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Abstract. Recently, novel damping devices based on shuniedogeramics have been
investigated. Piezoceramics are therefore embeddedhe mechanical structure and convert
some part of the kinetic vibration energy into &feal energy. Subsequently, this energy is
dissipated in the electrical network that is cone@at the electrodes of the piezoceramics. The
network is designed with the aim to maximize th&sigiation, which results in a damping effect
on the mechanical system. Alternatively, the comerenergy can be stored and utilized to
power electronic devices like sensors for healtitooing, called Energy Harvesting.
In both cases, the converted energy and the damgenfprmance depend on the so called
generalized electromechanical coupling coefficikntlt is therefore crucial to maximize this
factor. Besider the piezoelectric material progsitthe coupling coefficient also depends on the
vibration mode of the piezoceramics. Only for astant mechanical strain distribution in the
whole volume the generalized coupling coeffici&nis equal to the material couplitkg In all
other case is smaller thatk.

This publication presents a general derivationhef generalized coupling coefficieKt for
an arbitrary, uniaxial deformation of the piezoeeies, which is based on the potential energy
stored in the piezoceramics. The general resalpjdied to a piezoelectric bending bimorph and
verified by a finite element model.
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Introduction

Mechanical vibrations are typically unwanted, asythreduce life-time and endurance,
increase wear and might lead to a sound radiaispecially modern light-weight systems are
prone to mechanical vibrations. Piezoceramics agguently used for vibration damping,
because they can be operated in the whole acofrstipiency range. Piezoelectric shunt
damping is a well known technique to damp the \ibrs of mechanical structures [1]. This
technique relies on the piezoelectric effect thabverts mechanical energy into electrical
energy. A damping effect on the host structure iseoved when the electrical energy is
dissipated. The design of the electrical shunt aom®aximize the energy dissipation. Different
networks have been developed, namely inductandstanse networks (LR) [2], negative
capacitance (LRC) [3, 4], and synchronized switaimgding on inductor (SSDI) [5] techniques.

In order to maximize the damping performance, tissigated energy - and therefore also the
transferred energy - must be as high as possibe. ffansferred energy depends on the
piezoelectric constants as well as the vibratiordenand the location of the piezoceramics
within the structure. While higher piezoelectricnstants generally increase the amount of
transferred energy, the location can typically dmdyoptimized for one specific eigenform of the
structure at the same time. One measure for thelioguof the piezoceramics is the generalized
coupling coefficienK. It is defined by the energies in the system:

> Ueon
U+ Ucony 1)
with the piezoelectrically converted enerly,,, and the overall potential enerdy , stored in
the piezoceramics and the mechanical host strufdilirén order to maximize the coupling and
therefore the damping performance, the energy efsystem must be calculated precisely.
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Alternatively, the generalized coupling coefficietdn be obtained by the shift in resonance
frequency from short circuit to open electrodeg, [7
KZ _ .fgc 7f52c

Jo )

This is a very convenient way to measure the cagptioefficient experimentally. In many
cases, the system, especially the piezoceramiogydeled with some simplifications. Typically,
a homogeneous electric field within the ceramicsassumed. This might be an eligible
approximation for many cases, for example a bimavjth a thin piezoelectric layer, [8]. But in
other cases it leads to errors in the calculatibrthe potential energy, and therefore the
calculated eigenfrequencies.

This paper presents a detailed calculation of tbeverted and stored energy of a
piezoceramics, highlighting the influence of thengmlized coupling coefficieri. In many
cases, the deformation of the piezoceramics ocuaisly in one direction. Therefore, a uniaxial
deformation is assumed for the calculations. Basedhe energies the generalized coupling
coefficient is derived. A piezoelectric trimorph ssudied as an example, and the results are
compared with a Finite element model. The compasgwove that the proposed solution gives
a much better result than the typical approximation

Constitutive piezoelectric equations

In many practical applications, mechanical strews strain mainly act in one direction. The
linear constitutive piezoelectric equations basedEE standard 176 [9] then read

ST [sE a7
Ds| — |ds €L | (3)

The indices denote the axis directions, with thexi3-being axis of polarization. Two cases
can be distinguished.=3 is the longitudinal effect, where the mechanide¢ss acts in the
same direction as the polarization. Ferl, the mechanical stress is orthogonal to the diect
of the polarization and the electrical field, whishthe transversal effect. The mechanical strain
and stress are termefland T, the dielectric charge displacemdntand the electrical field
strengthE. The compliance under the condition of a constéattric field is termeds® andd is

the piezoelectric charge constant. Further en, denotes the absolute permittivity under
constant stress.

