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Abstract. Sticking of adhesive spherical particles under normal impact is investigated numeri-
cally by applying the Discrete Element Method. The nonlinear-dissipative contact model with 
adhesion is applied to model normal contact forces. Loading is described by elastic Hertz and 
elastic-plastic contact model with history-dependent adhesion. Damping is described by nonlin-
ear Tsuji model. Adhesion limit is of linear character while particle detachment is of non-linear 
nature. Sticking and detachment behaviour for various damping values are considered in detail. 
Influence of the adhesion force for a wide range of particle sizes is illustrated by the variation of 
critical sticking velocity. Comparison of purely elastic with elastic-plastic behaviour is also 
presented. 
 

Key words: cohesive granular material, normal elastic-plastic contact, sticking and detachment, 
critical sticking velocity, discrete element method 
 
Introduction  
 
        The handling of granular materials is of great importance in pharmaceutical, food, cement, 
chemical and other industries. The problems relevant to particle segregation, the effects of 
granular material vibration, attrition, breakage, dust explosions and other phenomena have been 
encountered during the operation period of many processing apparatuses and machines. The 
granular state of the material is a transient state between gas, liquid or solid [1, 2], implying that 
the material possesses some of their properties and behaves either similarly or in a completely 
different manner.      

Historically, a major part of granular materials has been treated as an assembly of non-
adhesive grains or particles. The rapidly increasing production of poly-dispersed dry cohesive 
powders causes much more serious technical problems associated with undesired adhesion in 
particle conversion or powder handling, and desired adhesion in agglomeration or coating. 
Thus, understanding the fundamentals of particle adhesion with respect to product quality as-
sessment and process performance is highly needed in powder technology.  
        Cohesive granular materials are currently being studied by applying experimental, theo-
retical and numerical methods. Recently, the discrete (distinct) element method (DEM) intro-
duced by Cundall and Strack [3] has become a powerful tool for solving many scientific and 
engineering powder technology problems. It was first applied to simulate the dynamic behav-
iour of non-cohesive granular material, which is presented as an assembly of particles. Interac-
tion of particles described by the Hertz contact theory is usually used to describe repulsive con-
tact forces not depending on the specific particle size. Fundamentals of the DEM and particular 
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models of non-cohesive granular material may be found in [4-7], while the important details of 
simulation technique and software implementation are presented in [8-11]. 

Investigation of the nature of adhesive particles required the application of new models. 
Independently of the development of the discrete element method, an expression of the normal 
force for spherical particles was suggested by Johnson, Kendall and Roberts [12]. This JKR 
model assumes that the surface attraction force only results in the change in surface energy 
within the contact area. Derjaguin, Muller and Toporov et al. [13] considered that the surface 
attraction forces have a finite range and, therefore, act just inside and outside the contact zone 
where surface separation is small. This model is known as DMT model. The first comprehen-
sive physical models for fine particles were described by Molerus [14, 15]. The earliest discus-
sions about the simplest adhesion (surface attraction) models and the importance of these ef-
fects for the results of simulation of granular material behaviour were presented by Thornton 
and Yin [16] and Kohring [17]. Comprehensive research on cohesive powders was continued 
by Tomas [18-20]. Fundamentals of cohesive powder consolidation and flow are generalized in 
[20]. In this work, the model of "stiff particles with soft contacts" was  used for ultrafine parti-
cles (with the diameter d < 10 µm). This hysteretic model describes the elastic-plastic particle 
contact behaviour with adhesion and hysteretic load-unload-reload. Some other interesting con-
tributions and DEM simulations may be also mentioned. For example, shear behaviour of co-
hesive powders with friction was studied by Luding [21, 22] and Tykhoniuk et al. [23]. Cohe-
sive powders combining contact elasticity and distant van der Waals-type attraction were simu-
lated by Gilabert et al. [24]. Collision dynamics of granular particles with visco-elastic adhe-
sion was considered by Brilliantov et al. [25]. The authors focused basically on characterizing 
restitutive collisions described by the coefficient of restitution as well as sticking in collisions 
described by the critical sticking velocity. Elastic-plastic adhesion of ultrafine powders was 
considered by Tomas [26-27]. The paper addresses simulation of sticking of adhesive particles 
under normal impact. The non-elastic Hertz and elastic-plastic contact models with linear ad-
hesion in contact compression and Tsuji damping are applied to model normal contact forces. 
Sticking and detachment behaviour is illustrated in details. The influence of the adhesion force 
is illustrated by varying critical sticking velocity for a wide range of particles with respect to 
their size. 

