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Abstract. The paper concerns the problem of vibrations of the beam in rotational transportation. 
The beam is the supported-clamped one. The beam is fixed on a rotational disk. The disk is 
treated as the rigid one. The method of dynamical flexibility is used for the dynamic analysis of 
the system. The beam is considered in terms of local vibrations transferred to the global 
reference frame where the interaction between the local displacement and the transportation 
movement is taken into consideration. The analyzed system can be treated as the model of many 
technical systems such as blades of pumps, rotors etc. Nowadays such a type systems are very 
rarely considered with taking into account the so called transportation effect. The analyzed case 
is the particular one, where the special boundary conditions are applied. 
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Introduction 

The problem of supported-clamped vibrating beam is considered in this work. The paper is a 
part of series works concerning problems of vibratory beams in transportation. The paper 
concerns the well-known problem in the literature [1-9], but the presented model is the specific 
case of the beam fixed in a rotational disk. In considered model the local vibrations of the beam 
are in relation with the main motion. There are many technical applications where the beams 
fixed on the rotation disk are implemented. For instance the systems can be put into practice in 
many types of turbines, pumps or rotors. This analysis can be also used for an analysis of 
complex systems where one of the components of such a complex system is an analyzed beam. 
In this paper the method used for dynamic analysis is the dynamic flexibility one. This method is 
the one of the very popular ways of analyzing dynamics of systems. The dynamic flexibility is 
used for the analysis of the beam systems in rotational motion and gives an opportunity to 
specify the stability or instability zones. These zones are very important to control such a type of 
systems, taking into account the optimizing for the sake of the minimal amplitude of local and 
global vibrations criterion. In this way it is also possible to derive the modes of vibrations and 
zeros of the dynamic characteristics. Many publications in the literature concern the subject area 
of vibrating systems in motion as distinguished from the ones concerning stationary systems. 
These aspects are the reasons for widening of the dynamic analysis [1-9]. As a starting point of 
the dynamic flexibility, derivation algorithm of the mathematical model is assumed in the form 
of equations of motion. Considerations are done by the Galerkin’s method. There are beamlike 
systems in rotational motion considered, treated in this paper as the main working motion. 
Considered motion is limited to the plane one. The dynamic characteristics in the form of 
dynamic flexibility as function of frequency and mathematical models are presented in this 
work. 
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Modelling of the vibratory beam on a rotational disk 

A model of the supported-clamped homogeneous beam is considered in this section (Fig. 1). 
The beam is supported at one end and clamped at the second one. The beam is fixed on a 
rotational disk with the support as a point of mounting to the disk. The rigid disk rotates with the 
angular velocity ω. The system is described in the two reference frames. The local vibrations are 
transferred to the global reference frame. The beam has the well-defined geometric parameters: 
the symmetric cross-section, the given external dimensions, the given geometric momentum and 
material parameters such as a material type, the Young’s modulus, a mass density. It is assumed 
that the beam is supported at one end (for x = 0) and clamped at the second end (for x = l) (Fig. 
1). The analyzed cross-section of the beam is loaded by a harmonic force with the unitary 
amplitude in the direction perpendicular to the centre line of the beam. The forces and the 
moments of forces at the ends of the beam are assumed as equal zero and also the displacements 
are equal zero. 
 

 
 

Fig. 1. Analyzed system, where: ρ – mass-density, A(x) – cross-section, l – length of the beam, x – 
location of the analyzed cross-section, ω – angular velocity, Ω – frequency, Q – rotation matrix, S – 
position vector, w – vector of displacement, F – harmonic excitation force, E – Young modulus 

 
In Fig. 1 the analyzed beam model – the supported-clamped one is presented. 

Forms of vibrations 
 

For deriving the forms of vibrations the boundary condition for the beam should be written 
as follows: 
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in every time moment t ≥ 0. After solving the boundary problem there can be derived the 
eigenfunction of displacement in the form: 
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where: n is a mode of vibrations of the supported-clamped beam. 

