In Fig. 5 
the direct numerical solution of equation of motion is depicted. As this figure indicates the cV  

from numerical solution is 160 km/h. 
 

 

 
Fig. 5. Bifurcation diagram for set of main parameters 

 
The effect of the rail stiffness (rK ) on the critical speed is considered. Fig. 6 shows that the 

rail stiffness has no remarkable effect on hunting speed, however it reduces hunting amplitude. 
Also, Fig. 7 indicates that smaller flange clearance reduces the amplitude of limit cycle with no 
significant effects on critical speed. 

 

 
Fig. 6. The effect of rail lateral stiffness on critical speed 

Fig. 4. Comparison of theoretical (symbols) and numerical simulation (continues line) limit cycles 
 



755. A SURVEY OF HOPF BIFURCATION ANALYSIS IN NONLINEAR RAILWAY WHEELSET DYNAMICS. 
HAMID M. SEDIGHI, KOUROSH H. SHIRAZI  

 

 

 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. MARCH 2012. VOLUME 14, ISSUE 1. ISSN 1392-8716 
349

Through Fig. 8 to Fig. 11, the effect of variation of the parameters yC , yK , xK  and λ  on 

critical speed are indicated. Increasing lateral stiffness as well as lateral damping and yaw 
stiffness, raises the critical speed cV  and lowers the hunting amplitude. Comparing Fig. 8 to 

Fig. 10 it is observed that the hunting speed shows more sensitivity to change of the yaw 
stiffness relative to the other parameters such as the lateral damping. 

As Fig. 11 indicates increasing wheelset conicity, decreases the critical speed cV  and 

increases the hunting amplitude, while the hunting speed and amplitude shows more sensitivity 
to change of the wheelset conicity.  

 

 
Fig. 7. The effect of flange clearance on critical speed 

 

 
Fig. 8. The effect of lateral damping on critical speed 

 

 
Fig. 9. The effect of lateral stiffness on critical speed 
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Fig. 10. The effect of yaw spring stiffness on critical speed 

 

 
Fig. 11. The effect of wheelset conicity on critical speed 

 
Conclusions  

 
In this paper Hopf bifurcation in a railway wheelset was studied through a nonlinear model. 

Novel procedure for modeling of discontinuous nonlinearities has been employed to predict 
analytical response of nonlinear vibration in the time domain. It appears from the present work 
that the method can significantly alleviate the analytical investigation of the nonlinear 
problems. The authors believe that the introduced procedure has special potential to be applied 
to other strong nonlinearities such as preload, dead-zone and saturation discontinuous. 
Additionally, the effects of suspension parameters such as lateral damping and stiffness, yaw 
stiffness and wheelset conicity on critical speed were also investigated. The results of the 
investigation demonstrate that: 
1. Increasing gauge clearance reduces the amplitude of hunting. Gauge clearance does not have 
a significant effect on the critical speed. 
2. Yaw stiffness has a major effect on hunting velocity and can be an important design 
parameter, while increasing lateral damping has less effect on increase of the critical speed. 
3. Increasing rail lateral stiffness does not significantly affect the critical speed, but reduces 
hunting amplitude. 
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