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Abstract. Temperature variations can significantly change dlgnamic characteristics of
structures. In the presented paper we have stubiedlamped isotropic rotor under thermal
effects. We have studied aluminium and copper bé&senause the expansion is restrained by
the clamping, the beam undergoes internal stressbgh induce changes in dynamic
characteristics. We have also expanded and dewkIdfaeques and Inman model as well as
Bahzad and Bastami model. We have taken into a¢dbencompound influence of thermal
force, axial force in rotating shaft and gyroscopitect. The behavior of rotating shaft is
studied in the temperature range of 250-700 K. Trifeience of temperature-dependent
material properties was considered primarily witspect to temperature variations. The
presented research work demonstrates a very gaegragnt between experimental data and
results from our vibrational model. On the basishef proposed analytical model it is possible
to determine the vibrational characteristics inyvetide range of temperatures. The reported
paper is the first one in scientific literaturedonsider collectively the combined influence of
temperature, gyroscopic effects and rotor speedhaft and beam vibrations.
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Introduction

Mechanics and thermodynamics are two fundamentahses needed for the computation
of combined thermo-mechanical problems. At firghsi it seems these are two completely
different scientific disciplines. Both of them haweade progress of unimaginable dimensions
using mathematics and experimental techniques.impeession is that thermodynamics helps
compute physical properties required in mechanfcsotids. Engineering devices very often
operate under diverse thermal and mechanical dondit In internal combustion engines,
rocket systems, movement of the satellites, ete.dbnditions are particularly temperature-
sensitive. At the same time the mentioned phenoraemalso very complex systems regarding
mechanics. Thermodynamic effects are frequentiprigd in research, which may yield totally
incorrect results. Literature [1-2] shows that ettem slightest temperature change leads to huge
alteration of the clamped beam vibration properties

In this paper we have developed a dynamic therrhoational model for the clamped-
clamped (Fig. 1), the supported-simply supportemtripic beam (Fig. 2), clamped-simply
supported beam (Figure 3) and clamped-free beagui&i4) under the next assumptions [1]:
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-the temperature is uniform over the beam

-the beam is uniform, with constant cross-sectiwhmade of isotropic material
-the elastic limit of the material is not exceeded

-the material properties are constants over teryreraange.
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L

Fig. 1. Isotropic clamped-clamped beam
Q
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L

Fig. 2. Supported- simply supported beam
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Fig. 4. Fixed-free beam
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Let us assume that the support is homogenous, dakim same temperature over its entire
length. As a result of thermal expansion, an aolditi axial force occurs:

Fr = a0EA @

In equation (1)« is the linear thermal extension coefficiefitjs the temperature difference
between the actual and initial or reference tentpegaThe equation by means of which we can
resolve the problem using the axial force is atofed according to Wear, Timoshenko and
Young [4]:

o w(x,t o°w(x,t o°w(x,t
) Sy .

whereE means Young modulus,area moment of inertid area,p density of materialt time
and w the displacement. Using the method of separaf variablesv(x, t)= X (x)Q(t) and

introducing the new functions, Equation (2) canasgten down in a slightly less complicated
way:

2 X9, 5, X' _ Q1) _

X0 7 X)

2
Xx) o 7 ®)

Cc

where the partial derivatives have been replacéi tetal derivatives.

Qt)+ 0*Qt)=0 (4)
X"(X)+2X"(X) - B*X(X) =0 (5)

In Equation (5), the new symbols represent thefahg functional relations:

e El F
=2et== =L (6)
c PA'" T 2El

Thus, a general solution to Equations (4) and (&Y a = B4 + y2 ) [1-4]:

X(x)=C, cos(\//l_ﬂ/x)Jr C, cosi{\/ﬁ x)+ C; sin(mx)+ C, sinh(\/ﬁx) (7)
Q(t) = Asin(wt)+ Bcogwt) (8)

In the equation (7) the value df(where is hidden the influence of angular freqyeat and
three of four constants of integration,@,, C; and G are determined from the boundary
conditions. The fourth constant is possible to fimthe combination with the constaitsandB

in Equation (8). For a given beam at defined temjpee the values by depend upon the
boundary conditions [5-9]. Using boundary conditiprthe following solutions can be

analytically computed[{ = L%y, A = L%1):

667

© VIBROMECHANIKA. JOURNAL OF VIBROENGINEERING DECEMBER2009.VOLUME 11,ISSUE4. ISSN1392-8716



511.VIBRATION OF BEAMS AND ROTATING SHAFTS UNDER THERMAIEFFECTS J.AVSEC™

a) Clamped-clamped beam:
VA2 _T2{cogA + T)cosi{A )~ 1+ T'sin(A + T)sin{A ~T)=0 ©)
b) Supported-simply supported beam

sin(A+T)=0 (10)

¢) Clamped-simply supported beam:

S

d) Clamped-free beam:

tgh(«/A—F) (11)

2| VA2 -T2 (A2 + rz)—(—r +A)?(A+T)¥?Cos(A +T)cosH-T + A )+
(T = A)A +T)sin(A +T)sinh(-T + A)

A’ -T =0 (12

With the known angular frequencies of individual modes of vibration is possibly to@aate
X, andQ, of individual modes of vibration. To determine thaution for the displacement we
have to solve the equation [5-9]:

o0

w(xt) :z A, sin(w.t)+ B, codw,t))X,,(x), (13)

i=1

where the modal shapes can be shown to be orthbgona

IX dx O fornzm (14)

The model presented in our paper is fully analytibat if compared with the measured results
it points to a large deviation from reality [1, dJhe biggest problem of this model is that in the
mathematical model in question the clamped wall fuflg withstand the beam for the beam to
have a constant length all the time. The aboveragan is not realistic. As a result, a new
model was designed to reduce to at least to sortentethe huge differences between the
analytical results and the measured values.