An important derivative parameter for a piezocersni$ the material coupling coefficiekt
which is defined as
ds;
@
Typical values are in the range 0.8 < 0.7.

s

3i

Calculation of the potential energy and the convedd energy

For the calculation oK, the potential energy as well as the convertedggnenust be
calculated, cp. (1). In the following we will assaeina unidirectional mechanical strain
distribution § = f (x;,X,,X;) , whose direction is denoted by theAlso the electrical field is

unidirectional in direction of polarization P (3ig)x Generally, the energy stored in the
piezoceramics then reads

U= % /(T,-S,-+D3E3)dV
v (5)
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The geometry of the piezoceramics under investigai described by the length, in x, -

direction, which is also the distance between tleetedes, and a cross-section area in the
X, —X; plane of A, which is therefore also the area of the electspdp. Fig. 1.

Ag

X1

Fig. 1. Piezoceramics under uniaxial strain distribution

The energies will be calculated based on an assudeddrmation, described by the
mechanical strain, and the electrical voltageacross the electrodes. After some mathematical
calculations [10] this energy can finally be writtas

1

11 2.
_ v 2 2 3 2
U = 5(#%‘%5@/ {51 + 1 _;{ng£8£3:| dr.

(6)

Herein, C, denotes the blocked capacitance of the piezocesafiurther of, definitions for
the mean strairi_slv3 across the lengthi, and the difference straidS , between the actual strain

S and the mean strain are used,
3
f S',-()Cl,xz.,y\“z)d,\“;

Sia(xr,x) = &

L AS;3(r1.x2,x3) = Si(x1,x2.x3) — Si3(x1,x2)
f ' (7
From (6) it can be concluded that the energy stanethe piezoceramics consists of an
electrical part stored in the capacitarce, and a mechanical part described by the compliance
St

This only occurs for a piezoelectric medium, wh&re> 0.

and the strain. Additionally, an uneven strairtriisition (4S , >0) adds further energy.

Determination of the generalized piezoelectric codimg coefficient

For the calculation oK, also the converted enerdy_., must be obtained. The linear

dependency between the electrical voltageand strain can be determined as
KB, 1 6 / =
=3 2 [§,5d4
1— kgl s Ag . 1,3UAcl
Ael (8)

This result directly allows to calculate the corigdrenergy:

u p
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9)
and finally the generalized electromechanical cogptoefficient:
1
Kz - k%i
v [sdr V[ AS2 1
(1-B) A+ | 14—
(\(s;ar) ([S,»dl‘)
! ’ (20)

A discussion of this term proves that the genegdlizoupling coefficient is always smaller
or equal to the material couplindS <k; . For a constant mechanical strainy, =0) it is

equal, in all other cases it is smaller.
Application: Bending Trimorph

Let us now utilize the obtained results for thecuakdtion of a bending trimorph. The
piezoelectric layers are polarized in thicknesgdion (x;). Using the Euler-Bernoulli-

assumptions, the strain due to a bending occussdirection,

i%s /"
S1 (xl,x3) = — <X3+ 7) w (xl)
(11)

The bending deformation is described by the deflacturve w(x,). Consequently, the

mean mechanical strain and the difference straid re

I
[ Sydxs

S1‘3: 0 7 :*<C+%> W"()C]), AS13=8—-S813= <%*X3> W”()Cl)
B (12)
As the mechanical strain is not constant in thegeéectric layer, there is a local electric
field due to the deformation, even though the \gtat the electrodes, is zero. For the

electric field it follows
K1 u KB, o1 3
Ey=——3L  A§ ;- 2= _"31 —(x——>w”x
3 lfkgl ds) 1.3 U3 lfkgl ds) 3 2 ( 1) (13)
The electric field changes linearly in thicknessediion x,. The electric potential, which is
the integral of E, with respect tox,, is therefore quadratic.

