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Abstract. For raising the quality of operation of the vibratory technologic machines a precision of the treatment and 
assemblage of their constructions separate details and units has a particular importance. Specificity of elastic elements 
(especially of springs) – to oscillate not only in direction of the acting force but also in spatial (non-working) directions, is 
of no small importance. 
An attempt is made in the presented work to elaborate a common generalized dynamical model of the vibratory 
technologic machine, moving in the space due to above mentioned reasons. 
The following possible deviations are envisaged in the model: of treatment and assemblage of the machine; of 
interlocation of elastic elements with supporting surfaces; of transfer of the exciting force. 
Dynamical and mathematical models of spatial movement of the loaded vibratory technologic machine, considering above 
mentioned possible deviations, are elaborated. 
Numerical experiments of generation of non-working spatial vibrations and their influence on behaviour of the friable 
technologic load, are carried out. A part of the research results is presented in this work. 
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Introduction 
 
    Oscillation systems suspended on elastic elements 
(springs) together with working oscillations are subjected 
to spatial oscillations caused by their spatial rigidity. 
Because of possible errors and deviations of manufacturing 
and installing of machine constructional elements and 
assemblies   arise  initial deviations  that should be taken 
into account  to correct the  oscillation system calculating 
model; among them: 1) deviations of the coordinate axes, 
rigidly connected to  masses (parts of the system), and 2)  
deviation of exciting power  transmission. 
    Numerous works [3, 4] are devoted to questions of 
vibratory displacement of separate particles and mass 
weights. However the problem of complex research of 
influence of all the possible kinematic and dynamic 
parameters of the vibratory machine on behaviour of 
technological loading remains still insufficiently solved.  
     Finding out of the mechanism of arising of non-working 
(parasitic) fluctuations, their development and a role in the 
course of vibratory technological process is required. 

     With this objective a development of the specified 
unified pattern and the  mathematical model of spatial 
movement of the loaded vibratory technological machine, 
identical to actual processes, is appropriate.  
 
Spatial dynamical model 
 
   Let's consider spatial motion of the loaded vibratory 
machine in this aspect (Fig. 1). 

The spatial motion equations we can obtain by 
introduction of speeds of free points Ai and Bi    in kinetic 
energies of masses  m1 and m2  accomplishing accordingly  
translational and relative motions: 
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Fig. 1. Motion  of  the WO (O1) and TL (O2) in space 
 
 

oscillatory system  is defined by coordinates of centroids 
of masses, by  points of fastening of elastic elements and 
by their reduction to a certain coordinate system using the 
directing cosines by table 1: 

                                                       Table 1                                                                                   
 xi yi zi 

x (αi)11 (αi)12 (αi)13 

y (αi)21 (αi)22 (αi)23 

z (αi)31 (αi)32 (αi)33 

 
By this model are obtained the interrelated equations of 

motion of masses m1 and m2  with nonlinear members of 
inertial and elastic character  depending on the expression 
of directing cosines of Euler angles (in linear  or nonlinear 
forms). 

Let's present directing cosines  in the form of Euler-
Krylov's angles [ 3] and in their decomposition we shall 
consider products not higher than second order of 
infinitesimal (Table 2):  

 
                                                                                                                              Table 2                                                                                

 '
1x  

'
1y               

'
1z  

1x  /2/1 2
1

2
1 OO ϕψ −−  111 OOO θψϕ +−             1Oψ  

1y  1Oϕ  /2/1 2
1

2
1 OO ϕθ −−           1Oθ−  

1z  111 OOO θϕψ +−  111 OOO θψϕ +  2/2/1 2
1

2
1 OO θψ −−  

 
 
For definition of dynamic position of the  working 

organ (WO) are used directing cosines, obtained  by the 
expression 

 

          '
ijijij ααλ = ,             (2)   

                                                   
where αij are directing cosines of the angles, caused by 

initial imperfections oioioi ϕψθ ,, , and α’
ij   - by dynamic 

displacement iii ϕψθ ,, ; expansion of the right parts of  

eq. (2) is carried out by multiplication of lines of the first 
determinant on columns of the second one:. 