The dynamic model for beams under ther mal stresses

Fig. 3 and 4 illustrate a new rheological modeltfoe clamped and the simply supported beam.
To this end, a spring is added with the spring tamskK. The model slightly differs from the
model presented in paper [1], where the authorsgiks and Inman integrated additional
torsion springs into the rheological model.
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Fig. 8. New model for clamped-free beam
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In this case, forcé; can be computed in the following way [3]:

S
éEA= afEA—KS, KE=EA ab-—|, 5=M (15)
L KL + EA

The reaction force computation can be as follows:

_ EALab
L+E—A
K

Fr =Ko (16)

where the modulus of elasticitff and linear expansion coefficient are temperature
dependent functions. By means of the boundary tiomdi Equations (5) and (6) also apply
now.

An aluminium beam with the dimensions indicated Table 1 were used for the
computation.

Table 1. Fundamental constants for aluminium beam

Beam
Length (m) 6.35.10
Width (m) 2.041F
Thickness (m) 1.62-10
Young modulus (N/rf) 6.9-10°
Volume expansion coefficient (1/K) 24961
Spring constant (N/m) 1.553310
Density (kg/mi) 2780

Vibration of cylindrical shaftsunder thermal effects

In the case of rotor vibration we have utesl rheological model as it was presented for
beams (Figure 9 and 10):

Q

—_—

Fig. 9. Vibration of cylindrical shaft

- i

Fig. 10. New rheological model of cylindrical shaf
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If we consider cylindrical shafts, the existenceaafal force changes the equation of lateral
vibration. The equation of lateral vibration of EuBernoulli beam in the presence of axial

force P together with temperature effects can htemras [10,11]:

4 2
dX L (F - P)ZT)Z(—pAa)ZX -0 (17)

X4

El

Upper equation we can express also with the ngxtession:
X""(X) + 2pX"(x) = B*X(x) =0 (18)

In Equation (10), the new symbols represent thevohg functional relations:

ﬂz — 2 CZ — E 7/ — ﬂ
c PA 2El (19)
If we use 3-D linear elasticity relations we obtain
P=uvpl O (20)
Supported-simply supported beam
sin(A+T)=0 (21)

Where thé, is polar moment of inertiay presents Poisson ratio afXlis rotational speed
of rotating shaft.
Influence of gyroscopic effect in combimatiwith temperature effect [10,11]:

d*X d?X
Bl +(F -P,) v - pA©°X =0
(22)
P, = plo(2Q - w)
Table 2. Fundamental constants of steel shaft
Shaft
Length (m) 1
Diameter (m) 0.01
2 11
Young modulus (N/nm) 2.07-10
Volume expansion coefficient (1/K) 1310 K
Spring constant (N/m) 1553.10
3
Density (kg/m) 7800
Poisson number 0.33333
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Results and discussion

The presented mathematical model was usedltolate thermodynamic properties of state
of pure aluminium. Figures 11-14 present the ptexticof angular frequencw in dependence
of mode of vibration and temperature differencee Tdomparison of analytical results and
experimental data is presented in the paper [1¢ plovided results demonstrate relatively
good agreement between analytical models and erpatal data [3]. The detailed analysis
indicates that small changes of temperature cagsé#isant changes of natural frequencies for
beams.

Table 1 contains the main data on the bésmaluminium beam was chosen for analysis.
The aluminium beam is very interesting, particyladue to relatively high expansion
coefficients. Figure 11 presents the results ferahgular frequency of vibration modes for the
clamped-clamped beam. Figure 12 contains the eedolt the oscillation frequency of
vibrational modes for the supported-simply supmbréduminium beam. Figures 13 and 14
provides results of oscillation frequency for claadgree and clamped-simply supported beam.
The detailed analysis reveals that also small chsiod temperature induce significant changes
of natural frequencies for beams. The proposed faqutevide the basis for future research of
micro- beams. Figures 15-17 illustrate the inflleené temperature, rotor speed and gyroscopic
effect on angular frequencies up to the sixth mdde analysis demonstrates that we have to
take into account at high rotor speeds also theamdlgyroscopic effects in case we need very
accurate dynamic calculations. The influence of perature effects on vibrational
characteristics depends on boundary conditions.rébelts are very sensitive to the structure of
beam or rotor material.

Aluminum clamped-clamped beam
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Fig. 11. Aluminium clamped-clamped beam
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Supported-simply suported aluminum beam
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Fig. 12. Supported-simply supported aluminium beam

Aluminum clamped-free aluminum beam
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Fig. 13. Aluminium clamped-free beam
Aluminum fixed-simply supported beam| —¢— 1-st mode
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Fig. 14. Aluminium clamped-simply supported beam
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Fig. 15. Supported-simply supported rot@&=£0)
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Fig. 16. Vibration of rotor in dependence of rotor spe@d=100 K)
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Fig. 17. Vibration of rotor in dependence of rotor speed gwoscopic effecttt =100 K)
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Conclusion

The paper demonstrates for the first time in sdientiterature the combination of
temperature, gyroscopic and rotor speed effectharft ®@nd beam vibrations. In the presented
paper we have concentrated on the analysis of nflaence of temperature on angular
frequencies in modes of vibration. The thermo pdslsproperties of state, such as modulus of
elasticity and linear expansion coefficient, argargled as constants in this paper. The analysis
indicates that a minor change in temperature resulhd considerable alteration in vibrations.
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