Validation with Finite Element Model

We now want to validate the results for the bendiirgorph by finite element calculations.
First a finite element model of a clamped-free be@thout piezoelectric elements is set up and
compared to the analytical results obtained from Euler-Bernoulli-beam. We choose a long
and thin beam to satisfy the Euler-Bernoulli asstioms: length ¢, =100mm and height

{, =Imm. Further material properties are summarized inél ab

The finite element model is build fromLANE183 planar 8-node elements with quadratic
displacement behavior. In total 6400 elements asedu Now, the 1st eigenfrequency is
calculated for both models:

fipem = 8.35551102Hz,  fi analyt = 835516595 Hz (14)
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A slight difference in frequencies is observed, thuéhe Euler-Bernoulli assumptions where
lateral contraction and shear stress are neglettads, the analytical calculations are performed
with a tuned Young's modulus, calculated as:

2
L. = ‘flszEME =2.1001734610°[N /m?]
fl‘analy (15)

Table 1. Material properties for finite element models

PLANE 183  PLANE 223
Young’s modulus [N/m?”] £ 2.1-10° 2.1-107
Poisson ratio v [-] 03 03
Shear modulus [N/m?] E/2(1+v)) E/2(1+V))
Density [kg/m?] 7850 7850
Piezoelectric strain coefficients [C/N]
d3 N/A 4.10°11
dx N/A 0
dx3 N/A 0
rel. permittivity [-]
el N/A 0
el N/A 12

Solving the analytical model with this tuned Yowngiodulus, we have an exact agreement
of analytical and finite element eigenfrequenci€kis is important in the further procedure
where model errors are judged by the values ofrdguencies. In the next step a finite element
model of the trimorph is set up. It consists okthtayers: top and bottom layer, each of height
N = 38mm, meshed by EANE223 planar 8-node quadratic elements with piezoelectric

capabilities activated. The middle layer has a Miteigf h=¥4mm and is meshed with

PLANE183 elements again. The material properties are suragwarin Tab. 1. We can now

examine the electric potential within the piezotiecmaterial for isolated as well as short-cut
electrodes. As stated in the previous chapter, évaemgh the electrodes might be short-cut and
u, =0, the electric potential changes quadratically dherpiezo thickness, which can be seen

from Fig. 2. These potentials within the materia aften neglected by analytical solutions.

Isolated electrodes Short-cut electrodes

2839.58
6159.87

1173.81
234723
3520.84

(O[]

(AT

Fig. 2. Electric potential for the 1st eigenfrequencysalated and short-cut electrodes (first 5 mm ofibea
shown)

Now the results obtained from our new analyticdlison, the classic analytical solution and
the finite element results are compared, Fig. 3 Tbw analytic solution matches the finite
element results nearly perfectly for both short aotl isolated electrodes, while the classic
solution increasingly deviates with higher materalupling factork. The classic solution
underestimates both resonance frequencies, bedhummglects the additional term for the
potential energy. From (6) it can be seen thairfieence of the neglected potentials increases
with the material coupling coefficierikt, . Note that for short-cut electrodes the classiotiEm
gives the same eigenfrequency for all values ofithterial coupling factor.
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Conclusions

This paper deals with the precise calculation @& piotential energy and the generalized
coupling coefficient of piezoelectric systems. dt shown that the potential energy of the
piezoceramics can be divided into an electricak, pstored in the piezocapacitance, and a
mechanical part, which depends on the strain digion within the ceramics. Even if the
electrical voltage across the electrodes is zdreret might be an electric field within the
ceramics, which contributes to the stored enerdgo Ahe generalized coupling coefficient is
influenced by this term.
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Fig. 3. a) Isolated electrodes eigenfrequencies for diffematerial coupling factors b) short-cut elect®d
eigenfrequencies

As an example, a clamped beam with piezoelectyierfais discussed. A comparison with a
finite element model validates the analytical resul
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