  '
3113

'
2112

'
111111 ααααααλ ++= ,       

   '
3213

'
2212

'
121112 ααααααλ ++=     etc.     (3)                

In this  case position  of the coordinate  system  ''
1

''
1

''
1

''
1 zyxO    

relatively to  1111 zyxO   will  be  defined  by table 3 where 

angles of  inclination α and vibration β of the WO are also 
taken into account (the fragment of the full table is given 

only on 1x ): 
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       Table 3   
   

 ''
1x  

''
1y               

''
1z  
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2
1

2
1

2
1 22221
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OOOO
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αθψϕθψϕ
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OO
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αθψθ
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sin)///

2/1(

cos)(

222 2
1

2
1

2
1

2
11111

1111

OO

OO

OOO

−−−

−−−−+

++−
 

     
     Rotations of other coordinate systems will be defined in 
similar way. 

In view of speeds (1) and directing cosines  according 
to Table 3 the expressions of kinetic energy of motion of 
masses  m1 and m2 will be decomposed on coordinate axes 
O1x1y1z1. 

The basic differences of the considered system from the 
classical n-mass spatial system are: a) specificity of the 
mass m2 (various materials one-sided connected to the 
mass m1); b) defined initial location of masses m1 and m2 

(angles α and  β, initial angular deviations oioioi ϕψθ ,, , 

eccentricities of  
 
 
 
 

 

exciting power transfers - zyx eee ,, ), that makes 

asymmetric the general sequence of construction of the 
mathematical model; c) particularities of interaction of 
masses m1 and m2, connected with each other by 
conditional elastic liaison depending on characteristics of  
the technological load(TL); d) consideration of  deviation 
of elastic  liaisons  from  undeformed state (at great 
deformations).   

Let's present the differential equations of spatial motion 
of masses m1 and m2, obtained with the use of Lagrange 
method.  

Equations for the  WO (m1) (two  equation for 
translational and rotary motions are given): 
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where coefficients А1θ,  А2θ,    А3θ....., etc. are functions of 
the sums of moments of inertia of  masses with respect to 
corresponding axes, as for example 
 

.

;;

122211

2211

2

2

1

1

3

21

zzyzyx

yzyx
O
x

O
x

JJJJJJA
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++−+−=

−+−=+=

θ
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Qq and Mq - forces and moments of elastic (potential) 
character; '

qQ  and '
qM - external forces and moments. 

    The items of the left side of eq. (4) contain inertial 
forces arose in the result of interaction of masses  m1 ,  m2. 
At that, nonlinear members (products) in the first equation 
have arisen due to the relative movement of the mass m2  

and due to considering of errors of fabrication and 

assemblage of the real machine ( ,,, 010101 ϕψθ etc). In the 

case, when  m2 =0 the mentioned items vanish. There are 
non-linear members in the next equation (rotary motion) 
from both, the rotary motion of the mass  m2 and the proper 
movement of the mass  m1, that follows from the general 
rule of drawing up of mathematical expression of the rigid 
body movement [ 4  ]. 

Differential equations of motion of TL (m2), carrying 
out relative motion in the coordinate system O1x1y1z1 and 
absolute motion - in Oxyz will have the following form 
(two  equations for translational and rotary motions are 
given):  
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Similarly to the previous equations, coefficients Ciq are 
functions of the sums of the moments of inertia of masses.  

Equations (4) and (5) are interconnected by nonlinear 
items of potential and inertial character, and the form of 
liaison for both systems of the equations is similar; 
difference is in the presence of the sum of masses m1 and 
m2 in system (4) where as in (5) only one mass m2 appears.  
The principle of vibratory motion of one body with respect 
to another is just in such form of dependence.  

