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Abstract. This study considers FRF (frequency response function) based substructuring and 
decoupling of substructures for the dynamic analysis of complicated huge structures utilizing 
compatibility conditions between adjacent substructures. This work includes: 1) the derivation 
of updated FRF matrix for dynamic system subjected to frequency or time dependent 
constraints in the frequency-domain, 2) the synthesis and decoupling of subsystems based on 
the dual domain approach using compatibility conditions between adjacent subsystems, 3) the 
evaluation of the validity of the proposed methods through numerical applications. It is 
expected that the proposed methods will be utilized as the basic formulation in investigating the 
dynamic characteristics of partitioned or synthesized system. 
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1. Introduction 
 

There have been a lot of efforts in the dynamic analysis of complicated huge structures. 
Substructuring partitions a complicated structure into several substructures and assembles them 
together by proper process in the satisfaction of compatibility conditions. Conversely, 
decoupling detaches known substructures from an entire structure and predicts the dynamic 
characteristics of its unknown residual structure. Such substructuring and decoupling 
procedures are synthesized and disassembled utilizing compatibility conditions between 
substructures, respectively. The adjacent substructures are interdependently affected by the 
coupling forces at contact surface. The coupling forces indicate the constraint forces required 
for satisfying the compatibility conditions. The substructuring and decoupling of substructure 
are carried out by the addition and removal of the coupling forces at the interfaces, respectively.   

The substructuring and decoupling can be performed in the time-domain and frequency-
domain bases.  In the time-domain methods each component is described by mass, damping 
and stiffness matrices, while in the frequency-domain methods − by frequency-dependent data.  
The coupling forces can be expressed as the functions of time and frequency in the time-domain 
and frequency-domain, respectively.  

The dynamic equation in the frequency-domain of a structure involves FRF matrix as a 
coefficient matrix to estimate the dynamic characteristics. FRF-based substructuring (FBS) and 
decoupling (FBD) methods predict the dynamic characteristics of synthesized and decoupled 
substructures on the basis of FRFs of independent substructures. The analytical process requires 
the FRF matrix of substructures and the compatibility conditions to combine and partition them. 
At this time, the total degrees of freedom can retain the interface degrees of freedom of each 
substructure or not. 

Substructure coupling methods are the techniques to reduce the model-order of huge structural 
systems by synthesizing substructures. Hurty [1] introduced the component mode synthesis 
(CMS) method in 1960. The method is to combine subdivided substructures into an 
approximate mathematical model of the full structural system using the displacement 
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constraints and the interface forces at the interfaces. A number of variants of the methods were 
proposed and employed [2-7]. De Lima et. al [8] suggested a modeling methodology of 
structural systems supported by translational and rotational viscoelastic mounts or joints based 
on a FRF coupling technique. Based on the dual and primal assembly of substructures, Klerk et. 
al [9] introduced the Lagrange Multiplier Frequency based Substructuring method. The 
Lagrange Multiplier defines the coupling forces between the adjacent substructures.  

The decoupling of structural system is performed to obtain the information of residual system 
from the known dynamic behavior of the entire system and removed subsystems. As a simple 
application, the decoupling is performed to get rid of the effect of the accelerometer mass on 
FRF measurements. The decoupling problem can be seen as the reverse of the substructuring 
problem in the meaning of removing the coupling forces. Starting from the known dynamic 
behavior of the entire system and from information about the remaining part of the structural 
system, D’Ambrogio and Fregolent [10] identified the dynamic behavior of a structural 
subsystem. They provided the dual domain decomposition method by the deletion of a 
prescribed substructure so that it is the negative role.   

