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Abstract. Recently, novel damping devices based on shunted piezoceramics have been 
investigated. Piezoceramics are therefore embedded into the mechanical structure and convert 
some part of the kinetic vibration energy into electrical energy. Subsequently, this energy is 
dissipated in the electrical network that is connected at the electrodes of the piezoceramics. The 
network is designed with the aim to maximize the dissipation, which results in a damping effect 
on the mechanical system. Alternatively, the converted energy can be stored and utilized to 
power electronic devices like sensors for health monitoring, called Energy Harvesting. 
In both cases, the converted energy and the damping performance depend on the so called 
generalized electromechanical coupling coefficient K. It is therefore crucial to maximize this 
factor. Besider the piezoelectric material properties, the coupling coefficient also depends on the 
vibration mode of the piezoceramics. Only for a constant mechanical strain distribution in the 
whole volume the generalized coupling coefficient K is equal to the material coupling k. In all 
other cases, K is smaller than k. 

This publication presents a general derivation of the generalized coupling coefficient K for 
an arbitrary, uniaxial deformation of the piezoceramics, which is based on the potential energy 
stored in the piezoceramics. The general result is applied to a piezoelectric bending bimorph and 
verified by a finite element model. 
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Introduction 
 

Mechanical vibrations are typically unwanted, as they reduce life-time and endurance, 
increase wear and might lead to a sound radiation. Especially modern light-weight systems are 
prone to mechanical vibrations. Piezoceramics are frequently used for vibration damping, 
because they can be operated in the whole acoustic frequency range. Piezoelectric shunt 
damping is a well known technique to damp the vibrations of mechanical structures [1]. This 
technique relies on the piezoelectric effect that converts mechanical energy into electrical 
energy. A damping effect on the host structure is observed when the electrical energy is 
dissipated. The design of the electrical shunt aims to maximize the energy dissipation. Different 
networks have been developed, namely inductance-resistance networks (LR) [2], negative 
capacitance (LRC) [3, 4], and synchronized switch damping on inductor (SSDI) [5] techniques. 

In order to maximize the damping performance, the dissipated energy - and therefore also the 
transferred energy - must be as high as possible. The transferred energy depends on the 
piezoelectric constants as well as the vibration mode and the location of the piezoceramics 
within the structure. While higher piezoelectric constants generally increase the amount of 
transferred energy, the location can typically only be optimized for one specific eigenform of the 
structure at the same time. One measure for the coupling of the piezoceramics is the generalized 
coupling coefficient K. It is defined by the energies in the system: 

 (1) 
with the piezoelectrically converted energy convU  and the overall potential energy U , stored in 

the piezoceramics and the mechanical host structure [6]. In order to maximize the coupling and 
therefore the damping performance, the energy of the system must be calculated precisely. 
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Alternatively, the generalized coupling coefficient can be obtained by the shift in resonance 
frequency from short circuit to open electrodes, [7]: 

 (2) 
This is a very convenient way to measure the coupling coefficient experimentally. In many 

cases, the system, especially the piezoceramics, is modeled with some simplifications. Typically, 
a homogeneous electric field within the ceramics is assumed. This might be an eligible 
approximation for many cases, for example a bimorph with a thin piezoelectric layer, [8]. But in 
other cases it leads to errors in the calculation of the potential energy, and therefore the 
calculated eigenfrequencies. 

This paper presents a detailed calculation of the converted and stored energy of a 
piezoceramics, highlighting the influence of the generalized coupling coefficient K. In many 
cases, the deformation of the piezoceramics occurs mainly in one direction. Therefore, a uniaxial 
deformation is assumed for the calculations. Based on the energies the generalized coupling 
coefficient is derived. A piezoelectric trimorph is studied as an example, and the results are 
compared with a Finite element model. The comparisons prove that the proposed solution gives 
a much better result than the typical approximations. 
 
Constitutive piezoelectric equations 
 

In many practical applications, mechanical stress and strain mainly act in one direction. The 
linear constitutive piezoelectric equations based on IEEE standard 176 [9] then read 

 (3) 
The indices denote the axis directions, with the 3-axis being axis of polarization. Two cases 

can be distinguished. 3=i  is the longitudinal effect, where the mechanical stress acts in the 
same direction as the polarization. For 1=i , the mechanical stress is orthogonal to the direction 
of the polarization and the electrical field, which is the transversal effect. The mechanical strain 
and stress are termed S and T, the dielectric charge displacement D and the electrical field 
strength E. The compliance under the condition of a constant electric field is termed Es  and d is 

the piezoelectric charge constant. Further on, T
ε  denotes the absolute permittivity under 

constant stress. 
An important derivative parameter for a piezoceramics is the material coupling coefficient k, 

which is defined as 

 (4) 
Typical values are in the range 0.3 < k < 0.7. 

 
Calculation of the potential energy and the converted energy 
 

For the calculation of K, the potential energy as well as the converted energy must be 
calculated, cp. (1). In the following we will assume a unidirectional mechanical strain 
distribution ),,( 321 xxxfSi = , whose direction is denoted by the i. Also the electrical field is 

unidirectional in direction of polarization P (3-axis). Generally, the energy stored in the 
piezoceramics then reads 

 (5) 
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The geometry of the piezoceramics under investigation is described by the length 3ℓ  in 3x -

direction, which is also the distance between the electrodes, and a cross-section area in the 

32 xx −  plane of elA , which is therefore also the area of the electrodes, cp. Fig. 1. 

