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Abstract. Continuous increase of the rotational speed of the rotating machinery results in the inevitable growth of the 
dynamic loads and vibration. One of the most efficient way of absorbing vibration in the rotary systems is the application 
of the resilient couplings. The current paper is concerned with the dynamics of the pendulum-type centrifugal ring elastic 
coupling. The torque and stiffness characteristics as well as the stability areas of the coupling’s operation are investigated. 
The compensational properties and effect of the vibration  absorption of the coupling are analyzed. 
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1. Introduction 
 
       The structural scheme of the ring–form centrifugal 
coupling with the additional masses is shown in Fig. 1. The 
driving half–coupling is manufactured in the form of a hub 
1 with two diametrically opposite stems 2 which have 
cylindrical holes oriented parallel with the axis of the 
shafts. Stems contain pins 3 on which centrifugal  
pendulums 4 are hinged. Two concentric centrifugal spiral 
springs 5 are attached  rigidly to the pendulums with the 
help of the bolts 7 and gaskets 8. These springs possess 
different coils of relatively large diameter. Bolts 7 and 
gaskets 8 play the role of the centrifugal masses. 
       Driven half–coupling consists of the hub 9 with two 
diametrically opposite stems 10. Stems 10 are also 
connected with the centrifugal spiral springs 5 and 6 with 
the help of the gaskets 11 and bolts 12. Thus, the sections 
of the cylindrical spiral springs 5 and 6 are the connecting 
links between the half–couplings [1, 2, 4, 7]. 
       The coupling operates in the following way. In static 
condition and rotation without load the stems 2 of the 
driving half–coupling and the stems 10 of the driven half–
coupling are perpendicular to each other (α = 900) and the 
axes of the coils of spiral springs (face projection) are 
almost ideal circles. While the driving coupling rotates 
with slow speed under the torsion load angle α increases 
due to the deflection of the centrifugal pendulums from the 

radial position and deformation (complex bending) of the 
spring rings 5 and 6. At the higher speed centrifugal forces  
of the rotating masses grow up and centrifugal pendulums 
tend to return to the initial radial position. The return to the 
primary position of the whole system is also facilitated by 
the restoring elastic forces of the spring rings. The shift of 
the centrifugal masses (pendulums) from the rotation axis 
results in the rectification of the coils of the springs and the 
corresponding decrease of angle α. At the certain value of 
the torsion load and rotational speed we have the dynamic 
equilibrium of the system which is characterized by the 
deflection angle α  and corresponding deformations of the 
spring rings. 
 
2. Stationary operation of coupling 
 
       The present analysis starts with the determination of 
the main relationships. For this purpose potential and 
kinetic energy of the system is derived. 
       The dynamic model is presented in Fig. 2. We 
introduce three generalized coordinates: turn angle of the 
driven part of the coupling  ϕ1, turn angle of the driven part 
ing the coupling ϕ2  and angle  αx  defining the position of 
the radius–vector of the reduced mass m. R designates the 
radius of the initial elastic ring. 
       The third (additional) degree of freedom appears 
because of the ability of the system to deform, therefore 
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the coupling is able to twist without the change of the 
distance of mass  m  from  rotation axis. 
 

 
 

Fig. 1. Structural scheme of  coupling: 1 – hub of the driving 
half-coupling; 2, 10 – stems of the corresponding half–couplings; 
3 – pins; 4 – centrifugal pendulums; 5, 6 – spring rings; 7, 12 – 
connecting bolts; 8, 11 – gaskets, 9 – hub of the driven half–

coupling. 
 
 

 
 

Fig. 2. Model of the coupling 
 

       Taking into account the symmetricity of the coupling 
the kinetic energy of the entire isolated two–mass system 
with the coupling according to [2] can be written as 
follows: 
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where  I1  and  I2  – constant moments of inertia of the 
driving and driven parts, respectively. The dot denotes the 
differentiation via time. 
       The model for the calculation of the potential energy 
of the half–ring is shown in Fig. 3, where  δ1  and  δ2  

designate the displacement components of the fixed point  
A  of the ring in the two perpendicular directions. 
       Using the technique given in [2] the potential energy 
of the whole ring is governed by the equation 
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where  EI – bending stiffness of the ring. 
 