Allen et. al [11] presented a method that removes the effects of a flexible fixture from an 
experimentally obtained modal model on the modal basis of the substructure to accurately 
estimate the modal parameters of the built-up system. Cuppens et. al [12] provided two methods 
of dynamic FRF compensation and compensation by residual modes. Based on reconstruction 
of the interface forces acting between the unknown subsystem and its neighbor, Sjövall and 
Abrahamsson [13] presented a theoretical method regarding frequency domain load 
identification. Voormeeren et. al [14] presented a method to quantify the uncertainty of the 
coupled system’s FRFs based on the uncertainties of the subsystem FRFs. Ryberg and Mir [15] 
developed an experimental model with forward prediction capabilities for passenger vehicle 
axle whine performance based on FBS techniques to predict the dynamic behavior of complex 
structures.  D’Ambrogio and Sestieri [16] analyzed the possibility of assembling together 
different substructures' models using expansion techniques to provide the information on the 
rotational degrees of freedom as well as appropriate modeling of joints and combining modal 
models and FE models. Sjövall et. al [17]  presented a formulation in terms of the state-space 
parameterization to represent transfer function constraints. Rodriguez et al. [18] presented 
damage submatrices method (DSM) that localizes and assesses degradation of stiffness at any 
structural element in a building. And they presented an approach to expand the condensed 
stiffness matrix of the damaged structure to global coordinates and to identify damage. Ozgen 
and Kim [19] developed the analytical methods to expand the experimental damping matrix to 
the size of the analytical model.   

This study presents the mathematical form of synthesized and decoupled FRF matrix of 
substructures utilizing compatibility conditions from the constrained static and dynamic 
equations. Frequency dependent and time dependent constraint conditions are handled using 
static and dynamic approaches of constrained systems, respectively. The methods belong to the 
dual domain method that the interface degrees of freedom of each substructure are retained. It is 
demonstrated that the proposed methods can simply and explicitly update the FRF matrix and 
utilize in synthesizing and decoupling of subsystems.  Numerical applications evaluate the 
validity of the proposed methods. 

    
2. FRF based dynamic equation 
 

The response of a dynamic system can be restricted by some kinds of constraints such as 
prescribed response data or other geometric constraint conditions. The existence of such 



 
647. FRF BASED SUBSTRUCTURING AND DECOUPLING OF SUBSTRUCTURES.  

EUN-TAIK LEE, HEE-CHANG EUN 
 

 

 
 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2011. VOLUME 13, ISSUE 3. ISSN 1392-8716 

 

388  

constraints leads to the change in its initial response without them. The constrained dynamic 
response in the frequency-domain is obtained by transforming the initial dynamic equation and 
the constraints in the time-domain. The following section introduces the constrained dynamic 
equation in the frequency-domain depending on frequency dependent and time dependent 
constraint conditions. 

 
2.1 Determination of FRF matrix for constrained dynamic system 
 

This section derives the updated FRF matrix of the constrained dynamic system subjected to 
frequency dependent and time dependent constraints. 

(1) Update of FRF matrix for constrained dynamic system subjected to frequency dependent 
constraints. 

The dynamic response of a discrete system of n degrees of freedom with viscous damping is 
described by ordinary differential equation: 

fuKuCuM =++ ˆˆˆ ɺɺɺ         (1) 
where M , K  and C are, respectively, the mass, stiffness and viscous damping matrices; û  and f 
denote the response and force vectors corresponding to full degrees of freedom. And the viscous 
damping assumes the Rayleigh damping. 

Transforming Eqn. (1) in the time-domain into the one in the frequency-domain by using 
tie ωUu ˆˆ =  and tie ωFf = , it can be rewritten as: 

[ ] ( ) ( )ωωωω FUKCM =++−
ˆ2 i       (2) 

where ( )ωÛ  and ( )ωF  are the Fourier transform of the response ( )tû  and force ( )tf  for the 
finite element model. From Eqn. (2), the dynamic stiffness matrix ( )ωD̂  is defined and its 
inverse the FRF matrix Ĥ : 

( ) KCMD ++−≡ ωωω i2ˆ        (3a) 

( ) ( ) [ ] 121ˆˆ −

−

++−== KCMDH ωωωω i       (3b) 

where Ĥ  and D̂  are analytical FRF and dynamic stiffness matrices, respectively. The dynamic 
stiffness matrix is a positive definite symmetric matrix because it is expressed by the consistent 
mass matrix, stiffness matrix and damping matrix. 

