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Abstract. A dynamic computational model for the embedded railway track subjected to a 
moving load is developed in this paper. The model consists of two-layer Euler-Bernoulli beams 
and continuous viscoelastic elements. The lower beam, the upper beam are employed to model 
the concrete slab and the rail, respectively, whilst the continuous viscoelastic elements model the 
soil reaction and the fill material. The problem is solved by employing Newmark-β numerical 
integration method. The effects of the speed of the moving loads, the rail type, and the spring 
stiffness of rail supports are studied. Results indicate that the dynamic response of rail and slab 
increases with the larger moving load speeds, whilst the response of rail and slab decreases with 
the increase of spring stiffness and heavier rail used. 
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Introduction 

The application of concrete non-ballasted track in urban railway transportation has certain 
advantages compared with conventional ballasted track, but existing concrete non-ballasted track 
structures produce more vibration and noise than ballasted track. For this reason, a “silent slab 
track” developed in the Netherlands is shown in Fig. 1. The structure consists of a massive 
concrete slab, into which the rails are embedded by means of Corkelast material [1 - 3]. And 
unlike older rail systems, the rail track is continuously welded, which can result in a smoother 
and quieter ride. 

To efficient design such as an embedded track, it is necessary to gain the specific features of 
the dynamic behavior of the structure. This can be accomplished with a simple analysis of the 
structure model taking into account the main physical characteristics of the real structure [4]. 

In this paper, we model the embedded track as two elastic Euler-Bernoulli beams and 
continuous viscoelastic elements (Fig. 2). As the structure is symmetrical, we can analyze only 
half of it. The upper beam models the rail, whilst the lower one represents the concrete slab. The 
viscoelastic elements that connect them represent the fill materials. The viscoelastic elements 
that support the lower beam models the subsoil reaction. The point load moving at a constant 
speed v  is representative of the usual wheel load, currently used in the analysis and design of 
railway track. The dynamic equilibrium equations of motions of finite element form for the track 
system are derived by means of the principle of Lagrange’s equation [5] and these equations are 
solved by the Newmark-β step-by-step integration method to obtain the dynamic responses of 
the track system. 

 
Fig. 1. Embedded railway structure 
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Fig. 2. The model for an embedded railway track 

Analysis based on a finite element model 

Finite element method is employed to establish the dynamic equation of the embedded railway 
track, where rail and concrete slab as beams with finite length are discretized as two-dimensional 
beam elements. 

Element stiffness matrix 

Consider a generalized beam element ij of length l  of two beams on continuous viscoelastic 
foundation as shown in Fig. 3, which is assumed that the downward deflections of the element 
are taken as positive and that they are measured with reference to their respective vertical static 
equilibrium positions. Neglecting the longitudinal displacements, the element has four degrees 
of freedom per node, the transverse displacements and the rotations of the upper and lower beam, 
respectively, and thus possesses a total of 8 degrees of freedom. The element nodal 
displacements are given by: 
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where asterisk denotes the displacements of the lower beam of the element. The transverse 

displacements w of the beams are expressed in the nodal displacements by Hermitian cubic 
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1w  and 2w  are the vertical displacements of the upper beam and the lower beam, 

respectively.x  is local coordinate measured from the left node of the element.  

 
Fig. 3. A generalized beam element for the track structure 
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For the generalized beam element, the elastic strain energy consists of the strain energy of the 
upper beam and the strain energy of the lower beam of the element, the strain energy of the 
continuous viscoelastic elements between the upper beam and the lower beam of the element, the 
strain energy due to the foundation stiffness: 

 

)()()()()()(

0

2
2

2

0
21

2
2
2

2

0

2
2
1

2

0

}){][][][]([}{
2

1
2

1
)(

2

1
)(

2

1
)(

2

1

e
i

e
f

e
d

e
c

e
r

Te
i

l

f

l

d

l

ccr

l

r

KKKK

dxwkdxwwk
x

w
IEdx

x

w
IE

δδ +++=

+−+
∂

∂
+

∂

∂

∫∫∫∫
          (3) 

where: 

dxNNIEK
l

T
rr

e
r

''
1

0

''
1

)( ][][][ ∫= , dxNNIEK
l

T
cc

e
c

''

0
2

''
2

)( ][][][ ∫=  

∫ ∫ ∫ ∫+−−=

l l l l
TTTT

d
e

d dxNNdxNNdxNNdxNNkK
0 0 0 0

22122111
)( ][][][][][][][][(][  

dxNNkK T
l

f
e
f ][][][ 2

0
2

)(

∫=  

 

