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Abstract. Temperature variations can significantly change the dynamic characteristics of 
structures. In the presented paper we have studied the clamped isotropic rotor under thermal 
effects. We have studied aluminium and copper beam. Because the expansion is restrained by 
the clamping, the beam undergoes internal stresses, which induce changes in dynamic 
characteristics. We have also expanded and developed Marques and Inman model as well as 
Bahzad and Bastami model. We have taken into account the compound influence of thermal 
force, axial force in rotating shaft and gyroscopic effect. The behavior of rotating shaft is 
studied in the temperature range of 250-700 K. The influence of temperature-dependent 
material properties was considered primarily with respect to temperature variations. The 
presented research work demonstrates a very good agreement between experimental data and 
results from our vibrational model. On the basis of the proposed analytical model it is possible 
to determine the vibrational characteristics in very wide range of temperatures. The reported 
paper is the first one in scientific literature to consider collectively the combined influence of 
temperature, gyroscopic effects and rotor speeds on shaft and beam vibrations.   
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Introduction 
 

Mechanics and thermodynamics are two fundamental sciences needed for the computation 
of combined thermo-mechanical problems. At first sight, it seems these are two completely 
different scientific disciplines. Both of them have made progress of unimaginable dimensions 
using mathematics and experimental techniques. The impression is that thermodynamics helps 
compute physical properties required in mechanics of solids. Engineering devices very often 
operate under diverse thermal and mechanical conditions. In internal combustion engines, 
rocket systems, movement of the satellites, etc. the conditions are particularly temperature-
sensitive. At the same time the mentioned phenomena are also very complex systems regarding 
mechanics.  Thermodynamic effects are frequently ignored in research, which may yield totally 
incorrect results. Literature [1-2] shows that even the slightest temperature change leads to huge 
alteration of the clamped beam vibration properties.  

In this paper we have developed a dynamic thermo-vibrational model for the clamped-
clamped (Fig. 1), the supported-simply supported isotropic beam (Fig. 2), clamped-simply 
supported beam (Figure 3) and clamped-free beam (Figure 4) under the next assumptions [1]: 
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-the temperature is uniform over the beam 
-the beam is uniform, with constant cross-section and made of isotropic material 
-the elastic limit of the material is not exceeded 
-the material properties are constants over temperature range.  

Q
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Fig. 1. Isotropic clamped-clamped beam 
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Fig. 2. Supported- simply supported beam 
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Fig. 3. Fixed-simply supported beam 
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Fig. 4. Fixed-free beam 
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Let us assume that the support is homogenous, having the same temperature over its entire 
length. As a result of thermal expansion, an additional axial force FT occurs: 
 

EAFT αθ=          (1) 

 
In equation (1) α is the linear thermal extension coefficient, θ is the temperature difference 
between the actual and initial or reference temperature. The equation by means of which we can 
resolve the problem using the axial force is as follows according to Wear, Timoshenko and 
Young [4]: 
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where E means Young modulus, I area moment of inertia, A area, ρ density of material, t time 
and w the displacement. Using the method of separation of variables ( ) ( ) ( )txXt,xw Ω=  and 

introducing the new functions, Equation (2) can be written down in a slightly less complicated 
way: 
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where the partial derivatives have been replaced with total derivatives. 
 

( ) ( ) 02 =Ω+Ω tt ωɺɺ         (4) 

 

0)()(2)( 4 =−′′+′′′′ xXxXxX βγ        (5) 

 
In Equation (5), the new symbols represent the following functional relations: 
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Thus, a general solution to Equations (4) and (5) are ( 24 γ+β=λ ) [1-4]: 

 

( ) ( ) ( ) ( )xCxCxCxCxX γλγλγλγλ −+++−++= sinhsincoshcos)( 4321   
(7) 

 
( ) ( )tBtAt ωω cossin)( +=Ω        (8) 

 
In the equation (7) the value of λ (where is hidden the influence of angular frequency ω) and 
three of four constants of integration C1, C2, C3 and C4 are determined from the boundary 
conditions. The fourth constant is possible to find in the combination with the constants A and B 
in Equation (8). For a given beam at defined temperature the values by λ depend upon the 
boundary conditions [5-9]. Using boundary conditions, the following solutions can be 

analytically computed ( λγ 22 , LL =Λ=Γ ): 
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a) Clamped-clamped beam: 
 

( ) ( ){ } ( ) ( ) 0sinhsin1coshcos22 =Γ−ΛΓ+ΛΓ+−Γ−ΛΓ+ΛΓ−Λ    (9) 

 
b) Supported-simply supported beam 
 

( ) 0sin =Γ+Λ          (10) 

 
c) Clamped-simply supported beam: 
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d) Clamped-free beam: 
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With the known angular frequencies ωn of individual modes of vibration is possibly to calculate 
Xn and Ωn of individual modes of vibration. To determine the solution for the displacement we 
have to solve the equation [5-9]: 
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where the modal shapes can be shown to be orthogonal: 
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The model presented in our paper is fully analytical, but if compared with the measured results 
it points to a large deviation from reality [1, 2]. The biggest problem of this model is that in the 
mathematical model in question the clamped wall can fully withstand the beam for the beam to 
have a constant length all the time. The above assumption is not realistic. As a result, a new 
model was designed to reduce to at least to some extent the huge differences between the 
analytical results and the measured values. 
 
