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Abstract. Bending vibrations of elements of packages are analyzed numerically by using a 
beam-type model containing physical nonlinearity. The model for the analysis of skeletal curves 
of bending vibrations of package element is presented. The 1D model with physical nonlinearity 
is based on cubic nonlinearity of Duffing type. Phase trajectory of steady state motion of the 
eigenmode is obtained and analyzed. The model for the analysis of bending vibrations of 
statically loaded physically nonlinear element of package is presented. First the static problem is 
solved and than the eigenproblem of small vibrations about the statically deflected structure is 
analyzed by taking into account cubic nonlinearity of Duffing type. It is demonstrated that the 
eigenmodes and eigenvalues are influenced by the physical nonlinearity. The setup for 
experimental investigation of polymeric films for symmetrically distributed loading is 
presented. The method of projection moiré is applied for this purpose. In the process of 
investigations the images of the first four eigenmodes of the polymeric HDPE film were 
determined. The obtained results are used for designing elements of packages. 

Keywords: physical nonlinearity, nonlinear elasticity, finite elements, cubic nonlinearity, 
Duffing equation, vibrations, eigenmodes, skeletal curves, phase trajectory, steady state motion, 
Duffing parameter, eigenvalues, non-destructive identification, time averaging, projection 
moiré. 
 
Introduction 
 

Bending vibrations of package elements are numerically analyzed by using beam-type 
model with physical nonlinearity. The model for the analysis of skeletal curves of bending 
vibrations of the element is presented. The one dimensional model with physical nonlinearity in 
the form of cubic nonlinearity of Duffing type is employed. The analysis is performed on the 
basis of the models used for studying beam bending as well as implementing modal 
decomposition of motion as described in [1-3]. It is established that the bending behavior is 
substantially influenced by the physical nonlinearity. Phase trajectory of steady state motion of 
the eigenmode is obtained and analyzed. 

The model for the analysis of bending vibrations of statically loaded physically nonlinear 
package element is presented. Firstly, the static problem is solved and then the eigenproblem of 
small vibrations about the statically deflected structure is considered by taking in to account 
cubic nonlinearity of Duffing type. The investigation is performed on the basis of models 
described in [2, 3]. It is demonstrated that the eigenmodes and eigenvalues are influenced by the 
physical nonlinearity. 

Some of the results of experimental investigation of eigenmodes of statically loaded paper 
are presented in [4-6]. The experiments revealed that when the static load is not very large it is 
much easier to estimate its effect by means of change of eigenfrequency rather than from the 
change of the mode shape. This corresponds to the conclusion made in this paper on the basis of 
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numerical investigations for the physically nonlinear element of package using the model of a 
beam. 

The method of projection moiré [7] is used for the experimental investigation of defects of 
polymeric materials as well as for performing their non-destructive diagnostics [8, 9]. The 
authors of this article studied the mechanical characteristics of the paper and paperboard by 
using the method of projection moiré under symmetric [10] and un-symmetric [11] loading of 
the tape of paper and paperboard. 

The model for the analysis of physically nonlinear elastic structure was developed by the 
authors [12]. Nonlinear elasticity was taken into account using the hyperbolic model and 
considered as an approximation to the plastic behavior, which has been analyzed by the theory 
of deformational plasticity valid for monotonic loading. It was shown that the bending behavior 
is substantially influenced by the physical nonlinearity. 

The obtained research results are applied in the process of design of packaging elements. 
 
Model for the analysis of skeletal curves of nonlinear bending of elements of packages 
 

Further x, y and z denote the axes of the system of coordinates. The bending element of 
package has two nodal degrees of freedom: the displacement w in the direction of the z axis and 
the rotation Θy about the y axis. The displacement u in the direction of the x axis is expressed as 
u=zΘy . 