 
 

Fig. 3. Model for the determination of the potential  
energy of the half–ring 

 
       For small displacements  δ1  and  δ2  can be expressed 
through generalized coordinates; potential energy of the 
system is a  function of the generalized coordinates: 
 

( ) ( )2 2

1 23
87 1x x

EI
cos .

R
 = − − + −
 

Π ϕ ϕ α α                   (3) 

 
       The most convenient way to investigate the stationary 
rotation of the system is to use the averaged value of the 
varying part of the kinetic potential of the system [3] 
which has the form (the hyphen from above designates 
average value for one turn): 
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       As seen the averaged value of the kinetic potential of 
the system is the function of two averaged deflections: the 
full averaged deflection of the coupling  ψ  and additional  

deflection of the coupling  xα . 

       In this case the characteristic of the coupling is 
determined by the system of the two equations [4]: 
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       Specifically for this coupling (N is number of coils) 
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       Graphical interpretation of the characteristic of the 
coupling in the common sense (the dependence of the 
torque on the total deformation) is shown in Fig. 4. It was 
obtained using equation (6). 
       It’s obvious that the physical model of the coupling 
can be represented by the two sequentially connected 
springs – linear spring 
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and nonlinear spring 
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       Hence the reduced total stiffness is: 
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       Naturally, in the area of small deformations the 
characteristic of the coupling can be well approximated by 
the linear function of the summed deformation, that is: 
 

( )1 2nM C .= −ϕ ϕ                                                           (10) 

 

 
 
Fig. 4. Characteristic of the coupling at R=125 mm, N=20 (coils), 
m=2 kg; continuous and dashed curves correspond to n=2200 rpm 
and n=500 rpm, respectively; 1 – d=5 mm; 2 – d=4 mm; 3 – d=3 

mm; 4 – d=2 mm, where d is the wire diameter 

       Let’s verify the stability of the deformed system. This 
requires to find the maximum of the averaged kinetic 
potential of the system [5] as a function of the two 

variables (ψ  and  xα ). 

       Obviously in this particular case the existence of 
maximum leads to the unique condition [6]: 
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or specifically for this coupling 
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where  1u R OA= −  (Fig. 2 and 3). 

       Inequality (12) is simultaneously the condition of the 
positive value of the stiffness C2, and of the positive value 
of the total stiffness of the coupling CM  as well. The 
boundaries of the stable deformation area of the coupling 
mainly depend on the ration between the rotational speed 
and the parameters of the coupling and are determined 
from the inequality: 
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       Graphical interpretation of the stable area of the 
deformation of the coupling is given in Fig. 5. 
 

 
 

Fig. 5. Area of the stable deformation of coupling  
at m=1 kg, R=125 mm and d=3 mm 
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3. Compensating properties of coupling 
 
       Angular and axial stiffness is determined according to 
[7]. 
       In the analysis of the radial stiffness two limit cases 
must be encountered. In the first case the force acting on 
the coupling in the radial  direction coincides with the 
radial axis (Fig. 1) passing through the fixing center of the 
elastic ring, bolt 7, pins 3 of the pendulums 4 and the 
center of the coupling. In this case the radial component of 
the coupling stiffness is expressed by the following 
formula [5]: 
 

( )2 2 2
0 03

174 2r

EI
C m A sin ,

R
= − +ω γ δ                           (14) 

 
where  γ0  – angle characterizing the location of the plain 
of the shift of the connected axes with respect to the links 
of PRCC; in this particular case  0 0 12 1 2233, , A , .= − =δ π  

       In the second case the radial force is perpendicular to 
the axis passing through the bolts 7, pins 3 of the 
pendulums 4 and the center of the coupling. 
       In this case the stiffness of the coupling depends on 
the displacement value (misalignment of the shafts e). Its 
elastic component is approximately expressed by: 
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       For the estimation of the total radial stiffness of the 
coupling without the twist of an arbitrary angle we use the 
following expressions: 
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       The cyclogram of the radial stiffness is shown in Fig. 
6. 
        

 
 

Fig. 6. Radial stiffness of coupling at R=125 mm, d=3 mm, 
N=24, m=2 kg and prescribed misalignment e=2,5 mm as a 

function of  the angular direction: curves 1, 2 and 3 correspond to 
ω=0, ω=300 rad/s and ω=342 rad/s, respectively 

 
       The spectral densities of the oscillations of the motor 
crankshaft and intermediate shaft are presented in Fig. 8. 
       It can be seen from the above curves that the 
intermediate shaft beyond coupling vibrates with the 
smaller amplitude. The variance of the oscillations of the 
intermediate shaft is two times smaller than the variance of 
the crankshaft vibration. 