 
Simulation methodology 
 
In the present work, the DEM methodology based on the Langrangian approach is applied 

to simulate the dynamic behaviour of the adhesive particles under normal impact. From the 
perspective of modeling, smooth spherical particles considered may be termed discrete ele-
ments. When moving, the particles impact and deform each other.  

The motion of arbitrary particle i is characterized by a small number of global parameters, 
e.g. positions ix , velocities tii d/dxx =ɺ  and accelerations 22 d/d tii xx =ɺɺ  of the mass center 

and a force applied to it. Translational motion is described by the Newton's second law applied 
to each particle i as follows: 

 
( ) ( )ttm iii F=xɺɺ ,                                (1) 

 
where mi is the mass, while vector Fi presents the resultant force acting on the particle i. It may 
comprise the prescribed and contact forces. Rotational motion, if necessary, may be described 
in the same manner. 
       Methodology of calculating the contact forces in Eq. (1) depends on particle geometry and 
mechanical properties as well as on the constitutive model of particle interaction. The detailed 
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description of models employed in this work will be presented below. The integration of dif-
ferential equations (1) for particle i at the time t+∆t (where ∆t is the time step) is performed 
numerically by applying the 5th order Gear’s predictor-corrector scheme [4, 6, 28].  

 
     Normal contact 

 
The mechanical behaviour of adhesive particles is essentially different from non-cohesive 

granular material. The presence of the load attraction force providing aggregation of dry adhe-
sive particles is their characteristic feature.                                                                                           

A concept of the impact of adhesive particles is described by considering nonlinear elastic-
plastic-dissipative contact behaviour. The focus of the investigation is to model smooth, iso-
tropic and stiff spherical particles that are approaching soft contacts. Thus, contact displace-
ment (overlap size) h is assumed to be small compared to the size (diameter) d of the stiff par-
ticle. 

The evaluation of interparticle forces is based on the evaluation of a separate force Fij act-
ing between the particles i and j. Hence, the interaction force Fij found between two particles i 
and j is expressed only in terms of the normal component Fij ≡ n

ijF .  

A constitutive model comprising force-displacement relations in the form of algebraic 
functions has to be elucidated for these purposes. Typically, a load-displacement diagram is 
plotted in the nanoscale. It has the first loading path and a series of hysteretic loops. A hyster-
etic path comprises a series of unloading-reloading cycles. The applicability of this model is 
based on a quasi-static assumption implying that a relative impact rate is much lower than the 
speed of sound in the material. This allows us to treat the collision process as a sequence of 
equilibrium states. 

Conceptually, normal contact may be described by considering a classical visco-elastic 
"spring-dashpot" model [3] supplied by adhesion (Fig. 1a). The spring model is assumed to be 
history independent and the accumulation effect is not considered. In this case, pressure and 
compression are defined as positive, while tension and extension are assumed to be negative. 

Consequently, the normal interaction force occurring in  binary collision of particles com-
prises three components of slightly different nature as follows: 

 
n

diss

n

adh

n

spring

n

ij FFFF ++= ,                      (2) 

 

where n

springF  is contact deformation, or spring force, nadhF  is adhesion force and n

dissF  is dissipa-

tion, or dashpot force. Various linear and non-linear models may be applied to evaluate particle 
contact force components.  
        A realistic and theoretically motivated nonlinear contact is governed by the Hertz contact 
theory for smooth spheres. 

