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Abstract: We report on finite element (FE) modeling and simulation of effect of squeeze-film damping on flexible 
microstructure operating in ambient air in close proximity to a fixed surface, which is a common case in many MEMS 
devices. A coupled fluidic-structural problem is solved by applying a nonlinear compressible Reynolds equation, which 
is derived from the Navier-Stokes equations, transformed into weak form and added to commercial FE modeling 
software. The proposed model enables investigation of influence of surrounding air on dynamics of different 
microstructures taking into account air rarefaction and air compressibility effects. The paper presents results of 
numerical analysis, which aim was to study the phenomenon of natural frequency shifting in the case of free and forced 
vibrations of the cantilever microstructure. Simulations demonstrate that squeeze-film damping may result in the 
increase of natural frequency of the microstructure due to system stiffening caused by air compression. The magnitude 
of this effect is determined by such parameters as ambient air pressure, air-film thickness, vibration frequency and 
lateral dimensions of the microstructure.     
 
Keywords: MEMS, squeeze-film damping, finite element modeling, nonlinear compressible Reynolds equation, natural 
frequency shift, stiffening. 
 
 
Introduction 

Squeeze-film damping is characteristic for devices of 
microelectromechanical systems (MEMS) which design 
is based on parallel-plate capacitor structures, in which 
air fills tiny gap between two parallel plates (e.g. vertical 
microaccelerometers, torsional micromirrors or micro-
switches)(Fig. 1). In order to increase the efficiency of 
actuation (for microactuators) or improve the sensitivity 
of capacitive detection (for microsensors), the distance 
between the capacitor plates is minimized and the area of 
the plates is maximized. When in operation, vibrating 
microstructure of such MEMS devices is undergoing 
transverse motion with respect to substrate. Since the 
lateral dimensions of the microstructure are much larger 
than the gap size, its fairly small displacement in normal 
direction compresses (or pulls back) a significant amount 
of air out of (or into) the very narrow gap. However, the 
viscosity of the air film limits the flow rate along the gap, 
and thus the pressure is increased inside the gap and acts 
against the microstructure. The total pressure force, 
which opposes the motion of the microstructure, is 

known as squeeze-film damping. It strongly affects the 
dynamic behavior of microdevices. The reason of this 
strong influence is the scaling effect: volume forces (such 
as gravity and inertia) that act on a device are directly 
proportional to the (length)3, while surface forces (such as 
viscous force) are proportional to the (length)2, thus, the 
effect of surface forces on microdevices is relatively 
greater than the effect of volume forces. And since the 
damping force of the surrounding air is a surface force, it 
plays an important role in microdevices, whereas it can 
be neglected for machines of macroscopic dimensions [1-
5]. Squeezed gas effects were studied long before advent 
of MEMS. Major applications of this effect were related 
to bearings (lubrication), levitation systems and dampers 
for pneumatic machines [6-8]. History of research on air 
damping in MEMS was started by W.E. Newell in 1968 
just after the first MEMS device was developed by H.C. 
Nathanson in 1967. Newell discussed the influence of 
surrounding air on the quality factor of a resonator and he 
observed that the ever-present damping due to the 
ambient air would be increased when the resonator was 
near a second surface due to the pumping action of the air 
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between the surfaces. Later, in 1983 J. Blech analyzed 
squeeze-film damping and discussed application of this 
effect to tailor frequency response of seismic 
accelerometers. Extensive research of air damping in 
MEMS started at the end of 80s - beginning of 90s   
(H.V. Allen, H. Seidel, J.B. Starr [9], M. Andrews [10], 
H. Tilmans [11], T. Veijola [12] etc.) [1-5]. 

Mathematical models of different dimensionality and 
complexity have been used by numerous researchers to 
help understand and characterize MEMS structures under 
the influence of squeeze-film damping. Reynolds 
equation known from lubrication technology is the 
theoretical background to analyze this phenomenon. 
Much of theoretical research work on squeeze-film 
damping in MEMS by using Reynolds equation treats 
vibrating microstructures as rigid, i.e. lumped spring-
mass (single degree-of-freedom) models are utilized 
[9,10,14-17]. A number of researchers use models that 
account for flexibility of microstructures and treat them 
as distributed-parameter systems [18-22], however many 
of them use simplified versions of Reynolds equation 
[18,20,21]. All models are almost exclusively based on 
linearized Reynolds equation [10,15,16,21] or its simplest 
version – linearized incompressible Reynolds equation  
[9,12,17,18,20]. Those models that use nonlinear 
Reynolds equation, however, have a tendency to 
approximate a microstructure by a beam model [19,23]. 
Thus, we may conclude that those models that account 
for flexibility of microstructures either simplify the 
structural problem (as in [19,23]) or the squeeze-film 
damping problem (as in [18,20,21]).  
     The presented literature review suggests that there is a 
need for accurate computational models that represent 
microstructure in 3-D, account for its flexibility by 
treating it as a distributed-parameter system, and are 
suitable for dynamic analysis of influence of forces 
generated by surrounding gas environment From the 
analysis point of view, it is important to determine how 
different squeeze-film damping conditions influence 
dynamic behavior of the microsystem. 