Longitudinal strain is expressed as: 

[ ]{ } ,x z Bε δ=                (1) 

where: 

[ ] 10 ... ,
dN

B
dx

 
=  
 

                (2) 

where Ni are the shape functions of the finite element and { δ} is the vector of generalized 
displacements. 

The following notation is introduced: 

[ ]{ }.Bε δ=                (3) 

Physical nonlinearity is assumed in the expression of the longitudinal stress: 
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              (4) 

where E is the modulus of elasticity, ν is the Poisson’s ratio and b is the Duffing parameter. 
From the previous equations it is obtained: 
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Thus the following quantity for the eigenmode i is calculated: 
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where iε  denotes ε  calculated for the eigenmode i, h is the thickness of the element of 

package and the following integral has been taken into account: 
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So the modal equation for free vibrations according to a single eigenmode takes the form: 
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where zi is the coefficient of the eigenmode i, t is the time variable and λi is the eigenvalue i. 
For forced vibrations the modal equation has the form: 

( ) { } { }
2

2
2

,Ti
i i i i i

d z
a z z F

dt
λ δ+ + =             (9) 

where {δi} is the i-th eigenmode and {F} is the loading vector. 
Further it is assumed that: 

{ } { }sin ,F F tω=
ɶ            (10) 

where { }Fɶ  is a constant vector and ω is the frequency of excitation. Then: 
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where: 

{ } { }.T
i iA Fδ= ɶ             (12) 

When damping is taken into account the modal equation takes the form: 

( ) ( )
2

2
2

sin ,i i
i i i i i i

d z dz
a z z A t

dtdt
α βλ λ ω+ + + + =         (13) 

where α is the coefficient of external damping and β is the coefficient of internal damping. 
  
Results of calculation of skeletal curves of package elements 
 

At both ends of the analyzed element of package both generalized displacements are 
assumed equal to zero. The eigenmodes for a linear problem are calculated. Then the coefficient 
of the nonlinear member of the modal equation for free vibrations is determined. This produces 
the Duffing equation the skeletal curve for which is calculated. 

Skeletal curves for the first eight eigenmodes are presented in Fig. 1 (on the x axis the 

frequency divided by the first eigenfrequency 1λ  is shown).  

 

 
Fig. 1. Skeletal curves for the first eight eigenmodes 
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Phase trajectory of motion for the first eigenmode from the initial condition given by the 
prescribed value of ( )1 0z  and with zero initial velocity for the system without excitation when 

12 0.01,α λ=  0β =  is presented in Fig. 2. Amplitude frequency characteristic of this motion 

is presented in Fig. 3 (on the x axis the frequency divided by the first eigenfrequency 1λ  is 

shown).  
 

  
Fig. 2. Phase trajectory of the first eigenmode Fig. 3. Amplitude frequency characteristic 

 

Phase trajectory of steady state motion of the first eigenmode when 11.04 ,ω λ=  

12 0.02,α λ=  0β =  is presented in Fig. 4. Amplitude frequency characteristic of this motion 

is presented in Fig. 5 (on the x axis the frequency divided by the frequency of excitation is 
shown). 
 

 
 

Fig. 4. Phase trajectory of the first eigenmode Fig. 5. Amplitude frequency characteristic 
 

Amplitudes for slowly increasing frequency and for slowly decreasing frequency are 
illustrated in Fig. 6. The hysteresis loop for the first two eigenmodes is obtained and is 
evidently observed in the figure. 
 
Model for the analysis of vibrations about a statically deflected element of package 
 

The mass matrix has the form: 

[ ] [ ] [ ]3

0

,
0

12

T
h
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ρ

 
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∫              (14) 

where ρ is the density of the material of the element of package and: 
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Fig. 6. Amplitudes for increasing frequency and for decreasing frequency 

 
From the equations presented earlier it is obtained: 
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The stiffness matrix has the form: 
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where: 
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            (18) 

 
Results of analysis of vibrations about a statically deflected element of package 
 

At both ends of the analyzed element of package both generalized displacements are 
assumed equal to zero, except for the deflection at the right end which is assumed equal to one. 
The following values of parameters are assumed: E = 8 N/m2, ν = 0.3, h = 0.1 m, ρ = 0.8 kg/m3, 
b = 108. 

