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Abstract. Different kind of parametrical phenomena in vibrating systems are presented. Nonlinear properties of rotating 
and pendulum dynamical systems give some interesting industrial applications. The purpose of this paper is to show the 
possibility to generalize the models and to find a similarity of certain physical presentations and possible analysis. The 
effects of non-uniform rotation of unbalanced rotor, synchronization of multiples pendulums with common vibrating 
base, stabilization of vertical column, auto parametrical damper etc. are included in consideration.  
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Introduction 
 

Among the huge variety of vibrational machinery 
containing pendular and rotor elements and of possible 
description approaches for studies thereof, let us consider 
only those related with parametric oscillations [1-3]. The 
parametric excitation of oscillations in pendular and rotor 
systems results in a number of effects that are widely 
used to solve various vibrational or manufacturing 
problems [4]. 

Many of these effects are closely related. For 
example, upraise of irregularity in rotation of a rotor 
mounted on a vibrating foundation, self-synchronization 
of two or more pendula, vibrational sustaining of rotation 
of an unbalanced rotor appear in presence of the dynamic 
linkages of the same type.  

The appearance of dynamic stability of the upper 
position of a pendulum, dynamic stabilization of the 
vertical axis of a flexible rod curved under the effect of 
gravity, stabilization of the position of a free body 
mounted on a vertical rod are also related with one 
another and can be explained based on the theory of the 
parametric systems stability. 

The described models and phenomena can be 
associated with the pendular systems models featuring 
the autoparametric resonances.  In this study we consider 
the above mentioned effects on the example of a model to 
which many real structures can be reduced. 

 

Studied system/Computational model  
 

An absolutely rigid body 0m  (main or carrying body) 

is fixed on a linear viscoelastic suspension with stiffness c 
and viscous damping d (Fig. 1). The ideal guide allows 
the body to realize only translational motion along the 
vertical axis Оу which originates at the static equilibrium 
position of the center of gravity of the carrying body. 

 

Fig. 1. Scheme  of the autoparametric 
pendular system 
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A pendulum is hingedly attached to the carrying body 

in point А. This pendulum consists of a weightless rigid 
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bar of length l, and of a lump mass pm  situated on the 

free end of it. The rotations axis of the pendulum is 
normal to the plane хОу of the working element motion. 
The pendulum can effect angular oscillations, 
characterized by an angular degree of freedom α  
measured from the static equilibrium position of the 
pendulum. A deviation of the pendulum engenders a 
restoring couple of linear resistance α&1dS = , with 1d  

coefficient of resistance to rotation.  
An unbalance vibration exciter (unbalanced rotor) with 

mass rm  and eccentricity r  is installed on the main body 

in point В. The spin axis of the unbalanced rotors, as well 
as the axis of the pendulum, is perpendicular to the plane 
хОу of the carrying body motion. The plane хОу can be 
vertical or horizontal (in the latter case, gravity terms are 
excluded from the equations of motion).  

The unbalance position relative to the working 
element will be defined as the angular co-ordinate ϕ  of 

t  radius vector r  of the gravity center of the unbalance 
measured from the vertical axis Оу.  The rotation of the 
unbalance is sustained by an external torque M (electric 
engine torque), which can be described by the steady-
state characteristic of the engine. For steady motions the 
external torque can be assumed constant. In general, we 
will consider the motion of the system under the effect of 
gravity, although in some special cases gravity will be 
neglected. 

The system (Fig. 1) consists of three partial 
subsystems: main body on the viscoelastic suspension 
with motionless pendulum and non-rotating exciter 
{ }0,0 ≡=≠ αϕy , the unbalance of the exciter with the 

motionless main body { }0,0,0 ==≠ yαϕ  and the 

pendulum with the motionless main body. 
{ }0,0,0 ≠=≡ αϕy .  

The equations of the motion are following: 
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with rp mmmm ++= 0  - total mass of the whole 

system., where y  is displacement of the main body from 

the static equilibrium along the downwards direction Оу, 
ϕα ,  - unbalance and pendulum angular co-ordinates. 

The system (7) describes the non-linear oscillations of 
the autoparametric system with three degrees of freedom. 
Let us consider the particular cases following from the 
analysis of this system.  

 
The Rotor rotation irregularity, vibrational sustaining 
of rotation, self-synchronization 
 

Irregularity of the unbalance rotation caused by the 
rotation axis oscillations. For the sake of simplicity, 

assume the frequencies of the system are far removed 
from parametric resonances of the pendulum. In this case 
the pendulum does not oscillate ( )0≡α . Assume also 

that the main body constraints are ideal (i.e. 0=c and 
0=d ) and the gravity induces no torque. 