Derivation of Reynolds equation 

On the continuous field level, squeeze-film damping 
of  a  microstructure  vibrating  in  a  fluid is  governed by  

Table 1. List of proposed expressions for effective viscosity 
coefficient µeff. The parameter α is the accommodation 
coefficient, defined by interaction between the surfaces and the 
gas (for most engineering surfaces it can be assumed to be equal 
to unity) and Q is Poiseuille flow rate [12]. 

 
Navier-Stokes (NS) equations, which are composed of 
the continuity equation and the motion equation:  
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where ρ is density of the fluid, η is the absolute 

viscosity (assumed to be constant), g is the acceleration 
of gravity, P is the pressure of the fluid and U is the 
velocity of the fluid (bold symbol denotes vector 
quantity) [5].  

 NS equations are very difficult to solve analytically 
and exact solutions only can be found for problems with 
one dependent variable. In most cases these partial 
differential equations are solved using computational 
fluid dynamics techniques that are one of the most 
challenging tasks for FE solvers. In contrast to structural 
mechanics or thermal analysis, solution must be done 
iteratively. Solution requires relatively more equilibrium 
iterations and strong convergence problems occur 
frequently.  

Furthermore, if we wanted to include contact model 
into the model based NS equations, the computational 
effort required for dynamic simulations using such 
complicated model would be enormous and hardly 
possible with current stand-alone computers. The most 
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Fig. 1. Graphical representation of squeeze-film damping 
between two parallel plates that move normal to each other and 
velocity profile of the generated gas flow. P – pressure between 
plates, Pa – ambient pressure, U – gas flow velocity, v – plate 
velocity, Fsq – squeezed film force, h0 – initial gas film 
thickness.   
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common method to avoid usage of NS equations for 
modeling squeeze-film damping in MEMS is to apply 
Reynolds equation, which is used in lubrication theory to 
determine the behavior of a thin fluid film between two 
moving surfaces [6]: 
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where fluid density ρ, pressure in the gap P, and the 

gap thickness h are functions of time and position (x, y). 
µ is the dynamic viscosity of the fluid, u1 and u2 are the 
velocities in the x-direction of the top and the bottom 
surface, respectively, and v1 and v2 are the velocities in 
the y-direction of the two surfaces. 

Reynolds equation is a nonlinear partial differential 
equation, which is derived from Navier-Stokes equation, 
the equation for the conservation of mass and the 
equation of state for an ideal gas by assuming that (1) the 
fluid is Newtonian (the shear stress is directly 
proportional to the velocity), (2) the fluid obeys the ideal 
gas law, (3) the inertia and body forces are negligible 
compared to the viscous and pressure forces, (4) the 
variation of pressure across the fluid film is negligibly 
small, (5) the flow is laminar, (6) the thickness of fluid 
film is very small compared to the lateral dimensions of 
the moving and stationary plates, (7) the fluid is treated as 
continuum and does not slip at the boundaries [1,4,6]. 

The condition of negligible inertia effect of fluid is 
written by using the following condition for modified 
Reynolds number [13]: 
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where, ω is angular oscillation frequency of the 

moving structure.   
Since the relative movement in lateral direction is not 

considered for MEMS devices, the original Reynolds 
equation is reduced to: 
 

Table 2. Parameters of modeled fluidic-structural microsystem. 
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Gas is a predominant working fluid in MEMS devices 

and thin gas films are realistically assumed to be 
isothermal, i.e. it is assumed that viscous friction does not 
cause a significant temperature change since: (a) thermal 
contact between the gas and the surrounding solid 
surfaces is very good in MEMS devices (volumes are 
small and surface areas are large), and (b) common 
MEMS materials are good thermal conductors [1]. The 
equation of state for an ideal gas is [6]: 
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P
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ρ
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where R – specific gas constant (universal gas 
constant/molar mass), tg – gas temperature. 