According to it, the elastic repulsion force n

el

n

spring FF =  of the contacting particles depends 

on the overlap height h, while the power law defined by factor α = 3/2 can be expressed as 
 

αhKF n

el

n

el = .                                      (3) 
 

Here, the nonlinear stiffness constant is:  
 

( ) α−
=

2

3

4 eff

ij

eff

ij

n

el REK ,                           (4) 
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where 

( ) ( )22 11 jjii

jieff

ij EE

EE
E

ν−+ν−
=  ;     

ji

jieff

ij
RR

RR
R

+
= .                (5) 

 
a) 
 

 
b) 

 
Fig. 1. Models for normal contact of smooth adhesive spherical particles: a) elastic and visco-elastic 

model, b) elastic-plastic-viscous model with adhesion 
  
Eq. (5) describes the effective contact elasticity modulus and the effective radius of particles i 
and j, respectively, where Ei and Ej are elasticity moduli and νi and νj are Poisson’s ratios of 
particles i and j. Unloading, beginning at arbitrary point U’ , is assumed to recover deformation 
path defined by Eqs. (3-5).  In the presence of an arbitrary dissipation mechanism, unloading-
reloading will follow a different path U’-A.   
       In order to reflect energy dissipation, the normal force may directly contain the viscous 
dissipation term n

dissF , as shown in Eq. (2). A review and systematic analysis of the known and 

the new extended models for normal contact and their comparison to the available experimental 
data are presented by Kruggel-Emden et al. [29]. In this work, different dissipation mechanisms 
and their applicability are discussed. However, they are restricted to non-cohesive interaction. 
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Generally, dissipation is based on analogy with that hold in the Hertz theory. Thus, non-liner 
damping force reads as follows: 
 

hCF n

diss

n

diss
ɺ= .                             (6) 

       
        Various approaches are used to evaluate the nonlinear characteristic n

dissC , which is the 

displacement - dependent damping coefficient and hɺ  is the displacement rate. Kuwabara and 
Kono [30] intuitively proposed a fully nonlinear model combining spring and dissipative forces. 
This model was also independently derived by Brilliantov et al. [25]. Tsuji et al. [31] proposed 
a Hertz-type force law including a slightly modified dissipative term with a different exponent. 
Finally, non-linear dissipative constant ndissC was expressed in terms of the reduced mass and 

stiffness (5)  
 

4/1hKmC n

spring

eff

ijd

n

diss α= ,                                      (7) 

 
where αd is adjustable non-dimensional damping coefficient. 

An adhesive contact starts when the surface distance between particles is in a range a few 

nanometers 0Fah ≤ , which means the short-range adhesion force without any contact defor-

mation (the so-called jump in). This model presents the simplest case of a realistic van der 
Waals force.  

Particles i and j still attract each other if the gap h  between their surfaces is smaller than 

the separation range 0Fa , or 00 ≤≤ haF  
 

( )20

2
00

ha

aF
F

F

Fhn

adh +
= .                                                                (8) 

 
      The particle approach curve in Fig. 1 contains two essential parameters: maximum attrac-

tive force 0hF  at minimum separation range 0Fa . 

As follows from Fig. 1a, at detachment point A’ with overlap Ah , the contact unloading 

curve reaches the adhesion limit curve: 
 

0)( hApf

eff

ijA FhpRhF +−= κπ .                      (9) 
 
       Expression (9) describes line Y-U and reflects the plastically deformed circular contact 
zone [26, 27]. Particles’ detachment by contact expansion or negative surface separation h is 
expressed as: 
 

( ) ( )20

2

003

03

0 AF

Fh
F

AF

Apf

eff

ijn

adh
hha

aF
a

hha

hpR
F

−+
+

−+
−=

κπ
.              (10)  

 
Here, the second term expresses the influence of the accumulated plastic deformation during 
contact. The dimensionless plastic repulsion coefficient pκ  describes a dimensionless ratio of 

the attractive van der Waals pressure of a plate-plate model to the constant repulsive micro-
yield strength fp (hardness).   
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      The model for the normal contact under consideration is based on the recent developments 
by Tomas [26, 27]. It combines nonlinear elastic – plastic contact behaviour and load-
dependent non-linear model of adhesion. The new features of this model are described below 
in this paper.  