The dynamic model for beams under thermal stresses 
 
Fig. 3 and 4 illustrate a new rheological model for the clamped and the simply supported beam. 
To this end, a spring is added with the spring constant K. The model slightly differs from the 
model presented in paper [1], where the authors Marques and Inman integrated additional 
torsion springs into the rheological model. 
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Fig. 5. New model of clamped beam 
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Fig. 6. New model of simply supported beam 
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Fig. 7. New model for clamped-simply supported beam 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 8. New model for clamped-free beam 
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In this case, force FT can be computed in the following way [3]: 
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The reaction force computation can be as follows: 
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where the modulus of elasticity E and linear expansion coefficient α are temperature 

dependent functions. By means of the boundary conditions, Equations (5) and (6) also apply 
now.  

An aluminium beam with the dimensions indicated in Table 1 were used for the 
computation. 
 
 

Table 1. Fundamental constants for aluminium beam 
 

 Beam 
Length (m) 6.35·10-2 

Width (m) 2.04·10-2 

Thickness (m) 1.62·10-3 

Young modulus (N/m2) 6.9·1010 

Volume expansion coefficient (1/K) 24·10-6 K-1 

Spring constant (N/m) 1.553·105 

Density (kg/m3) 2780 

 
 
 

Vibration of cylindrical shafts under thermal effects 
 
       In the case of rotor vibration we have used the rheological model as it was presented for 
beams (Figure 9 and 10): 

 

Ω

 
 

Fig. 9.  Vibration of cylindrical shaft 
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Fig. 10.  New rheological model of cylindrical shaft 
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If we consider cylindrical shafts, the existence of axial force changes the equation of lateral 
vibration. The equation of lateral vibration of Euler-Bernoulli beam in the presence of axial 
force P together with temperature effects can be written as [10,11]: 
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Upper equation we can express also with the next expression: 
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In Equation (10), the new symbols represent the following functional relations: 
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If we use 3-D linear elasticity relations we obtain: 
 

2Ω= pIP υρ             (20) 

 
Supported-simply supported beam 

( ) 0sin =Γ+Λ             (21) 

 
        Where the Ip is polar moment of inertia, ν presents Poisson ratio and Ω is rotational speed 
of  rotating shaft. 
        Influence of gyroscopic effect in combination with temperature effect [10,11]: 
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Table 2. Fundamental constants of steel shaft 

 

 Shaft 

Length (m)  1 

Diameter (m)  0.01 

Young modulus (N/m
2
)  2.07·10

11
 

Volume expansion coefficient (1/K)  1.3·10
-5

 K
-1

 

Spring constant (N/m)  1.553·10
5
 

Density (kg/m
3
)  7800 

Poisson number  0.33333 
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Results and discussion 
 
       The presented mathematical model was used to calculate thermodynamic properties of state 
of pure aluminium. Figures 11-14 present the prediction of angular frequency ω in dependence 
of mode of vibration and temperature difference. The comparison of analytical results and 
experimental data is presented in the paper [1]. The provided results demonstrate relatively 
good agreement between analytical models and experimental data [3]. The detailed analysis 
indicates that small changes of temperature cause significant changes of natural frequencies for 
beams. 
       Table 1 contains the main data on the beam. An aluminium beam was chosen for analysis. 
The aluminium beam is very interesting, particularly due to relatively high expansion 
coefficients. Figure 11 presents the results for the angular frequency of vibration modes for the 
clamped-clamped beam. Figure 12 contains the results for the oscillation frequency of 
vibrational modes for the supported-simply supported aluminium beam. Figures 13 and 14 
provides results of oscillation frequency for clamped-free and clamped-simply supported beam. 
The detailed analysis reveals that also small changes of temperature induce significant changes 
of natural frequencies for beams. The proposed models provide the basis for future research of 
micro- beams. Figures 15-17 illustrate the influence of temperature, rotor speed and gyroscopic 
effect on angular frequencies up to the sixth mode. The analysis demonstrates that we have to 
take into account at high rotor speeds also thermal and gyroscopic effects in case we need very 
accurate dynamic calculations. The influence of temperature effects on vibrational 
characteristics depends on boundary conditions. The results are very sensitive to the structure of 
beam or rotor material. 
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Fig. 11. Aluminium clamped-clamped beam 
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Supported-simply suported aluminum beam
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Fig. 12. Supported-simply supported aluminium beam 

 
 

Aluminum clamped-free aluminum beam
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Fig. 13. Aluminium clamped-free beam 

 
 
 

 

Aluminum fixed-simply supported beam
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Fig. 14. Aluminium clamped-simply supported beam 
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Fig. 15. Supported-simply supported rotor (Ω=0) 

 
 
 

 
Fig. 16. Vibration of rotor in dependence of rotor speed (Ω =100 K) 

 
 

 
 

Fig. 17. Vibration of rotor in dependence of rotor speed and gyroscopic effect (Ω =100 K) 
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Conclusion 
 

The paper demonstrates for the first time in scientific literature the combination of 
temperature, gyroscopic and rotor speed effect on shaft and beam vibrations. In the presented 
paper we have concentrated on the analysis of the influence of temperature on angular 
frequencies in modes of vibration. The thermo physical properties of state, such as modulus of 
elasticity and linear expansion coefficient, are regarded as constants in this paper. The analysis 
indicates that a minor change in temperature results in a considerable alteration in vibrations.  
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