For isothermal process P/ρ is constant and therefore 
density in the Reynolds equation can be replaced with 
pressure [6]. The equation given below is known as 
isothermal compressible Reynolds equation, which will 
be further referred to as nonlinear Reynolds equation 
(NRE): 
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where total pressure ),,(),,( 0 tyxPptyxP += , p0 is 

the initial static ambient pressure in the gap and 
),,( tyxP  is the deviatory (additional) pressure caused by 

the squeezed air-film effect. 
Reynolds equation assumes continuous fluid flow 

regime. A general condition of acceptance of this 
assumption is the Knudsen number Kn, which is a 
measure of the viscosity of the gas under the 
microstructure [2]: 
 

00

0

hp

PL
K atm

n = . (7) 

 
where h0 – initial value of gap (gas film) thickness,  L0 

is the mean free path of air particles at atmospheric 
pressure Patm (i.e. the distance covered by a molecule in a 

Description and Symbol Value Unit 
Microstructure length l 117 [µm] 
Microstructure width w 30 [µm] 

Microstructure thickness t 2.0 [µm] 
Initial air-film thickness h0 2.0 [µm] 

Young’s modulus E 207 [GPa] 
Density ρ 8908 [kg/m3] 

Poisson’s ratio ν 0.31 - 
Dynamic viscosity of air µ 18.3×10-6 [Pa s] 

Fig. 2. Schematic of the modeled fluidic-structural microsystem 
consisting of a cantilever microstructure under the effect of 
forces generated by squeezed air film. 
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gas between successive collisions). For the Patm = 101325 
Pa, L0 ≈ 65 nm [1]. Based on the Knudsen number, the 
flow can be divided into four regimes: continuum flow 
(when Kn < 0.001), slip flow (when 0.001 < Kn < 0.1), 
transitional flow (when 0.1 < Kn < 10), and free 
molecular flow when (Kn > 10) [1]. In the continuum 
regime, the fluid is governed by the Navier-Stokes 
equations (or equivalently the Reynolds equation). 
However, many MEMS devices are designed to operate 
at very low pressure with a very small gap between the 
electrodes. Under such rarefied gas conditions, Knudsen 
number increases to the noncontinuum regimes and 
interaction of gas molecules with the surfaces become 
important, reducing gas viscosity, through so-called “slip 
effect” where particles can have fewer interactions before 

escaping [1,5]. Thus, the use of original Reynolds 
equation in the noncontinuum regimes is not correct. 
Fortunately, extensive research has extended the validity 
of Reynolds equation to the noncontinuum regimes, 
thereby enabling description of the flow using single 
model. A convenient and popular way to account for gas 
rarefaction effects is to modify dynamic viscosity µ in 
Reynolds equation by introducing effective viscosity 
coefficient µeff. Various expressions have been proposed 
by different researchers for µeff  since the beginning of the 
20th century, when Knudsen presented a correction 
coefficient based on his research on the gas flow in 
capillary tubes [12]. Summary of these expressions is 
given in Table 1. Though all expressions give similar 
results, expression from Veijola et al. is valid over a 
wider range of Kn in comparison to others (0 ≤ Kn ≤ 880) 
and therefore is widely used in squeeze-film damping 
analysis [2,12,13]. 

3. Formulation of a model of the fluidic-structural 
microsystem 

A microstructure having cantilever-type or fixed-fixed 
configuration is a basic structural element of most MEMS 
actuators and sensors such as microswitches, capacitive 
pressure sensors, accelerometers, filters, resonators and 
many others. Schematic drawing of a basic modeled 
fluidic-structural microsystem with typical parameter 
values are provided in Fig. 2. Firstly, a mechanical model 
of the microstructure was created in the finite element 
(FE) modeling software Comsol [13]. In the FE 
formulation microstructure dynamics is described by the 
following equation of motion presented in a general 
matrix form: 

 
[ ]{ } [ ]{ } [ ]{ } ( ){ }UUtQUKUCUM &&&& ,,=++ . (8) 

1st flexural mode: 116.1 kHz 

2nd flexural mode: 727.2 kHz 

1st torsional mode: 899.4 kHz 

Fig. 3. Simulation results: vibration mode shapes of cantilever 
microstructure and the corresponding pressure mode shapes. 