 From Fig. 1b it is obvious that the contact area may be initially loaded from point 0hF  to 

Y, and, in response, is elastically deformed with an approximated circular contact area. At the 
elastic stage, nonlinear contact behaviour is governed by Hertzian model Eqs. (3-4). With in-
creasing external normal load, the soft contact starts at the pressure pf , with plastic yielding at 
the point Y. The particles’ overlap hY at the point Y can be calculated by the Tomas [26, 27] 
formula: 

( ) 2

2

3











 −
=

eff

ij

pAfeff

ijY E

p
Rh

κκπ
,                                               (11) 

 

where, Aκ  is the dimensionless elastic – plastic contact area coefficient representing the ratio 

of plastic particle contact deformation area to the total contact deformation area.  
As a consequence, the spring force in loading is defined by a generalized expression: 
 

n

plelplel

n

elel

n

spring FFF −−+= ββ .                     (12) 
 

Contact coefficients elβ  and plel−β  depend on contact specification. When the contact is 

elastic, 1β =el  and 0β =−plel , while when the contact is elastic – plastic, the coefficients’ val-

ues are 0βel =  and 1β =− plel . Finally, the elastic – plastic contact force reads as: 
 

( )hpRF pAf

eff

ij

n

plel κκπ −=− .                                              (13) 
 

It is obvious that the yield limit cannot be exceeded; however, at a certain point U, unload-
ing can begin. The nonlinear spring stiffness is extracted from Eqs. (3, 12-13). Constitutive 
equations (2-13) serve as the basis for simulation of impact. 

 
       Numerical investigation of normal contact 

 
Normal contact at the impact of two identical spherical particles is considered numerically. 

The numerical experiment assumes that a mobile particle impacts the fixed target particle. Con-
tact behaviour is considered by integrating the equations of motion (1) and applying various 
combinations of elastic-plastic-dissipative contact models with adhesion Eqs. (3-13). The nu-
merical experiment conducted with particles defined by constant radius eff

ijR  = 0.3 µm is illus-

trated in Fig. 2. The mobile particle is induced by a portion of kinetic energy which is con-
trolled by the initial impact velocity υ0. Impact velocity serves as the basis for the initial condi-
tions.  

During the impact characterized by the loading path0hF -U’  (Fig. 1b), the particles collide 

and undergo elastic and (later) elastic-plastic deformation, while the induced kinetic energy is 
transformed to elastic deformation energy and partially dissipated. At a certain time instant, the 
mobile particle reaches the state of rest characterized by zero velocity 0=υ  and the maximum 
overlap h = hmax. After reaching the maximum overlap, the mobile particle starts to separate 
and follows the unloading path U’ -A’. 

The behaviour of adhesive particles during unloading largely depends on the imposed en-
ergy. If energy is high, at a certain time instant, the elastic and dissipative forces exceed the 
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adhesive limit n

adh

n FF lim_> , and the particles begin to detach (Fig. 2c). For lower impact 

rates a different scenario can be observed. If the imposed energy is insufficient to exceed the 
adhesive potential, the particles remain stuck together (Fig. 2d) and compression-tension oscil-
lates, while kinetic energy is dissipated by viscous deformations until the equilibrium is 
reached.  

