
 
524. OPTIMIZATION OF VIBRATOR MOTION WITH AIR FLOW EXCITATION.  

M. EIDUKS1,A, L. SHTALS1,B, J. VIBA1,C, E. KOVALS1,D , A. VILKAJS1,E 

 

 
 VIBROMECHANIKA. JOURNAL OF VIBROENGINEERING.   MARCH 2010. VOLUME 12, ISSUE 1. ISSN 1392-8716 

34 

524. Optimization of vibrator motion with air flow  
        excitation 
 

 
 
M. Eiduks1,a, L. Shtals1,b, J. Viba1,c, E. Kovals1,d , A. Vilkajs1,e 
1 Riga Technical University, Ezermalas 6 – 305, LV-1006, Riga 
E-mail: amaris.eiduks@rtu.lv;  blauris@tmb-elements.lv;  c janis.viba@rtu.lv;  
 d winpux@inbox.lv;  eatis.kgc@inbox.lv 
Phone: +371-67089473 
 

(Received  16 September  2009;  accepted 27 November 2009) 

 
 
 
 
 
 
Abstract. In the daily life and techniques people constantly interact with continuous media such 
like air or water. In this paper motion of a vibrator with constant air or water flow excitation is 
considered. Firstly, motion of the vibrator with constant air or water flow velocity excitation is 
investigated. The main idea is to determine optimal control law for variation of additional area of 
vibrating object within limits. The criterion of optimization is time required to move object from 
initial position to the final one. The maximum principle is used for solution of the high-speed 
problem. It is demonstrated that optimal control action is on bounds of area limits. Examples of 
synthesis of real mechatronic systems are given.  
 

Keywords: motion control, air, water excitation, optimal control, adaptive control, synthesis, 
adaptive systems, energy utilization. 
 
Introduction 
 

Motion of a vibrator with two degrees of freedom and constant air flow 0V  excitation is 

investigated (Fig. 1.). System consists of masses m1, m2 with springs c1, c12 and dampers b1, b12. 
The main idea is to find out optimal control law for variation of additional area A(t) of vibrating 
mass m2 within limits (1): 
 

,)( 21 AtAA ≤≤  (1) 
 

where 1A  - lower level of additional area of mass m2; 2A - upper level of additional area of mass 

m2, t - time. 
The criterion of optimization is time T required to move object from initial position to 

the end. First of all, in order to understand process of fluid excitation and optimal solution of 
control problem we consider system with one degree of freedom when mass m1 is very large 
(massive base):  m1 >>> m2. 

To simplify the equation it is easy (for system with one degree of freedom) to miss 
indexes of motion description. Then the differential equation is (2): 
 

2
0 )()( xVtuxbxcxm ɺɺɺɺ +⋅−−−= , (2) 
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where ktAtu ⋅= )()( , m = m2 – mass, 2xx ɺɺɺɺ = – acceleration, x = x2 – displacement of object, 

2xx ɺɺ = – velocity of object, c = c12 – stiffness of spring, b = b12 – damping coefficient, 0V  –

constant velocity of wind, A(t) – area variation, )(tu  – control action (3), k – constant.  

It is required to determine the control action u = u(t) for displacement of a system (2) 
from initial position x(t0)  to the end position x(t1) in minimal time (criterion K)  K=T,  if area 
A(t) has limit (1).  

 
 

                         
Fig. 1. Scheme of model with area A(t) control 

 
 

Solution of optimal control problem for system with one degree of freedom 

High-speed problem must be solved for system excitation at any time [1 - 9]: 
 

∫ ⋅=
1

0

1
t

t

dtK . 

 

To assume ,;0 10 Ttt ==  we have TK = . 

System (2) transforms to: 
 

211 ; xxxx == ɺ   or 

 

,)()(; 2
0221 xVtuxbxcxmxx ɺɺɺɺ +⋅−−−==  

 
and Hamiltonian is (3) [1 – 3]: 
 

( ),)()(
1

( 2
20212210 xVtubxcx

m
xH +⋅−−−⋅++= ψψψ     (3) 

 
here XH ⋅= ψ , where (4) 
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Scalar multiplication of two last vector functions ψ  and X  in any time (Hamiltonian H [3]) 

must be maximal [2 – 9]. To have such maximum, control action u(t) must be within limits 

21 )(;)( utuutu == , depending only on the sign of function 2ψ  (5) (see, for example, [3 – 

6]): 
 

max))()((

,max
2

202 =+⋅−⋅

=

xVtuif

HH

ψ
      (5) 

 
Therefore if 12 ,0>ψ the 1)( utu = and if ,02 <ψ the 2)( utu = , where  kAu ⋅= 11  and 

kAu ⋅= 22 , see (1). Examples of very simple control action (with one and three switch points) 

are shown in Fig. 2, 3. 
 