Fig. 4. Time responses of velocity (1) and pressure (2) at 
arbitrary midpoint of cantilever microstructure excited with 
sinusoidal force of the magnitude that produces large-amplitude 
vibrations and which frequency is equal to fundamental 
frequency of microstructure in the presence of squeeze-film 
damping. 
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where [ ] [ ] [ ]KCM ,,  are mass, damping and stiffness 

matrices respectively, { } { }{ }UUU &&& ,,  – displacement, 

velocity and acceleration vectors, ( ){ }UUtQ &,,  – vector 

representing air pressure forces generated by fluidic-
structural interaction between the microstructure and 
ambient air.  
The model consists of a flexible 3D microstructure, 
which is fixed at x = 0 and is suspended by distance h0 
over a stationary structure. Parameters listed in the table 
of Fig. 2 are used for simulations. It is assumed that both 
structures are surrounded by the air. Therefore the gap in-
between is filled by the air and forms an air-film, which 
is characterized by the following parameters that are 
specified in Comsol during pre-processing stage:            
h0 – initial air-film thickness, µ – dynamic viscosity of air 
at standard pressure and temperature STP (101 kPa, 
25°C), L0 – mean free path of air particles at atmospheric 
pressure and p0 – initial ambient pressure. The 
microstructure is initially at rest in its undeformed 
configuration. 

In order to add the effect of squeeze-film damping to 
the mechanical model, it was necessary to transform eq. 6 
into weak form and insert into the Comsol. To this end   
the procedure provided below was performed.  

The variable gap thickness h is expressed as: 
 
( ) ( )txzhtyxh ,,, 0 −=  . (9) 

 
where z(x,t) is deflection of the microstructure. 
Then we obtain the following form of compressible 

Reynolds equation by taking into account that 
),,(),,( 0 tyxPptyxP += and µ = µeff (model of Veijola 

is used here for µeff as given in Table 1): 
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Air can freely move into and out of the gap. The 

additional time-dependent pressure component ),,( tyxP  

appears due to transient changes in the gap size during 
microstructure movement and it depends on the gap size 
and its deformation velocity as well as on the properties 
of the air and the structures. Because the system’s 
surroundings are in equilibrium, the only force 
component that affects the moving microstructure results 
from the additional film pressure ),,( tyxP . 

Dirichlet boundary condition is: 
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Due to symmetry only half of the microstructure is 

modeled therefore the condition at symmetry is as 
follows: 
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where, n – outward normal vector. 
At open edges of the microstructure the pressure is 

equal to p0, i.e. variation of ),,( tyxP  vanishes at the 

edges of the gap. This is an adequate assumption since 
the aspect ratio (ratio between lateral dimensions and 

t1 t2 t3 t4,5 

Fig. 5. Simulated free vibration response curves of the arbitrary 
point at the end of the microstructure after it was released from 
its initial deflected position z0 = 1 µm for different p0 in the gap 
of  h0 = 1 µm. Curves: 1– 105 Pa, 2 – 104 Pa, 3 – 103 Pa, 4 – 102 
Pa, 5 – 10 Pa.  
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Fig. 6. Variation of time-coordinate of peaks of free vibration 
response curves corresponding to different values of working 
pressure p0 as indicated in Fig. 5 with t1, t2, t3, t4 and t5. 
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thickness of the air-film) of the considered microsystem 
is large. 

Then eq. 10 is multiplied by some test function V and 
integrated over the domain of interest denoted by Ω: 
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Applying the Green-Gauss theorem and integrating by 

parts we obtain the following relation: 
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where Ω∂  denotes the boundary on the domain Ω. 
Taking into account boundary conditions we get the 

weak form of eq. 10: 
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The obtained weak formulation of the compressible 

Reynolds equation was inserted into the Comsol FE 
model and “coupled” to a lower surface (boundary) of the 
microstructure. It was possible to perform this insertion 
of weak form of Reynolds equation into the Comsol due 
to the unique feature of the software, referred to as 
“equation-based modeling”, which enables the user to 
input any number of equations via graphical user 
interface. When the equation is inserted, the software 
uses a special equation interpreter to automatically 
translate the expression into a finite element code. 
Thereby Comsol solves entered Reynolds equations in 
order to determine pressure distribution in the gap and 
then this pressure acts as a boundary load on the 
microstructure. The developed FE model was 
subsequently used for numerical study of squeezed-film 
effects.  