Therefore, in the steady state, the external moment is 
null and from the equations (7) it follows: 
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By eliminating from (8) the terms containing the main 
body accelerationy&& , we obtain the second order 

nonlinear equation relative to the sought unbalance angle 
of rotation function: 

,0)cossin( 22 =+− ϕϕϕϕλϕ &&&&  

with   1<= mJrm rrλ .                    (9) 

For 0:0 == ϕt   and   00, yy −==ϕϕ && ,  and 0=y&   

we obtain from (9):  

ϕλϕϕ 22
0 sin1−= &&  .                   (10) 

Because of the periodicity, the angular velocity (10) 
can be represented by the Fourier series: 

...)4cos2cos( 4200 −+−= ϕϕϕϕ aaa&& ,     (11) 

with naaa ...,,, 20  expansion coefficients of the angular 

velocity ϕ&  [2]. 

In steady state the constant component in (11) is to be 
equal to the average angular velocity ω  of the unbalance: 

ωϕ =00a& ,    therefore  00 aωϕ =& .        (12) 

Then the series (11) may be rewritten in the following 
form: 

,...4cos~2cos~
42 −+−= tata ωωωϕ& ,           (13) 

with   044022
~,~ aaaaaa ωω ==    . 

Therefore, under oscillatory motion of the axis of 
rotation, the angular velocity of the unbalance is a 
periodic function only composed by even harmonic 
terms. 

The oscillations of the angular velocity of the 
unbalance influence, naturally, the oscillations of the 
carrying body. From the first equation of (8) it follows 

( ) mrmy r ϕϕϕϕ cossin 2
&&&&& += .                (14) 

Since tωϕ sinsin = and substituting the series (13) in 

(14) we obtain the expression of the carrying body 
acceleration: 

( ) mtqtqtqrmy r ...5cos3coscos 531 +++= ωωωω&& .   

(15) 
where coefficients ...,,, 531 qqq  are combinations of the 

coefficients  ..,~,~
42 aa  [2]. 

Therefore, the oscillations of the carrying body 
contain not only the fundamental frequency but also an 
infinite set of odd harmonics.  

It would be interesting to notice that the irregularity of 
rotation of the unbalance may also be caused by the 
variation of the moment of gravity forces if the unbalance 
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rotates about a horizontal axis. For the sake of clarity, 
assume that the carrying body is motionless and its 
displacement is 0≡y . This case corresponds to the free 

rotation of the unbalance about a fixed axis. As before, 
we consider the steady state when the moment in the 
undamped system is null. The second equation of the 
system (14) gives then:  

;0sin =+ ϕϕ rgmJ rr &&                       (16) 

or                              0sin2 =Ω+ αα&& ,                         
(17) 

with rr Jrgm=Ω  - natural frequency of small 

oscillations of the unbalance around its static equilibrium 
position. 

By integrating (17) with initial conditions 
corresponding to the lower position of the unbalance 
gravity center 0,0,0 ϕϕϕ && ===t , we obtain:  

.)cos1(2 22
0 ϕϕϕ −Ω−= &&                        (18) 

Whence it follows that the angular velocity is not 
constant, but varies between 0max ϕϕ && =  at nπϕ 2= and 

2
0min 1 λϕϕ −= &&  at πϕ )12( += n ; with n=0,1,2, … ;  

12 0 <Ω= ϕλ & . 

Usually the magnitudes of the harmonic components 
of the angular velocity of the unbalance caused by its axis 
oscillations appears to be greater then the oscillations due 
to the gravity forces moment variation.  

Therefore, the unbalance angular velocity oscillates 
about its mean position which is constant (or varying 
slowly). The rotation irregularity results in the additional 
harmonic components in the spectrum of the excitation 
force.  

Usually these oscillations of the angular velocity are 
relatively small, but in some cases they can have a 
pronounced effect on system dynamics. On the other 
hand, provided the appropriate choice of system 
parameters, these oscillations can be amplified and used 
for some practical objectives, e.g. in order to generate a 
super harmonic drive of a vibrational machine [2]. 

Vibrational sustaining of rotation. Assume that under 
the effect of given external moment M the unbalance of 
the vibration exciter spins with a constant rotation 
speed const== 0ωω . Then the rotation angle is tωϕ =  

and its derivatives are 0, == ϕωϕ &&& . As a result, the first 

and the second equations of (7) may be rewritten in the 
following form: 
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                (19) 

and the third one will determine the value of the drive 
torque, necessary to sustain the carrying body and 
pendulum oscillations, i.e. Mtgyrmr =−− ωsin)( && .  