In which, rE and cE  - Young’s module of the upper rail beam and the lower concrete beam, 

respectively, rI and cI - moment of inertia of the upper two rails beam and the lower concrete 

slab, respectively, dk - stiffness of the fill material, fk - stiffness of the foundation. 
Finally, using Lagrange’s equations, the (8×8) complete stiffness matrix for the element can be 

expressed as:  
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Element mass matrix 

For dynamic analysis, it is necessary to derive the element mass matrix. In this paper, the mass 
matrix is derived by considering the kinetic energy due to lateral velocity of the element. This is 
consistent with the derivation of the stiffness matrix. The kinetic energy of the generalized beam 
element shown in Fig.3 is given by: 
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where rm  and cm  are the mass densities of the upper rails beam and the lower concrete beam 

per length, respectively. 

Using Lagrange’s equation, on the kinetic energy term above, the element mass matrix e
lM ][  

is given by: 
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where: 
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Element damping matrix 

The potential energy of the damping force of the generalized beam element is comprised of the 
potential energy of the damping force of the upper beam and the lower beam, the potential 
energy of the damping force of the continuous damping elements between the upper beam and 
the lower one as well as the potential energy of the foundation. For the embedded track system, 
Rayleigh damping is adopted. Conventionally, the structural damping has been computed on the 
structure level. Based on the definition of Rayleigh damping, the structural damping of the 
element is computed as follows: 
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Given the damping ratioξ , the two coefficientsα and β can be determined as 

)/(2 2121 ωωωξωα += , )/(2 21 ωωξβ += , where 1ω  and 2ω  are the first two frequencies of 

vibration of the track system. 

The potential energy of the damping force of the continuous damping elements between the 
upper beam and the lower beam and the potential energy of the foundation are given by: 
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where the dot represents differentiation with respect to time t . Using Lagrange’s equations, 
)(][ e

dC and )(][ e
fC  are given by: 
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Thus, the (8×8) complete damping matrix for the generalized beam element can be expressed 
as:  
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Dynamic equations of the embedded railway track 

Consider a moving concentrated force proceeding with velocity v  along the upper rail beam 
as presented in Fig. 3. The track has been divided into a number of finite elements. The dynamic 
equation for the model can be written as: 

∑=++ PNqKqCqM T][}]{[}]{[}]{[ ɺɺɺ
                                  (12) 
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These are the structure mass matrix, the damping matrix and the stiffness matrix, and}{ q , }{ qɺ  
and }{ qɺɺ  denote the displacement, velocity and acceleration vectors of the track structure, 
respectively. TN ][  is a vector with zero entries except for those corresponding to the nodes of 
the element on which the load is acting [3], and P  is the magnitude of the concentrated force. 

In equation (12), the ][ N  can be represented as: 
]0...0000...0[][ 4321 iiii NNNNN =                                (14) 

where 1iN , 2iN , 3iN , 4iN  are the same as the above equation (2), in which i  is the number 

of elements on which the load is acting. 

 
Fig. 4. Position of P at t time 

The Newmark-β method of direct step-by-step integration is employed in the study to solve the 
dynamic equation (12) and the numerical procedure is implemented in a Fortran 90 program.  

Numerical examples and discussion 

In this section, the numerical simulation of an embedded railway track is performed based on 
the above analysis, and the effects of some parameters are investigated. 

The effects of the speed of the moving load and rail type 

To validate the method, the track structure of length 50 m subjected to a moving train axle load 

with constant velocity v  is analyzed. The same material properties, spring and damping 

coefficients are adopted from concrete slab track of Ref.[6]: Er = 2.06×1011 N/m2, Ec = 2.1×1010 

N/m2, kd = 6.0×107 N/m, cd = 7.5×104 N•s/m, kf = 6.25×107 N/m, cf = 8.3×104 N•s/m, cm  = 
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557.81 kg/m. The element length is 1.0 m and the moving train axle load NP 112800=  is 

applied at the model. For UIC50, UIC60 and UIC75 rail type, the rm  and rI  are 51.514 kg/m 

and 2.037×10-5 m4, 60.64 kg/m and 3.217×10-5 m4, 74.414 kg/m and 4.489×10-5 m4, respectively. 