Graphical representation of the eigenmodes is given in Fig. 7. For a linear structure the 
eigenmodes are grey, while for a nonlinear one they are black. 
 

     

a) b) c) d) e) 

    

f) g) h) i) j) 
Fig. 7. The eigenmodes (for a linear structure the eigenmodes are grey, for a nonlinear one they are black): 
a) the first eigenmode, b) the second eigenmode, … , j) the tenth eigenmode  



 
652. EFFECT OF PHYSICAL NONLINEARITY ON BENDING VIBRATIONS OF ELEMENTS OF PACKAGES. 

ARTŪRAS DABKEVIČIUS, EDMUNDAS KIBIRKŠTIS, LAURA GEGECKIENĖ, VAIDAS BIVAINIS , LIUTAURAS RAGULSKIS 
 
 

 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2011. VOLUME 13, ISSUE 3. ISSN 1392-8716 435 

 
Graphical representation of the eigenvalues is given in Fig. 8. For a linear structure the 

eigenvalues are connected by a grey line, while for a nonlinear one they are connected by a 
black line.  

  
a) b) 

Fig. 8. The eigenvalues (for a linear structure the eigenvalues are connected by a grey line, for a nonlinear 
one they are connected by a black line): a) the first four eigenvalues, b) the first ten eigenvalues 
 

The presented results demonstrate that the physical nonlinearity changes the eigenvalues 
more substantially than the eigenmodes. 
 
Non-destructive identification of dynamical characteristics in elements of packages 
 

In order to determine the dynamical characteristics of the elements of packages a special 
setup for experimental investigation was used [4-6, 9]. In the experiment the method of time- 
averaged projection moiré was implemented by projecting thin parallel lines of high contrast 
with the light flux incident to the surface of a vibrating polymeric film. 

For the experimental investigations the polymeric HDPE film was chosen. Technical 
characteristics of this film are presented in Table 1. 

 
Table 1. Technical characteristics of HDPE film 

Surface density, g/m2 61 
Thickness, µm 60 

Wetting angle Θ, ° 95 
Surface morphology Ra, µm 0.18 

Gloss (45°), % 4.3 
 
The sample of polymeric HDPE film with nonlinear structure obtained during the 

production of the polymeric film was used in the investigations. The experiments were 
performed in the longitudinal direction of production of the polymeric film. The ends of the 
investigated polymeric film were fastened between pressing tapes. One of the pressing tapes 
was fastened to the exciter of vibrations, while the other pressing tape was loaded 
symmetrically by the force of 25.5 N. Exciter of vibrations was generating longitudinal 
vibrations of sinusoidal shape of chosen frequency. Those vibrations excited standing waves in 
the analyzed material. Then by the method of time-averaged projection moiré the grid of thin 
parallel lines of high contrast was projected at a definite angle to the surface of the investigated 
material, and the first eigenmodes were obtained. The eigenmodes were photographed by using 
a digital camera and then they were processed in the personal computer. 

The obtained results of the experimental investigations under symmetric tension of the 
polymeric film are presented in Fig. 9. As can be observed from Fig. 9, excitation of the 
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polymeric HDPE film with periodic longitudinal vibrations of sinusoidal shape allows to 
produce the images of eigenmodes by means projection moiré that are sharp and clear with 
definite contours.  
 

    
a) b) c) d) 

Fig. 9. The eigenmodes of the polymeric film HDPE: a) first, frequency of vibrations 76 Hz, 
amplitude 2×10-5 m; b) second, frequency of vibrations 86 Hz, amplitude 3.6×10-5 m; c) third, 
frequency of vibrations 105 Hz, amplitude 3.2×10-5 m; d) fourth, frequency of vibrations 109 Hz, 
amplitude 2.5×10-5 m 