3. Simulation results 

Numerical analysis of squeeze-film damping starts 
with modal analysis, which purpose is to determine the 
distribution of air pressure forces in the gap when 
cantilever microstructure is vibrating in its flexural and 
torsional resonant modes. Comsol eigenfrequency solver 
is used for the simulations. Ambient pressure p0 in the 
gap is set to atmospheric value of Patm = 101 kPa. For 
better visualization model symmetry is not used here. The 
results, presented in Fig. 3, consist of several natural 
frequencies of the microstructure, corresponding 
structural mode shapes and the associated pressure mode 
shapes. When examining these results we may notice the 
obvious coupling between structural displacements of the 
microstructure and the pressure distribution in the gap. 
For example, in the 2nd flexural mode, the upward 
flexing of middle part of microstructure corresponds to a 
concave pressure profile in the respective region of 

(a) 

(b) 

Fig. 7. Simulation results: (a) amplitude-frequency 
characteristics of arbitrary point of the microstructure in the 
vicinity of its 3rd natural frequency and in the presence of 
squeeze-film damping at different levels of working pressure 
p0. (b) Relative shift of 3rd natural frequency of the 
microstructure presented as a function of working pressure p0, 
(h0 = 1 µm, l = 117 µm, f3 = 2.0482 MHz, σ  = 16.1 at             
p0 = Patm). 
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pressure distribution plot, which indicates the reduction 
of pressure in this part of the gap (i.e. decompression 
effect). And, in contrast, the downward flexing of free 
end of the microstructure corresponds to a convex 
pressure profile – zone of increased pressure with respect 
to atmospheric (i.e. compression effect).  

Simulations of forced vibrations of microstructure 
were carried out by exciting lower edge of the free end of 
the microstructure with a sinusoidal force:  
 

( )tfFF eae π2sin= . (18) 

 
where fe – excitation frequency, Fa – excitation force 

amplitude.  
Fig. 4 presents transient responses of velocity and 

pressure at arbitrary midpoint at the free end of cantilever 
microstructure excited with sinusoidal force of the 
magnitude that produces large-amplitude vibrations in the 
presence of squeeze-film damping. Large-amplitude 
vibrations (with respect to air-film thickness h0) are 
achieved when excitation force generates displacement of 
free end of the microstructure that is equal or close to h0. 
Fig. 4 indicates a nonlinear pressure response with 
respect to velocity response. 

In order to determine influence of squeeze-film 
damping effects on free vibrations of the microstructure, 
the latter is set to oscillate freely by displacing upwards 
its lower edge at the free end by a certain distance z0 
(static analysis) and then releasing (transient analysis). 
Large-amplitude free vibrations were obtained by 
selecting value of z0 such that h0/z0 ≈ 1. The results of this 
numerical analysis are provided in Fig. 5. By observing 
the time-coordinate of amplitude peaks of curves 
corresponding to different levels of p0 (t1, t2, t3, t4, t5) it is 
possible to notice that the time-coordinate of the peak 
decreases (from t5 to t1) with increase in p0. Fig. 6 
illustrates the variation of time-coordinate of the peaks 
with respect to ambient pressure p0 represented on 

logarithmic scale. It is obvious that the most pronounced 
reduction is from t3 to t1 as p0 changes from 1 kPa to 100 
kPa. Total relative decrease from t5 to t1 is 16.3 %. This 
effect also manifests in the case of small-amplitude   
(h0/z0 ≈ 100) free vibrations but in this case it is not so 
significant. Reduction of time-coordinate of amplitude 
peak with increasing pressure indicates that the frequency 
of natural vibrations increases and this in turn implies that 
in this case air undergoes compression leading to natural 
frequency shift. This agrees with the known fact that in 
the case of squeeze-film damping phenomenon pressure 
force exerted by the air-film undergoing periodic cycles 
of compression and decompression has two components: 
one is in phase with the microstructure velocity (i.e. 
viscous damping force) and the other is in phase with the 
displacement (i.e. elastic force component due to 
compressibility of air). A non-dimensional squeeze 
number σ  is used to characterize the degree of 
compression of the air in the gap [4]: 
 

2
00

212

hp

Leff ωµ
σ = . (19) 

 
where L is the characteristic length – the shortest 

lateral dimension of the microstructure, ω – angular 
oscillation frequency of the microstructure.  

At relatively low oscillation frequencies ω or 
relatively large air gaps h0 (i.e. low squeeze number – 
roughly σ ≤ 3 [2]), the viscous damping force dominates 
because the air can escape out of the gap without being 
compressed. While, at relatively high ω or relatively 
small h0 (i.e. high σ), elastic forces increase because of 
the air-film compression effect. In practice, the squeezed 
air-film represents a combination of viscous damping and 
elastic forces [4]. The main effect of air compression at 
high values of σ is the stiffening of the microsystem, 
which consequently increases its natural frequency. 