It is not easy to measure FRF matrix corresponding to full degrees of freedom of the system.  
Assuming that the system is defected and its displacements at several positions are measured in 
the frequency-domain or time-domain, the FRF matrix in Eqn. (3b) should be corrected. The 
measured displacements at m positions can be written by:  

( ) ( ) ( )ωωω FHAU m=            (4) 

where A is an nm×  Boolean matrix to define the measurement locations and mH  denotes an 
nm×  FRF matrix to be measured, and ( )ωU  indicates the actual displacement vector of the 

damaged system. And m represents the number of impulse force input to act on the system. 
The updated dynamic stiffness matrix or FRF matrix must explain the response gap between 

the initial and actual systems. The response should be described by the constrained static 
equation because the measured data of Eqn. (4) are not changed with time t. Based on the 
constrained static approach [20], the displacement gap ( )ωδU  can be obtained as: 

( ) ( )FHU δωδ =         (5) 

where:  

( ) ( )HAHHAHH ˆˆˆ 2/12/1
−=

+

mδ        (6) 
where the superscript ‘+’ is the Moore-Penrose inverse. Thus, the updated expression of FRF 
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matrix can be written as: 

HHH δ+=
ˆ              (7) 

The FRF matrix of Eqn. (7) explains the dynamic characteristics of the full degrees of 
freedom for the defected system. Premultiplying both sides of Eqn. (6) by 1ˆ −H , it leads to the 
constraint forces in the frequency-domain expressed by: 

( ) ( ) ( )HAHHAHF ˆˆˆ 2/12/1
−=

+
−

m

c
ω                    (8) 

The constraint forces represent the additional forces required to obtain the measured or 
prescribed displacements. An application to utilize the derived equation is illustrated in the 
following example.  

Example 1) 
This example considers the update of the FRF matrix of a dynamic system of four degrees of 

freedom based on measured FRF data of modified dynamic system (Fig. 1). Initial parameter 
matrices of the system were established as: 
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Fig. 1. A dynamic system of four degrees of freedom  

 
Assume that the stiffness 2k  was replaced by 22k  and the FRFs at the second and fourth 

mass points were experimentally measured to update the parameter matrices. The FRFs 
corresponding to the two positions were measured as: 









=

4,43,42,41,4

4,23,22,21,2

HHHH

HHHH
mH  

where ijH  denotes the displacement response measured at location i due to the unit force input 

at location j.  

The dynamic equation of corrected system needs to modify the initial dynamic equation for 

satisfying the measured FRFs at the actual state. This numerical application begins with the 

dynamic system of noise-free FRF data in the range of Hz2001.0 − . Figure 2 compares the 

magnitude of the diagonal components, ( )4,3,2,1, =iH ii  in the actual and calculated FRF 

matrix of the model where the actual and calculated plots indicate the ones calculated from the 

complete and incomplete measurements, respectively. It is observed that the shapes of both 
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curves are very similar and the resonance frequencies are rarely changed except 1,1H . The 

calculated FRF curves corresponding to measured positions, 2,2H  and 4,4H  exactly match 

with the actual ones and satisfy the constraint conditions of measured FRFs. And the plots 

exhibit that the little difference in FRF curves of 1,1H  and 3,3H  is caused by the incomplete 

measurements and the discrepancy of FRF curve at mass position 1, 1,1H  comes from the 

direct influence on the change in the stiffness 2k . Thus, it is expected that the increase in the 

number of measurements will result in more exact results and the derived equation will properly 

describe the dynamic response of the corrected system.  
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               (c)            (d) 

Fig. 2. Spatial plot of the FRF matrix: (a) 1,1H , (b) 2,2H , (c) 3,3H , (d) 4,4H   

The solid line indicates the calculated FRF curve and the dashed line indicates the actual FRF 
curve. 