The right-hand term of the first equation of (19) 
includes a nonlinear component due to the influence of 

the pendulum oscillations on the main body motion. In 
order to simplify the analysis, this influence can be 
neglected as well as the dynamical reactions of the stays 
of the main body. Thus, pendulum axis motion can be 
considered as periodic: tAy ωcos= .  

Then the second equation of (19) becomes the 
following: 

0sin)cos( 2
1 =−++ αωωαα tAglmdJ pp &&& .    (20) 

In the simplest case the pendulum rotates with a 
steady angular velocity ω , i.e.  

)(tt γωα += ,                                (21) 

where )(tγ  stands for an additional periodic component 

of the rotation angle, the average value of which over a 
period is null.  

The function (21) is not an exact solution of (20) 
because the latter will not be satisfied at arbitrary t. 
However, if one takes an average of the equation (20) 
over a period ωπ2  with (21) taken into account, it 

comes out that the pendulum rotation is possible under 
the condition that the periodic component of its rotation 
angle can be described by the following expressions 
[4,5]:   

( )ωγ lAmd p12sin =    or   ( )ωlAmd p12 <1  .    (22) 

Self-synchronization. The phenomenon of self-
synchronization consists in the existence of rotation of 
the pendulum and the unbalance fixed on the main body  
(Fig. 1), with equal angular velocities while their partial 
angular velocities are different [4,6]. In other words the 
case is to find the conditions of existence and stability of 
solutions of the system (7) as following:  

( )
( ).)(

,)(),(

222

111

tt

tttyy

ωγεωσϕ

ωγεωσαω

++=

++==
         (23)  

Here ω  is the absolute value of the synchronous 
angular velocity of the pendulum and the unbalance, iε  

are initial rotation phases of the pendulum and the 
unbalance (constant), 1±=iσ characterizes the direction 

of rotation, )(),( tty i ωγω  are π2 -periodic functions of 

tω . 

The laws of motion (23) suppose that the pendulum 
and the unbalance rotation have a phase lag with respect 
to the carrying body oscillations. As in the case of 
vibrational rotation sustaining, the solution (23) would 
not satisfy (7) for every t. However, when the process is 
considered as an average over the period ωπ /2 , i.e. one 
rotation of the pendulum or of the unbalance, the 
solutions (23) can be considered as approximate, which 
provide the expressions of the synchronous rotation speed 
ω  and of the phase lag 21 εεε −=  [2,4,5]. 

 
Dynamic stability under parametric excitation 
(dynamic stability of the inverse pendulum) 
 

From the equation (20) under small angular deviations 
of the pendulum (Fig. 2,a) from the vertical (for 

αα ≈sin ) it follows [1]: 
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0)cos( 2
1 =−++ αωωαα tAglmdJ pp &&& . 

After adimensionalizing the equations we come down 
to Mathieu's equation. The stability analysis shows that 
the upper position of the pendulum is attained under the 

condition Agl2>ω . Notice that damping brings 

about the appearance of a threshold of the excitation 
beyond which the stability is achieved. 

а)  b)  

Fig. 2. Kpitsa’s pendulum  (а) multipendular system (b) 
  

P.L. Kapitsa was one of the first to observe this 
phenomenon experimentally and to provide its theoretical 
interpretation [7]. In numerous works that followed other 
researchers have shown that vertical vibrations can 
stabilize chain pendula (Fig. 2, b) [7].  

Further insight into the dynamical stability of the 
chain pendula allowed to explain the effect of appearance 
of stability of vertical axis of flexible rods and strings 
under vibration. We provided a detailed presentation of 
this field while the last conference [8]. There are various 
examples of flexible structures with a close-to-zero 
transverse stiffness (antennae, hoses, ropes) attain a 
straight vertical axis under vibrations.  

 
Autoparametric vibration suppression  
 

All the above mentioned examples (except the 
dynamical stabilization of a flexible rod) correspond to 
non-resonant vibration excitation. It is of particular 
interest to consider the case of resonance excitation of 
main body vibrations while the natural frequency of the 
pendulum oscillations is tuned to the frequency of the 
principal parametric resonance (i.e. in the ratio 1:2 to the 
main resonance). Then the model given by Fig. 1 can be 
taken as an autoparametric system with a dynamic 
vibration dampener realized by the pendulum [9,10]. This 
system dynamics are also described by the equations (7).  