It should be noted, that systems (4) and  (5) describe a 
movement of the mass m2  relative to m1  at their constant 

interconnection; potential forces in the form of  qQ are 

elastic and damping characteristics of the mass m2 ( at the 
friable material) and depending on its type and location 
relative to m1 , the characteristics will vary. Besides, a 
dynamical relation between  m1 and m2  can be uneven and 
in this case systems of equations (4) and  (5) are not true 
any longer without corresponding corrections [ 4 ]. 

Forces '
qQ  are not related to deformation of the elastic 

system or to inertness of the  oscillatory system; these are: 
external forces, force of gravity and resistant force of 
external friction type. Consider their decomposition on 
coordinate axes in view of initial angular deviations  of 
manufacturing and installing of the machine 

oioioi ϕψθ ,, and corresponding eccentricities  of 

application of the exciting  power zyx eee ,,   (Fig.1b). 

Different approaches are applied to the description of 
friction forces  between WO and TL for materials of loose 
type [ 1, 2, 4 ], the idea of which   is that the reaction of TL 
on WO is proportional to the speed and deformation of TL; 
at that both, the internal resistance and the resistanse of the 
environment in which the movement is realized, are taken 
into account 

 

),(
.

qqfNq = . 

 
At spatial  motion (translational or rotary)of TL, 

besides normal reactions, as a result, the moments of these 
forces arise  

                                         

qqfrqfrqqfr rFMfNF ⋅== )()(;)( .    (6)                                     

where f  is a coefficient of friction of TL on the WO 
surface (f  is  usually taken variable  in each cycle of  the 
motion, depending on dynamic state of TL – sliding on the 
surface, stops etc.);  rq – distance from the surface of 
friction up to the centre of gravity of TL in  the direction of 
coordinates (Fig.2); the components of friction forces can 
be given in this way 

 

 
 

Fig. 2. Model of TL(m2) on WM (m1) 
 

);( 2

.

2
xsignNfF zxx =          

);( 2

.

2
ysignNfF yyy = (7) 

),( 2

.

2
zsignNfF zzz =  

 
where  fx , fy , fz are friction coefficients between TL  and 
WM along directions  x, y, z; Ny – normal reaction of the 
load on the lateral surfaces; Nz – normal reaction of the 
load on the botton urface; the function sign is non-linear 
and is determined depending on the sign of the velocity V: 
sign=1 at V < 0 and sign = -1 at V >  0. 
      Ther moments of the friction forces with respect to 
axes of the system O2x2 y2 z2  have the form: 

);()()( 2

.

222
θsignrFrFM zyyzxfr −=  

);()()( 2

.

22
ψsignrFM zxyfr =              (8) 

);()()( 2

.

22
ϕsignrFM yxzfr =                                                             
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Where ry, rz are distances from friction surfaces to axes of 
the system O2x2 y2 z2 . 
      The moments of the friction forces relative to axes of 
the co-ordinate system   O1x1 y1 z1 (axes of the WO)  have 
the following form 
 

);()(
221 zyyzxfr hFhFM −=  

;)(
21 zzxfr hFM = ,)(

21 yxzfr hFM =   (9) 

where hy, hz are distances from friction surfaces to axes of 
the system  O1x1 y1 z1. 
    In the considered case the WO is restricted from two 
sides (with planes O1x1 y1 and O1 z1x1 ) and in the direction   
O1x1 it is oupen; in this case a friction force on the surface 
O1x1 y1  is absent and consequently  items with multipliers 
in expressions (8) and (9) are also absent. 
 
 

 
 
Fig. 3. Location of the WO relative to vibro-exciter (mv): in ideal 
position (I); after assemblage (II); after dynamical displacement 
(III) 
 
 
     The form of the exciting force (Q) depend on the vibro-
exciter type. In any case a direction and point of 
application of the force are known. 
     The WO is presented in three different positions in the 
Fig.3:  I – initial (ideal) position, when direction of the Q 
coincides with the axis of the non-deformed spring and 
passes through the centroid of the WO – O1; II – 
corresponds to the real position, i.e. considering deviations 
determined by tolerances on fabrication and assemblage of 
the machine and by eccentricities of transfer of the force 
Q;  III – corresponds to the position after dynamical 
displacement.  