(2) Update of FRF matrix for constrained dynamic system subjected to time dependent 
constraints. 

From the dynamic equation of motion for unconstrained system of Eqn. (1), its acceleration 

vector ( )t,ˆ,ˆ uua ɺ  can be written as: 

( )( )tfuKuCMa −+−=
− ˆˆ1 ɺ                     (9) 

Let us assume that the system is constrained by l )( nl <  relations in the time-domain 
expressed as: 
( ) ( )tt ,,ˆ,,ˆ uubuuuA ɺɺɺɺ =             (10) 



 
647. FRF BASED SUBSTRUCTURING AND DECOUPLING OF SUBSTRUCTURES.  

EUN-TAIK LEE, HEE-CHANG EUN 
 

 

 
 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2011. VOLUME 13, ISSUE 3. ISSN 1392-8716 

 

391  

where Â  is an nl ×  matrix, u , uɺ  and uɺɺ  denote the actual displacement, velocity and 
acceleration vectors, respectively. And l denotes the number of acceleration measurement 
locations. It is known that the dynamic response of constrained system must satisfy the 
constraint equations at all times. Utilizing the Moore-Penrose inverse based on the Gauss 
principle with Eqns. (9) and (10), it can be derived by: 

( ) ( )aAbMAMau ˆˆˆ 2/12/1
−+=

+
−−

ɺɺ            (11) 

This result represents the dynamic equation of motion for constrained dynamic systems 
provided by Udwadia and Kalaba [21].   

Substituting Eqn. (9) of the acceleration vector at unconstrained state into Eqn. (11) and 
arranging the result, it can be written in the time-domain as: 

βαFuKuCuM *
+=++

∗
ɺɺɺ                     (12) 

where αCC =* , αKK =
* , ( ) 12/12/1 ˆˆ −

+
−

−= MAMAMIα  and ( ) bMAMβ ˆˆ 2/12/1 +
−

= .   

Transforming the constraint equations of Eqn. (9) into the frequency-domain they can be 
written as: 

( ) ( ) ( )ωωω bUA =                             (13) 

where ( )ωU  indicates actual displacement vector in the frequency-domain. And the dynamic 
equation for constrained systems of Eqn. (12) should be transformed by using tie ωUu =  and 

tie ωFf =  with Eqn. (13). The ultimate dynamic equation in the frequency-domain can be 
written as: 

( ) βFHU +=
*

ω         (14) 

where *H  denotes the nn×  updated FRF matrix of the damaged system,  

( ) αKCMH
1**2* −

++−= ωω i , ( ) bAMMβ
+

−

=
2/12/1  

αCC =* , αKK =
* , ( ) 12/12/1 −

+
−

−= AMAMMIα     (15) 

Given by such constraints as compatibility conditions they lead to:  

( ) FHU *
=ω         (16) 

because the right-hand side of Eqn. (13) should be zero. It is observed that the constrained FRF 
matrix can be directly and explicitly expressed. 
 
2.2 FBS 
 

The analysis of a huge structure to be composed of r substructures requires sometimes tedious 
and expensive time. The analysis can be performed by partitioning the entire structure into 
several substructures and synthesizing them using compatibility conditions between adjacent 
substructures. 

Let us consider the entire structure of r substructures as illustrated in Fig. 3. The dynamic 

response vector is divided into the internal and boundary regions that are expressed by the 

superscripts i and b in response vector. The subscripts represent the adjacent substructures to be 

interconnected. For example, ( )tb

jj 1,
ˆ

+
u  indicates the response vector at the boundary region 

between two substructures j and j+1, and ( )ti

jû  the response vector in the internal region of the 

substructure j.  
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      Fig. 3. Substructuring of a huge structure 

The dynamic equations of r substructures in the time-domain can be written in the form of 
Eqn. (1). The compatibility condition between adjacent substructures for structural synthesis 
must be satisfied while synthesizing the subsystems. The actual compatibility conditions 
between two subsystems j  and 1+j  are expressed by: 