 

 

       

 
Fig. 2. Optimal control with one switch point Fig. 3. Optimal control with three switch points 

when x2 = 0 
 

 

 
We will not consider in this paper how to find switches points (e.g., ,02 >ψ  or ,02 <ψ  

[3 – 9]. But the main conclusion of optimal control law is that value of area at any time must be 
on bounds A(t) = A1 or A(t) = A2 (5). In real systems it allows synthesizing of quasi-optimal 
control actions (see, for example, [10 - 13]). Additionally, here must be mentioned that optimal 
control in time domain u(t) (like programming control) in real nonlinear systems without 
feedback often are unstable. Therefore in this case the task of synthesis of new real control 
systems includes step of forming control like mixed function of phase coordinates and time      
u(t) = u(x1, x2, ,t) (see, for example, [10 – 13]). 
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Solution of optimal control problem for system with two degrees of freedom 
 

The equation of motion may be described as (6):  
 

,)()()()(
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zVtuzybzyczm

zybybzycycym

ɺɺɺɺɺ

ɺɺɺɺɺ

+⋅−−+−=

−−−−−−=
   (6) 

where −yyy ɺɺɺ,, displacement, velocity and acceleration of mass m1; −zzz ɺɺɺ,, displacement, 

velocity and acceleration of mass m2. To use new variables (phase coordinates)  

,, 121 yxxyx ɺɺ ===  zxxzx ɺɺ === 343 ,  the system (6) may be written as first order 

differential equation (7): 
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(7) 

 
In this system with two degrees of freedom the Hamiltonian is as follows [3 - 8]: 
 

( )

)).()()()((
1

(

)()(
1

(

4042123112
2

4

43421221311211
1

2210

xVtuxxbxxc
m

xxxbxbxxcxc
m

xH

+⋅−−+−+

++−−−−−−⋅++=

ψ

ψψψψ
  (8) 

 
Optimal control law is of the same structure than solution (5): 
 

.max))()((

,max
2

404 =+⋅−⋅

=

xVtuif

HH

ψ
      (9) 

 
The main conclusion of optimal control law (9) for system with two degrees of freedom is the 
same like for the system with one degree of freedom: value of area at any time must be on the 
bounds (1): A(t) = A1 or A(t) = A2. 
 
Real control action synthesis 
 

For realizing optimal control actions (in general case) system of one degree of freedom 
needs a feedback system with two adapters: one for displacement measurement and another - for 
velocity measurement. There is a simple case of control existing with only one adapter when 
motion changes directions, as shown in Fig. 3, [12]. It means that control action is similar to 
negative dry friction and switch points are along zero velocity line. In that case equation of 
motion for large velocity xV ɺ≥0  and dry friction is (10): 
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),()( xUxsignFxbxcxm ɺɺɺɺɺ +⋅−⋅−⋅−=⋅      (10) 

 

where ,
2
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xsign
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ɺ
ɺ

ɺ
ɺɺ  and    

m – mass; c, b, F, k, V0 – constants. Examples of modeling are provided in Fig. 4 – Fig. 7. 
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Fig. 4. Full control action (10)  )(xUPan ɺ=   in 

time tn domain (SI system) 

Fig. 5. Displacement xn in time tn domain (SI 
system) 
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An attempt to find more than one limit cycle was investigated in complicated system 

with cubic resistance force and dry friction (11). Answer is positive: for a system with non-
periodical excitation (e.g. constant velocity V0 of air or water flow) there can be more than one 
limit cycled (Fig. 8, 9). Both cycles are separated by different initial conditions. 
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  (11) 

For system with two degrees of freedom (6) the same control action U  was investigated (see (10, 
11)): 
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Results of modeling are given in Fig. 10 – 13.  
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It is demonstrated that adaptive systems are very stable because air excitation and 
damping forces depend on velocity in second degree.  

At the end of this study some experiments inside wind tunnel are considered. Variable 
speed motor driven unit downstream the working section permits continuous control of airspeed 
between 0 and 26 ms-1. Experiments confirm that airflow excitation is very efficient.  

 
 

 
 

Fig. 14. Wind tunnel 
 
 
Conclusion  
 

Air or water flow may be used for excitation of objects motion by means of vibration 
technique. Control of object area allows development of very efficient mechatronic systems. 
Algorithm synthesis of strongly nonlinear mechanical systems includes tasks of optimization to 
obtain principally new vibration systems. For realization of such systems adapters and controllers 
must be employed. For this reason very simple control actions have solutions with use of sign 
functions.  
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