 
 

Fig. 2. The behaviour of particle during impact: a) loading b) unloading , c) detachment, d) sticking  
 

 
 

        Fig. 3. A view of particles during normal impact: sticking behaviour with oscillations, when αd = 0.2  
 

          The microscopic adhesion parameters of adhesive particles are with the mechanical prop-
erties of limestone       [26, 27]: adhesion force of the sphere-sphere contact            Fh0 = -
2.64 nN, micro yield strength pf = 300 MPa, plastic repulsion coefficient κp = 0.153, and elastic-
plastic contact area coefficient κA = 5/6. Five values of the damping factor αd1 = 0; αd2 = 0.2; 
αd3 = 0.3; αd4 = 0.4; αd5 = 0.5 of the Tsuji model [31] were explored in simulations. The values 
of damping factor applied were chosen in order to reflect the identical coefficients of restitution 
due to viscous dissipation. The above values of damping factors respond to coefficients of resti-
tution: ξ1 = 1.0; ξ2 ≈ 0.76; ξ3 ≈ 0.65; ξ4 ≈ 0.56; ξ5 ≈ 0.48.  The case of zero damping αd = 0 illus-
trates non-viscous elastic-plastic adhesive behaviour, Fig 3.  
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a) 

 
b) 

         Fig. 4. Contact behaviour of particles during normal impact: a) υ0 = 2 mm/min; b) 
υ0 = 2 m/min damping factor αd2 = 0.2; αd3 = 0.3; αd4 = 0.4; αd5 = 0.5 
 

The influence of impact energy was investigated by considering two values of impact ve-
locity: υ01 = 2 mm/min and υ02 = 2 m/min. Contact behaviour in terms of load-displacement 
relationship for various damping ratios is shown in Fig. 4. Here, normal force comprises all 
inter-particle (right hand) forces, including viscous dissipation. 
        The higher impact velocity is of restitutive character and results in detachment of particles 
occurring after the single loading–unloading loop (Fig. 4a). On the contrary, low velocity is of 
adhesive character and leads to sticking and highly hysteretic oscillations (Fig.4b).   

The present approach deals with numerical DEM simulations supported by sensitivity 
analysis. Two types of contact models for the range of effective particle radiuseff

ijR , varying 

between 0.1 and 1 µm for both elastic and elastic-plastic models combined with dissipative 
Tsuji damping model Eqs. (6-7), were examined. 
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The elastic loading path was defined by Eqs. (3-5), while elastic-plastic loading path was 
determined by Eqs. (13). The variation of the critical sticking velocity as a function of particle 
radii in logarithmic scale is illustrated in Fig. 5. 

 

 
 
Fig. 5. Variation of critical sticking velocity versus effective radius for different loading models, 

with the damping factor values αd2 = 0.2; αd3 = 0.3; αd4 = 0.4; αd5 = 0.5 
 
Here, the straight lines 1’, 2’, 3’ and 4’ exhibit the results obtained in using the elastic 

model, while curves 1, 2, 3 and 4 illustrate the increased role of elastic-plastic deformation for 
smaller particles. Line numbers indicate the values of damping factor αd2 = 0.2; αd3 = 0.3; 
αd4 = 0.4; αd5 = 0.5. The character of the graphs complies with the tendency reported in [25]. 
 

Concluding remarks 
 
A characteristic feature of normal collision of adhesive particles exhibiting adhesive and 

restitutive behaviour was studied numerically by applying DEM. The influence of adhesion 
was studied for a wide range of effective particle radii, varying between 0.1 and 1 µm. This 
influence is illustrated by the variation of critical sticking velocity for both elastic and elastic-
plastic models 

On the basis of the numerical results, obtained in the investigation, some conclusions 
could be drawn. Generally, adhesion significantly affects agglomeration of smaller particles. 
Critical sticking velocity csυ decreases if the effective radius of the particle is higher. The same 

applies to the millimeter range particles, where critical sticking velocity and adhesion effects 
have no sense. The propagation of plastic deformation observed in the soft contact model in-
creases critical sticking velocity, considerably deviating from the elastic solution when the par-
ticle size is decreased. The increase of viscous damping considerably increases this tendency. 
The assumptions on non-linear adhesion simplifying the spring model neglect, however, the 
additional dissipation mechanisms. Therefore, further research is required. 
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