The velocity of the moving load is varied from 15 m/s to 100 m/s.  
The results for the dynamic influence in mid-span deflection are listed in Table 1. It is 

interesting to note that the deflections remain more and less constant for various moving speed, 
within the same rail type considered. However, the deflection increases slightly with moving 
speed. The maximum dynamic deflection can be observed at a speed of 100m/s. Hence, when the 
rail type is same, the influence of the moving load speed, in the range 15-100m/s, is quite 
insignificant as listed by the results. And we can also observe that the heavier rail can decrease 
the maximum deflections of rail and slab. 

The effects of spring stiffness of rail supports 

In order to analyze the dynamic response of the embedded railway track of spring stiffness of 
rail supports, the parameters are the same as the above, but the load travels with a constant 
velocity of v = 50 m/s. The spring stiffness of rail supports is varied from 3.0×107 N/m2 to 1.2×108 

N/m2. This range covers the typical values in railway tracks of China. The maximum deflections 
of the rail and slab are calculated and listed in Table 2. It can be noted that when dk and the rail 
type are increased, the deflections of both the rail and the slab decrease. Figs. 5-7 provide the 
time histories of the mid-span deflections of the rail and slab correspondingly. These results 
indicate that the dynamic deflections are greatly influenced by the spring stiffness of rail 
supports uniformly. And the deflections of rail and slab decrease when the heavier rail type is 
used. 

 
Table 1. Maximum deflections of rail and slab of the embedded railway track: )10( 4 mw −

×  
UIC50 UIC60 UIC75 Load 

velocity(m/s)
:  

rail slab rail slab rail slab 

0 6.29612 1.60122 5.54578 1.30006 4.96495 1.19302 

15 6.29619 1.60131 5.54586 1.30008 4.96504 1.19305 

30 6.29619 1.60228 5.54586 1.30008 4.96817 1.19376 
50 6.34342 1.60229 5.60809 1.30014 4.96817 1.19376 
70 6.34606 1.60230 5.61139 1.30026 4.96831 1.19401 
85 6.34657 1.60235 5.61171 1.30043 4.96846 1.19401 
100 6.34690 1.60235 5.61175 1.30043 4.96854 1.19408 

 
Table 2. Maximum deflections of rail and slab of the embedded railway track: )10( 4 mw −

×  

UIC50 UIC60 UIC75 Spring 
stiffness kd rail slab rail slab rail slab 

3.0×107 10.40464 3.18957 8.69427 2.37717 7.39667 1.81682 

6.0×107 6.34342 1.60229 5.60809 1.30014 4.96817 1.19376 

1.2×108 4.01657 0.96760 3.68588 0.94598 3.44392 0.92879 
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        (a)  the rail                           (b)  the slab 

Fig. 5. Time histories of midpoint deflection due to spring stiffness of rail supports for UIC50, V=50m/s 
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(a)  the rail                          (b)  the slab 

Fig. 6. Time histories of midpoint deflection due to spring stiffness of rail supports for UIC60, V=50m/s 

Conclusions 

The study presented a dynamic finite element model for an embedded track to a moving load 
that represents the axle load of a train. The model is composed of two Euler-Bernoulli beams and 
continuous viscoelastic elements. The upper beam models the rail, whilst the lower one models 
the concrete slab. The viscoelastic elements that connect the upper beam and the lower one 
represent the fill material. The viscoelastic elements that support the concrete slab model the 
subsoil reaction. Hermitian cubic functions are utilized as the shape functions of the two-node 
generalized beam element of the track structure. The element stiffness, mass, damping matrix 
and element force vector can be obtained by Lagrange’s equation. The equations are solved by 
Newmark–β integration method. The effects of some important parameters, such as the rail type, 
the moving speed, the spring stiffness of rail supports and the time histories of mid-span 
deflection, have been studied. From the presented analysis it is obvious that, when other 
parameters are kept the same, with the increase of load velocity, the dynamic response of rail and 
slab will increase. Meanwhile, with the heavier rail type and the increase of the rail support 
spring stiffness, the dynamic response of rail and slab will both decrease.  
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(a)  the rail                            (b)  the slab 

Fig. 7. Time histories of midpoint deflection due to spring stiffness of rail supports for UIC75, V=50m/s 

 

Finally, it should be pointed out that the dynamic response of the embedded railway track 
under a moving train is a very complicated problem. The results and conclusions obtained in this 
paper are preliminary, and studies on this field are still in progress. Because of the lack of 
calculation parameters of the track structure, we have adopted the parameters of slab track 
characteristic to railways in China. 
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