 

 
Fig. 1. Piezoceramics under uniaxial strain distribution 

 
The energies will be calculated based on an assumed deformation, described by the 

mechanical strain, and the electrical voltage pu  across the electrodes. After some mathematical 

calculations [10] this energy can finally be written as 

 (6) 
Herein, pC  denotes the blocked capacitance of the piezoceramics. Further of, definitions for 

the mean strain 3,iS  across the length 3ℓ  and the difference strain 3,iS∆  between the actual strain 

iS  and the mean strain are used, 

 (7) 
From (6) it can be concluded that the energy stored in the piezoceramics consists of an 

electrical part stored in the capacitance pC , and a mechanical part described by the compliance 
E

iis  and the strain. Additionally, an uneven strain distribution ( 03, >iS∆ ) adds further energy. 

This only occurs for a piezoelectric medium, where 03 >ik . 

 
Determination of the generalized piezoelectric coupling coefficient 
 

For the calculation of K, also the converted energy convU  must be obtained. The linear 

dependency between the electrical voltage pu  and strain can be determined as 

 (8) 
This result directly allows to calculate the converted energy: 
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 (9) 
and finally the generalized electromechanical coupling coefficient: 

 (10) 
A discussion of this term proves that the generalized coupling coefficient is always smaller 

or equal to the material coupling, ikK 3≤ . For a constant mechanical strain ( 03, =∆ iS ) it is 

equal, in all other cases it is smaller. 
 
Application: Bending Trimorph 
 

Let us now utilize the obtained results for the calculation of a bending trimorph. The 
piezoelectric layers are polarized in thickness-direction ( 3x ). Using the Euler-Bernoulli-

assumptions, the strain due to a bending occurs in 1x direction, 

 (11) 
The bending deformation is described by the deflection curve )( 1xw . Consequently, the 

mean mechanical strain and the difference strain read 

 (12) 
As the mechanical strain is not constant in the piezoelectric layer, there is a local electric 

field due to the deformation, even though the voltage at the electrodes pu  is zero. For the 

electric field it follows 

 (13) 
The electric field changes linearly in thickness direction 3x . The electric potential, which is 

the integral of 3E with respect to 3x , is therefore quadratic. 

 
Validation with Finite Element Model 
 

We now want to validate the results for the bending trimorph by finite element calculations. 
First a finite element model of a clamped-free beam without piezoelectric elements is set up and 
compared to the analytical results obtained from the Euler-Bernoulli-beam. We choose a long 
and thin beam to satisfy the Euler-Bernoulli assumptions: length mm1001 =ℓ  and height 

mm13 =ℓ . Further material properties are summarized in Table 1. 

The finite element model is build from PLANE183 planar 8-node elements with quadratic 
displacement behavior. In total 6400 elements are used. Now, the 1st eigenfrequency is 
calculated for both models: 

 (14) 
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A slight difference in frequencies is observed, due to the Euler-Bernoulli assumptions where 
lateral contraction and shear stress are neglected. Thus, the analytical calculations are performed 
with a tuned Young's modulus, calculated as: 

 (15) 
 

Table 1. Material properties for finite element models 

 
 

Solving the analytical model with this tuned Young's modulus, we have an exact agreement 
of analytical and finite element eigenfrequencies. This is important in the further procedure 
where model errors are judged by the values of the frequencies. In the next step a finite element 
model of the trimorph is set up. It consists of three layers: top and bottom layer, each of height 

mm83pzt =h , meshed by PLANE223 planar 8-node quadratic elements with piezoelectric 

capabilities activated. The middle layer has a height of mm41=h  and is meshed with 

PLANE183 elements again. The material properties are summarized in Tab. 1. We can now 
examine the electric potential within the piezoelectric material for isolated as well as short-cut 
electrodes. As stated in the previous chapter, even though the electrodes might be short-cut and 

0p =u , the electric potential changes quadratically over the piezo thickness, which can be seen 

from Fig. 2. These potentials within the material are often neglected by analytical solutions. 
 

 
Fig. 2. Electric potential for the 1st eigenfrequency at isolated and short-cut electrodes (first 5 mm of beam 
shown) 
 

Now the results obtained from our new analytical solution, the classic analytical solution and 
the finite element results are compared, Fig. 3. The new analytic solution matches the finite 
element results nearly perfectly for both short cut and isolated electrodes, while the classic 
solution increasingly deviates with higher material coupling factor k. The classic solution 
underestimates both resonance frequencies, because it neglects the additional term for the 
potential energy. From (6) it can be seen that the influence of the neglected potentials increases 
with the material coupling coefficient ik3 . Note that for short-cut electrodes the classic solution 

gives the same eigenfrequency for all values of the material coupling factor. 
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Conclusions 
 

This paper deals with the precise calculation of the potential energy and the generalized 
coupling coefficient of piezoelectric systems. It is shown that the potential energy of the 
piezoceramics can be divided into an electrical part, stored in the piezocapacitance, and a 
mechanical part, which depends on the strain distribution within the ceramics. Even if the 
electrical voltage across the electrodes is zero, there might be an electric field within the 
ceramics, which contributes to the stored energy. Also the generalized coupling coefficient is 
influenced by this term. 

 

 
Fig. 3. a) Isolated electrodes eigenfrequencies for different material coupling factors b) short-cut electrodes 
eigenfrequencies 
 

As an example, a clamped beam with piezoelectric layers is discussed. A comparison with a 
finite element model validates the analytical results. 
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