( ) ( )tt b
jj

b
jj ,11, ++
= uu            (17) 

Utilizing the compatibility conditions such as Eqn. (17) into all r substructures and 
transforming them in the frequency-domain, they can be written by: 

( ) 0=ωAU                     (18) 

where [ ]TT

r

TT UUUU ⋯21=  and the matrix A denotes a Boolean matrix to represent the 

interfacial nodes of adjacent substructures. Utilizing the unconstrained equation of motion and 

Eqn. (18) into Eqn. (16) and arranging the result, we obtain the FRF matrix of the synthesized 

entire system. The following example handles the synthesis of the substructures. 

Example 2) 
This application considers the synthesis of three subsystems shown in Fig. 4. The subsystems 

1, 2 and 3 have 4, 6 and 5 degrees of freedom, respectively, and the entire system has 9 DOFs 
along with 6 compatibility conditions. The subsystems 1 and 2, and 2 and 3 are interconnected 
at three nodal points, respectively. The FRF matrix of each subsystem can be established by the 
mechanical properties of:  

N/m,40001 =k  N/m,120002 =k  N/m,80003 =k  N/m,70004 =k  N/m,90005 =k  

N/m,50006 =k  N/m,60007 =k  N/m,70008 =k  N/m,90009 =k  N/m,1100010 =k  

N/m,300011 =k  N/m,600012 =k  N/m,500013 =k  N/m,800014 =k  

kg,151 =m  kg,82 =m  kg,103 =m  kg,94 =m  kg,125 =m  kg,136 =m  kg,97 =m  kg,138 =m  

kg,179 =m  ,0001.0 KC =  
where C and K  are damping and stiffness matrices, respectively. The damping matrix is 
proportional to the stiffness matrix.   

The subsystems were divided at mass locations indicated in the figure and the constants iα  

and ( )3,2,1=iiβ  denote the fraction of the divided mass. The mass fractions were selected as 

9.0321 === ααα  and .9.0321 === βββ  The compatibility conditions at the interfaces 

transformed into the frequency-domain are written by: 

( ) ( ),'
22 ωω UU =  ( ) ( ),'

33 ωω UU =  ( ) ( ),'
44 ωω UU =  ( ) ( ),'

55 ωω UU =  ( ) ( ),'
66 ωω UU =  

( ) ( ).'
77 ωω UU =  

Inserting the measured FRF matrices of three subsystems and compatibility conditions into Eqn. 
(16), the FRFs in the frequency range of Hz4001.0 −  were calculated.  
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(a) 

 
(b) 

Fig. 4. A dynamic system: (a) partitioned subsystems, (b) an entire system 

22 01ˆ mm = , 33 1.0ˆ mm = , 44 1.0ˆ mm = , 55 1.0ˆ mm = , 66 1.0ˆ mm = , 77 1.0ˆ mm =  

The calculated FRF matrix takes a matrix form corresponding to the dual domain. Figure 5 
compares the FRF curves of the diagonal components in the FRF matrices of the synthesized 
system and initial entire system. It is shown that those plots are the same and the derived 
equation can exactly describe the dynamic responses of the synthesized system in the 
satisfaction of the compatibility conditions. It indicates that the derived method can exactly and 
explicitly establish the FRF matrix in synthesizing the substructures based on dual assembly. 