In order to simplify the analysis, the variance of the 
unbalance rotation velocity will be neglected:  tωϕ =  

with const=ω , which allow us not to consider the 
interaction of the main body with the exciter. Therefore, it 
can be inferred from (7):  
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For further computations we will use scales and 
adimensional parameters, issued from partial subsystems 
consideration.  

The time scale ∗T  and linear displacement scale ∗Y  

can be taken respectively as the period of the natural 
oscillations of the main body on viscoelastic suspension 
while the pendulum is motionless and static deviation 0y   

of the main body with the pendulum mass, i.e.: 

 cmgYcmT == ∗∗ , .                       (26)        

Then the adimensional time and displacement of the 
main body are written as follows 

∗∗ == YyTt ξτ ,  .                          (27) 

The normalization coefficient of linear damping for 
the degree of freedom  ς  can be expressed [11] as 

( ) 12 <= cmdς                             (28) 

(ς =1 corresponds to critical damping).  

After introducing an adimensional pendulum length 

∗= Ylλ ,                                  (30) 

one can express the normalized natural frequency of the 
pendulum small oscillations ( αα ≈sin ):  

lgT∗=β    or view of (3) and (7):   λβ 1= .   (31) 

The normalization coefficient of linear damping for 
the degree of freedom α  ca be written as: 

( ) 1211 <= gllmd pς                        (32) 

( 11 =ς corresponds to critical damping). 

In order to adimensionalize the equations (24), the 
following dimensionless groups will also be introduced: 

( )∗∗ ==Ω= mYrmQTmm rp ,, ωµ ,          (33) 

The independent analysis of the influence of the 
exciter mass rm , radius r  and of the pendulum  mass 

pm , another normalization carried out via another 

normalization and other dimensionless groups, e.g.: 

( ) ∗∗ ==== YrYrmmcmd rpp ρµµς ,,,20 .   (34) 

The ratio 12 =β  corresponds to the internal 

resonance in the autoparametric system  2:1: =ξα ωω . 

Moreover, if the frequency of the external forcing equals 
the natural frequency of the natural system 1=Ω , the 
external resonance takes place. 

 
Results 
 

The results of numerical computations of non-
dimensional magnitudes of oscillations of the main body 

0
ξA  and the pendulum angle 0αB  as functions of the 

excitation frequency (FRF) are given on Fig. 3 and Fig. 4 
by solid lines. As a comparison, the FRF with the 
pendulum switched off is given by the dashed line on 
Fig. 3. All the computations are conducted with the 
following values of the parameters:  

.01,0;02,0;5,0;15,0;04,0;5,0 10 ====== ζζρµµβ pr

The tuning of the pendulum on the internal resonance 
5,0=β  in the vicinity of the external resonance 1≈Ω  

provokes a substantial reduction of magnitude (more than 
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ten fold) of oscillation of the main body (solid line) as 
compared to the resonant response, traced for the 
motionless pendulum (dashed line). It is important to 
notice that the pendulum damper is efficient only in the 
neighborhood of the resonance peak.  

Depending on whether the frequency increases or 
decreases, different segments of the response curve take 
place. As the frequency Ω  increases, the segments 
ABCDEF are realized, and the segments FGHJA as it 
decreases (on Fig. 3 and Fig.4 arrows show the 
magnitude on the response curve branches that are 
realized under respective frequency Ω  variation trend). 
As may be inferred from Fig. 4, the pendulum triggering 
occurs in a jump-like manner.  
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Fig. 3. Principal masse magnitude characteristic 
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 The discontinuous behavior of the resonance curve 
near the resonance implies drastic conditions of turning 
on and off of the pendulum dampener and is associated 
with a torque of resistance to the pendulum rotation. 
Outside the interval [ ]+− ΩΩ∈Ω ,  the pendulum remains 

motionless (Fig. 4) and will not bring about any 
additional resonances. 
 

Conclusions 
 

The revealed properties of autoparametric vibration 
dampener show that its application is more efficient in 
comparison with a linear dampener which is a tuned mass 
damper [11]. The use of the pendulum dampener is 
particularly efficient in systems subject to broad-band 
excitations, when it is important to reduce the magnitude 
of  the specific resonant oscillations. The autoparametric 
damper operates only in the vicinity of the tuned 
frequency and does not imply any resonant oscillations 
on other frequencies, in contrast to classical dampeners, 
the efficient performance is accompanied by occurrence 
of resonances on other frequencies (dashed line on Fig. 
3). Notice that other conditions being equal (aside from  
structural particularities and strength considerations) the 
classical damper might be somewhat more efficient. 
However, the presence of additional resonance peaks 
makes this type of dampeners less suitable, especially in 
case of brad-band excitation. 
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