Table 1. Forms of vibrations of the supported-clamped beam 

n 
Exact calculated 

eigenvalues  
k 

Eigenvalues 
approximated 

with the formulae 
(3) 

Rounded relative 
error 

The form of vibrations  

1 3,92660231 3,92699082 -0,01% 

 

2 7,06858275 7,06858347 0,00% 

 

3 10,2101761 10,2101761 0,00% 

 

 
In Table 1 the three modes of vibrations for the supported-clamped beam are presented. The 

estimated relative error between the calculated exact eigenvalues and the approximated 
eigenvalues is very small and can be neglected in further calculations. The charts of forms of 
vibrations for two presented eigenfunctions of displacement are concurrent. 

Mathematical model – equations of motion 

The kinetic energy in accordance with the Koenig’s law defined by the generalized 
coordinates and the generalized velocities is: 
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where , ,i j k  are versors in the global reference frame. 

The equations of motion of the non-damped beam in transportation are derived in the matrix 
form. This system of equations of motion is the fourth order partial differential equations and in 
each point of the range ( ) ( ){ }, , 0, , 0D x t x l t= ∈ >  coincides with the boundary conditions and 

the initial conditions. It can be expressed as follows: 
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Every periodic motion can be expressed as complex motion compound from series of 
harmonic motions. The description of displacements in the global reference frame is as follows:  
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where AX and AY are the searched amplitudes, X(x) is the eigenfunction for displacement, Ω is 
the frequency and j is the imaginary unit, n for displacement, Ω is the frequency and j is the 
imaginary unit. 

In accordance to the definition, the mathematical form of the modulus of dynamic flexibility 
of the considered systems can be obtained as: 
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If the angular velocity of the rotational disk equals zero then the dynamic flexibility is: 
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Where the norm equals: 
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The derived (9) dynamic flexibility is the same as the dynamic flexibility of the stationary 
beams.  

Numerical examples 

Numerical examples in the form of dynamic characteristics are presented. In Figures 2-3 the 
samples of dynamic flexibilities are presented in the chart form. Figure 2 presents the 
attenuation-frequency characteristic, the dynamic flexibility both in the function of the 
frequency and the angular velocity (the transportation velocity) is presented. 

 

 
Fig. 2. Dynamic characteristic of dynamic flexibility of the beam in relation to angular velocity and 
frequency 
 

Presented characteristics make also possible analysis of the influence of the angular velocity 
treated as the transportation velocity on the modes bifurcation process. In figure 3 the bottom 
view of the characteristic from figure 2 is presented. In figure 3 the top of the characteristic (Fig. 
2) is presented. After assuming the angular acceleration equals zero the relation between angular 
velocity and the modes of the dynamic flexibility is the linear function. 

Conclusions 

This paper is the consideration of the vibration problem of beams fixed on a rotational rigid 
disk. The beam was located onto the rotational disk that rotates with a constant angular velocity. 
The beam moves in terms of the plane motion and the model presented here makes possible to 
consider local and global vibrations, taking into consideration the transportation effect (acting of 
Coriolis and centrifugal forces). The way of modelling of supported-clamped vibrating beam in 
transportation was presented in this abstract. The model considers mutual relations between the 
main motion treated as the transportation and the local displacements treated as vibrations. The 
dynamic flexibility formula is presented as well and the solution is proposed as the sum of the 
eigenfunctions products. The presented model can be used for dynamic analysis of simple 
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beamlike systems with the specific boundary conditions. The numerical examples are presented 
in this work. The derived mathematical formulae (8) makes possible to determine the dynamic 
flexibility for different working parameters. In future works the damping forces analysis will be 
also provided and the analysis of systems with geometrical and physical nonlinearities.  
 

 
a) 

 
b) 

Fig. 3. a) Bottom view of the characteristic (Fig. 2). b) Relation between angular velocity and modes of 
dynamic flexibility 
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