Considering the mentioned initial and dynamic 
deviations, projections of the force Q on the coordinate 
axes of the system O1x1y1z1, will be: 









++=

+++−=

++=
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];cos)(sin)[(

;cossin)[(

11101

11011101

11101

1

1

1

ααψψ

αϕϕαθθ

ααψψ

QQ

QQ

QQ

z

y

x

(10)  

 

The moments of the force Q are determined according 
to theory of the vector algebra []. If we determine co-
ordinates of the point O1” through which really passes the 
vector of the force Q; then the moments of thi vector 
relative to axes of the system O1x1 y1 z1 will have the form: 

 

11111 yzzyx QeQeM −=  ;     
11111 zxxzy QeQeM −= ;      

11111 xyyxz QeQeM −= .                             (11) 

The equations (4) and (5) in view of eqs. (6), (10) and 
(11) enable us to carry out comprehensive investigation of 
the vibratory  technological processes. 

Particularly,  a stady of influence of spatial vibrations 
of the machine WO on the technologic process of vibro-
transportation is realized by means of resounding this or 
that spatial vibrations at fixed parameters of the remaining  
ones.  

 
Results of numerical experiments 
 
In Figures 4, 5, 6 are presented relations of velocities of 

the friable load displacement to variation of frequency 
(amplitude) of separate spatial oscillations of the WO of 
the resonant vibratory machine, obtained by computer 
modeling.   As it is shown, at increase of the amplitude of 
one or another    spatial (non-working) oscillation of  the 
WO above  limits of the certain size, the speed of basic (on 
the longitudinal axis) displacement of the TL essentially  
varies: at one moment reduces and at another - increases; It 
is especially noticeable at passing of frequency through 
resonance (ω = 50 Hz) when the phase of the fluctuation 
changes into opposite one. 

 It should be  noted that in all cases the operating 
conditions of the machine are the same (ωx=50 Hz) and 
additional resonance oscillations were introduced into the 
process simultaneously. 

The given dependences show that in the resonance 
vibratory machines, accompanying the basic operating 
conditions, spatial oscillations break regularity of the 
vibratory motion of the loose material.   Thus, at passing 
through the resonance, speed of the material sharply varies 
and in some areas of frequency (amplitude) change of 
speed is commensurable with its calculating magnitude.  

 

 
 

Fig. 4. Dependence of the speed (Vx) of the TL in the longitudinal 
direction  on the resonant rotary oscillations (ψ) of the WO 
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Fig. 5. Dependence of the speed (Vx)  of the TL in the 
longitudinal direction and trajectories (Y2)  on the cross-section 
resonant oscillations (y1) of the WO 
 

 
 
Fig. 6. Dependence of the speed of the TL in the longitudinal (Vx) 
and cross-section (Vy) directions  on the resonant rotary 
oscillations (φ) of the WO 
 

Can be concluded  that with the use of the given 
mathematical model (in particular, at realization of 
combined oscillations of WO) it is possible to control the 
vibratory technological process and achieve its 
optimization.  

Conclusions 
 

1. The reasons and the mechanism of arising of spatial 
fluctuations in the vibratory machine are considered and 
analyzed. 
2. The generalized pattern of spatial movement of the 
vibratory machine with a technological load is developed 
and the appropriating differential equations are deduced. 
3. Influence of various spatial resonant fluctuations of the 
vibromachine working member on behaviour of the friable 
technological load is investigated.  
4. It is established, that the combination of separate partial 
resonant fluctuations with the working fluctuation causes 
essential change of speed of the material transportation. 
Basically, these variations have a negative character, 
however, in some cases there is an increase of speed of 
transportation. 
     At  analysis of results of the research it is planned to 
create a design of the vibratory exciter with two-
componental (combined) oscillatory operating conditions. 
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