The evaluation of the compensating properties of the 
coupling in dynamics is illustrated in Fig. 7. 
       Vibration oscillograms were processed on the 
computer [8, 9, 10]. 
 
4. Torsion vibration of the system with coupling 
 
       For the derivation of the equations governing the small 
oscillations we use the expressions (1) and (2). If the 
isolated system is considered [6] nonlinear equations of 
motion are: 
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       Using the expressions 
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and taking into account that  xx += 0αα  (x – deviation) 

and expanding the coefficients of equation (17) into the 
power series we come to the system of the three nonlinear 
differential equations governing the small oscillations of 
the driving and driven parts in the vicinity of the stationary 
motion: 
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Fig. 7. Values of the radial vibrational displacements and the 
beating of the shaft in experimental test of coupling on the stand 
with motor (load 500 Nm, speed 1200 rpm): 1 – vibration of  the 

motor casing, 2 – vibration of the casing of the intermediate 
support, 3 – beating of the crankshaft, 4 – beating of the 

intermediate shaft 
 
 

Theoretical and experimental analysis shows that the 
coupling is vibration–resistant, especially in case of torsion 
oscillations. This is shown in Fig. 9. 
       Below we resume the investigation of the 
antivibrational properties of the coupling based on the 
analysis of the system of three equations (19) and 
experimental data. 
       The additional degree of freedom positively influences 
the compensation of the starting and torsion dynamic 
loads. Considering this criterion the optimal choice of the 
parameters of the coupling is a separate task. 
      Incorporation of the coupling into any rotating system 
gives the effect of the tracking tuning: all curves of the 
natural frequencies in the function of the angular speed 
have the tendency to increase. This allows to expel the 
resonance frequencies out of the operating range of the 
system. 
       Considering the isolation of torsion vibration it should 
be noted that the additional degree of freedom makes the 
coupling a reliable vibration-isolating device in the wide 
range of excitation frequencies. The area of the excitation 
frequencies lying beyond the highest natural frequency of 
the system is considered here. This is expressed by: 

 
 

Fig. 8. Spectral density of vibration: a – of the crankshaft 
(D=0.21779 mm2), b – of intermediate shaft (D=0.07256 mm2); 

here D – variance, S1 – spectral density, ƒ – oscillation frequency 
 

 

0
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→∞
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where  ζ  – coefficient of the transformation of the 
harmonic force, and  pb  – frequency of the external 
excitation. 
 

 
 

       Practically it’s possible to achieve that all real 
frequencies in the stationary rotation become close to 
“infinitely large” and are filtered almost ideally. 
       The effect of the vibration absorption obtained 
according to the feedback principle is almost independent 
of the additional degree of freedom. It’s known that each 
half–coupling acts on the other one as a vibration absorber 
and this can be very effective at resonance tuning. As the 
resonance tuning due to the locality of the effect practically 
can’t play the substantial role, we estimate the effect of the 
vibration absorption in the areas lying “slightly below” and 
“slightly above” the resonance frequencies. Note that in 
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these areas the efficiency of the standard  couplings is  
practically equal to zero. In our case the effect of the 
driven part on the driving one is determined from the 
following expressions: 
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where  MT – torque component caused by the  centrifugal 
forces,  CM – total stiffness of the coupling,  Ie – equivalent 
moment of inertia of the driven part of the coupling and  I f 
– physical moment of inertia. 
 

 
 
Fig. 9. Coefficient of the transformation of the harmonic force of 
coupling in case of mass excitation: R=125 mm, m=1 kg, N=20 

(coils), d=3 mm and J1/N = 4,5⋅10-4  s2. 
 
 
 
 
 
 
 
 
 
 

5. Conclusion 

 
       Adding an additional degree of freedom into the 
coupling considerably increases its vibration–isolating and 
compensating properties. The other characteristics of the 
coupling doesn’t change or vary very little. Of course, the 
additional degree of freedom is only a resonance, but 
practically in the well designed structure all resonances can 
be moved out of the operating area. 
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