2. 3. FBD  

The decoupling process follows the converse process of the substructuring. As an application 
of the decoupling, we can consider the identification problem of a subsystem which cannot be 
removed or accessed easily. That is, if the dynamic equation of motion for an entire structure E 
and a substructure B are given, the residual subsystem (E-B) can be extracted from the entire 
system E in the frequency-domain by removing the dynamic effect of the substructure B in 
Fig.l6.  
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(i) 

Fig. 5. Spatial plot of the FRF matrix: (a) 1,1H , (b) 2,2H , (c) 3,3H , (d) 4,4H , (e) 5,5H , (f) 6,6H , (g) 

7,7H , (h) 8,8H , (i) 9,9H . The solid line indicates the actual FRF curve and the dotted line indicates the 

calculated FRF curve 



 
647. FRF BASED SUBSTRUCTURING AND DECOUPLING OF SUBSTRUCTURES.  

EUN-TAIK LEE, HEE-CHANG EUN 
 

 

 
 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2011. VOLUME 13, ISSUE 3. ISSN 1392-8716 

 

395  

 
Fig. 6. Decoupling from an entire system 

Let us consider an entire system E to be composed of s substructures in Fig. 7. Assuming that 
the dynamic characteristics of the entire structure and the j-th substructure to be removed are 
known, this work estimates the dynamic characteristics of the residual substructure. The 
compatibility conditions between the residual system and the deleted subsystem j can be written 
by: 

( )
( ) 0u

u
A =








t

t

j

*                      (19) 

where *A  denotes a Boolean matrix to define the interfacial positions between the entire 
system and the subsystem j. 

Expressing the dynamic equations of the entire system and Eqn. (19) into Eqn. (11) and 
changing the (+) sign of the term to represent displacement variation to the sign (-), they can be 
written by:  

FuKuCuM * ξ=++
∗
ɺɺɺ                     (20) 

where CC ξ=* , KK ξ=* and ( ) 1*2/1*2/1 −
+

−

+= MAMAMIξ .     

Equations (19) and (20) should be transformed by using tie ωUu =  and tie ωFf = . The 

ultimate dynamic equation in the frequency-domain can be written as: 

( ) FHU *
=ω                      (21) 

( ) 0AU =ω                      (22) 

where *H  denotes the nn×  updated FRF matrix of the residual system based on dual domain 
decomposition written by: 

( ) ξωω
1**2* −

++−= KCMH i                   (23) 

It is observed that the constrained FRF matrix can be directly and explicitly expressed. The 
FRF matrix of Eqn. (23) describes the dynamic characteristics of the residual system to delete 
the j-th subsystem. It is demonstrated that the FRF matrix for the residual system also takes an 
explicit form. 

 

 
Fig. 7. Decoupling of substructures  
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Example 3) 
This example considers the establishment of the FRF curve of the residual system to remove 

a part of the subsystem 2 from the entire system in Fig. 8. Providing all information on the 
entire system as well as the removed part of subsystem 2, we can estimate the FRF matrix of the 
residual system. Inserting the dynamic equations of the entire system and the part of subsystem 
2, and the compatibility conditions into Eqn. (22), the FRF curves corresponding to the residual 
system are predicted.  

 

Fig. 8. An entire system and removed part of the subsystem 2  

Figure 9 compares the FRF curves of the residual system after decoupling and the entire 
system. The plots exhibit the influence due to the removal of the subsystem. It is found that both 
FRF curves of the entire system and residual system exhibit different shapes in the low 
frequency range corresponding to resonance and anti-resonance, and are very similar after the 
frequency range. The derived equation can properly describe the residual responses by simply 
substituting the dynamic equations of the entire system as well as the removed subsystem and 
the compatibility conditions into the governing equation of Eqn. (22) 

 
3. Conclusions 
 

This study provided analytical formulations to update the full set of FRF matrix from the 
dynamic equation of initial system and frequency or time dependent constraints. It was 
demonstrated that the proposed methods can be utilized in synthesizing subsystems and 
decoupling subsystems from an entire system based on dual domain components. The validity 
of the proposed method was illustrated and analyzed through numerical applications.  
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(i) 

Fig. 9. Spatial plot of the FRF matrix: (a) 1,1H , (b) 2,2H , (c) 3,3H , (d) 4,4H , (e) 5,5H , (f) 6,6H , (g) 

7,7H , (h) 8,8H , (i) 9,9H . The solid line indicates the residual system calculated FRF curve and the 

dashed line indicates the actual FRF curve 
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