A sequence of frequency response analyses was 
carried out by applying harmonic load (eq. 18) in order to 
study the phenomenon of natural frequency shifting. The 
condition of larger σ  was achieved by increasing  
excitation frequencies fe and therefore the simulation was 
performed in the vicinity of 3rd natural frequency of 
transverse vibrations of analyzed microstructure             
(f3 = 2.05 MHz). The squeeze number for this case was 
equal to σ = 16.1 at p0 = Patm. Obtained amplitude-
frequency characteristics, provided in Fig. 7(a), clearly 
demonstrate that air undergoes compression and this in 
turn raises the natural frequency of the microstructure as 
the pressure increases from 1 kPa to 100 kPa. Fig. 7(b) 
illustrates the change of relative frequency shift as a 
function of p0. Simulation results reveal that the 3rd 
natural frequency of transverse vibrations in air at p0 = 
Patm is by 0.73 % higher than the value obtained under 
vacuum conditions (p0 = 0). It should be pointed out that 
no significant pressure dependence was observed below 
100 Pa and this result is in agreement with experimental 
results and observations found in open literature [11].  

Fig. 8. Simulation results: comparison of responses of velocity 
(1) and pressure (2) at arbitrary midpoint at the free end of 
cantilever microstructure excited with sinusoidal force of the 
magnitude that produces small-amplitude vibrations and which 
excitation frequency fe equals to 100f1. 
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Another sequence of transient simulations was carried 
out during which free end of cantilever microstructure 
was excited with sinusoidal force of the amplitude that 
produces small-amplitude vibrations and which frequency 
fe is 100 times larger than the first natural frequency of 
the microstructure f1. Fig. 8 demonstrates obtained 
transient responses of velocity (curve 1) and pressure 
(curve 2) at arbitrary midpoint at the free end of 
cantilever microstructure. The figure clearly indicates that 
the pressure lags behind the sinusoidal velocity. 
Simulations revealed that the magnitude of the phase lag 
increases with vibration frequency. This in turn indicates 
that increase in vibration frequency changes the character 
of squeeze-film damping phenomenon by lowering 
viscous damping forces and raising elastic forces.  

Conclusion 

Results of modeling and simulation of squeeze-film 
damping phenomenon in the case of cantilever-type 
fluidic-structural microsystem were presented in the 
paper. The developed finite element model is suitable for 
numerical analysis of the coupled fluidic-structural 
problem in the case of flexible microstructure operating 
in ambient air in close proximity to a fixed surface, which 
is a common case in different MEMS sensors and 
actuators such as microswitches, capacitive pressure 
sensors, accelerometers, filters, resonators, etc. The 
model enables evaluation of influence of surrounding air 
on the dynamic characteristics of the microstructures. 
Proposed model accounts for air rarefaction effects and is 
valid in wide a pressure range of 10 Pa ÷ 100 kPa. The 
particular emphasis of performed numerical analysis was 
on study of air compressibility effects leading to system 
stiffening, which results in the increase of natural 
frequency of the microstructure in comparison to results 
obtained under vacuum conditions.  

For modeling of squeeze-film damping a nonlinear 
compressible isothermal Reynolds equation was used. It 
was derived from the Navier-Stokes equations,  
subsequently transformed into weak formulation and 
inserted into mechanical finite element model of the 
cantilever microstructure, developed with the Comsol 
software, thereby expanding the capabilities of the 
software to perform more in-depth study of the 
considered squeeze-film damping phenomenon. 

Numerical modal analysis was performed, which 
provided natural frequencies and mode shapes of a 
microstructure together with the corresponding pressure 
distribution in the gap.   

Simulations performed in the case of large-amplitude 
motion of the microstructure demonstrated the nonlinear 
response of the pressure in the air-film with respect to 
velocity response of the microstructure.  

Effect of natural frequency shifting was analyzed and 
observed in the case of free and forced vibrations of the 
microstructure. It was confirmed that vibration frequency 
of the microstructure changes the character of squeeze-
film damping phenomenon by reducing generated viscous 

air damping forces and increasing elastic forces. It is 
concluded that natural frequency shifting is observed 
under specific operating conditions that are defined by a 
combination of values of ambient pressure, air-film 
thickness, vibration frequency and lateral dimensions of 
the microstructure.   
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