 
One is to have in mind the frequency range of vibrations and their amplitude range. When 

analyzing the changes of frequency and amplitude ranges in the polymeric film HDPE with the 
change of the number of the eigenmode one can note that for higher numbers of eigenmodes the 
frequency range of vibrations increases and the amplitude range becomes smaller (compare Fig. 
9 and Table 2: the frequency range of vibrations increases from 71÷78 Hz up to 83÷94 Hz, and 
the amplitude range decreases from (1.4÷5.8)×10-5 m to (2.2÷4.4)×10-5 m). 

 
Table 2. Generalized images of eigenmodes of HDPE polymeric film 

Eigenmode number Geometric shape of the 
eigenmode, obtained 

during the experiments 

Frequency range (Hz) Amplitude range (m) 

I 

 

71 – 78 Hz 1.4 – 5.8 x 10-5 m 

II 

 

83 – 94 Hz 2.2 – 4.4 x 10-5 m 

III 

 

96 – 105 Hz 2.2 – 4.9 x 10-5 m 

IV 

 

107 – 116 Hz 1.8 – 3.1 x 10-5 m 
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Table 2 presents a summary of the study of the polymeric HDPE film by using projection 
moiré technique when the polymeric film was loaded symmetrically. 

By comparing the moiré clouds presented in Fig. 9 and Fig. 7 one can note that the images 
of the eigenmodes obtained by using the method of projection moiré have exactly the same 
shape as the eigenmodes obtained by numerical investigations. The shapes of the first 
eigenmodes obtained by using the method of projection moiré consist of one, two, three or four 
moiré clouds (Fig. 9 a-d), and one can also count one – four peaks in the first eigenmodes 
obtained by using the numerical investigations (Fig. 7 a-d). 

The fact that physical nonlinearity has small influence onto the shape of the eigenmode and 
more substantial influence onto the change of the eigenfrequency is confirmed both by the 
experimental and numerical investigations. 
 
Conclusions 
 

The model for the analysis of skeletal curves of bending vibrations of the elements of 
packages is presented. The one dimensional model with physical nonlinearity in the form of 
cubic nonlinearity of Duffing type is used. The eigenmodes are calculated. Then the coefficient 
of the nonlinear member of the modal equation for free vibrations is determined. This produces 
the Duffing equation the skeletal curve for which is calculated. It is demonstrated that the 
bending behavior is substantially influenced by the physical nonlinearity. Phase trajectory of 
steady state motion of the eigenmode is obtained and its amplitude frequency characteristic is 
determined. 

Bending vibrations of statically loaded physically nonlinear element of package are 
investigated. First the static problem is solved and then the eigenproblem of small vibrations 
about the statically deflected structure is analyzed by taking into account cubic nonlinearity of 
Duffing type. From the presented results it is observed that physical nonlinearity changes the 
eigenvalues more substantially than the eigenmodes. Thus in order to identify the effect of 
physical nonlinearity it is recommended to register and compare the eigenfrequencies. There 
may be problems to identify the nonlinearity from the eigenmodes because very precise 
measurements of the shapes of the eigenmodes are required. 

In the process of nondestructive identification of nonlinearities the eigenmode of a statically 
loaded structure is excited. Then the shape of the eigenmode is registered by using the method 
of time-averaged projection moiré. From the obtained experimental image it is usually possible 
to determine which eigenmode is excited. The analysis is also performed for the same 
eigenmode of the unloaded structure. In both cases the eigenfrequencies are measured as well. 
Then the change of the eigenfrequency is calculated from the measured eigenfrequencies for the 
same eigenmode of the unloaded and the statically loaded structures. The effect of nonlinearity 
is determined on the basis of the obtained change of eigenfrequency. 

The obtained results are used in the process of design of the elements of packages. 
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