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Abstract. Different kind of parametrical phenomena in vibmgtsystems are presented. Nonlinear propertiestatimg
and pendulum dynamical systems give some integestotustrial applications. The purpose of this pagé¢o show the
possibility to generalize the models and to firglrailarity of certain physical presentations andggible analysis. The
effects of non-uniform rotation of unbalanced rp®ynchronization of multiples pendulums with conmrmabrating
base, stabilization of vertical column, auto parait@ damper etc. are included in consideration.

Keywords: pendular and rotor elements, dynamic stabilizatiparametric systems stability, selfsynchronization,
autoparametric vibration suppression

Nomenclature: Effects of non linear mechanics in vibration system

Introduction Studied system/Computational model

Among the huge variety of vibrational machinery  An absolutely rigid bodym, (main or carrying body)
containing pendular and rotor elements and of pssi s fixed on a linear viscoelastic suspension wifinessc
description approaches for studies thereof, letamsider 54 viscous dampind (Fig. 1). The ideal guide allows
only those related with parametric oscillations3[1The  he body to realize only translational motion alcthg
parametric excitation of oscillations in penduladaotor  yertical axisOy which originates at the static equilibrium

systems results in a number of effects that areelwid hosition of the center of gravity of the carryingdy.
used to solve various vibrational or manufacturing

example, upraise of irregularity in rotation of atar

mounted on a vibrating foundation, self-synchrotiara

of two or more pendula, vibrational sustaining atfation

of an unbalanced rotor appear in presence of thardic

linkages of the same type. <
The appearance of dynamic stability of the upper

position of a pendulum, dynamic stabilization of th

vertical axis of a flexible rod curved under théeef of

gravity, stabilization of the position of a free dyo A

mounted on a vertical rod are also related with one

another and can be explained based on the theateof

parametric systems stability. y . P
The described models and phenomena can be o

associated with the pendular systems models featuri Fig. 1. Scheme of the autoparametric

the autoparametric resonances. In this study wsider pendular system

the above mentioned effects on the example of aefrtod A pendu|um is h|nged|y attached to the Carrying)bod

which many real structures can be reduced. in point 4. This pendulum consists of a weightless rigid

M
)/,—‘r
B '

problems [4].
Many of these effects are closely related. For %
c
m,
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bar of lengthl, and of a lump mass, situated on the assume the fr_equencies of the system are far rginove
free end of it. The rotations axis of the pendulisn from parametric resonances of the pendulum. Indase

normal to the planeOy of the working element motion. the pendulum does not OSC'”a(e‘ EO)' Assume also
The pendulum can effect angular oscillationsthat the main body constraints are ideal (ice=0and
characterized by an angular degree of freedem d=0) and the gravity induces no torque.

measured from the static equilibrium position of th  Therefore, in the steady state, the external morisent
pendulum. A deviation of the pendulum engenders aull and from the equations (7) it follows:
restoring couple of linear resistan&®=d, &, with d; {my: M r(¢Sing + ¢ cosp);
coefficient of resistance to rotation. . .

An unbalance vibration exciter (unbalanced rotathw Jio-mrysing=0.
massm, and eccentricityr is installed on the main body By eliminating from (8) the terms containing theima
in pointB. The spin axis of the unbalanced rotors, as welbody acceleraticy, we obtain the second order
as the axis of the pendulum, is perpendicular ¢oplane  nonlinear equation relative to the sought unbalamgle
xOy of the carrying body motion. The plan€y can be of rotation function:
vertical or horizontal (in the latter case, grauiyms are Y Y 2 _
excluded from the te(Jations of motion). i =X (gsing+¢”cosp) =0,

The unbalance position relative to the working with A= m(r/\/Jr_m<1. 9)
element will be defined as the angular co-ordinatef Fort=0:¢=0 and ¢=gy y=-Y,, andy=0

t radius vectorr of the gravity center of the unbalance \ye optain from (9):
measured from the vertical axi%. The rotation of the o P
unbalance is sustained by an external torii€electric <ﬂ=¢’o/\/1—/1 SULI 7 (10)
engine torque), which can be described by the gtead Because of the periodicity, the angular velocit@)(1
state characteristic of the engine. For steadyanstthe can be represented by the Fourier series:
external torque can be assumed constant. In genegal @ = g8y —a,coS2p + g, cosdp —...), (11)
will consider the motion of the system under thieafof
gravity, although in some special cases gravityl b )
neglected. velocity ¢ [2].

The system Kig. 1) consists of three partial In steady state the constant component in (11 et
subsystems: main body on the viscoelastic suspensi@qual to the average angular velocityof the unbalance:
with motionless pendulum and non-rotating exciter P08 =@, therefore g, = w/a, . (12)

{y=0,p=a =0}, the unbalance of the exciter with the  Then the series (11) may be rewritten in the foitmyv
motionless main body{p =0, @ =0, y=0} and the form:

(8)

with ay, a,,..., &, expansion coefficients of the angular

pendulum with the motionless main  body. ¢ = -8, CoS20t + 8, cosat —..., , (13)
{y=0,p=0a=0}. with &, =wa,/ay, 8, = wa,/a,
The equations of the motion are following: Therefore, under oscillatory motion of the axis of
. Y rotation, the angular velocity of the unbalance ais
my+dy+cy—mrr(gosm(p+(p COS(D)— periodic function only composed by even harmonic
—-mll@sina +a? cosa )= 0; terms.
P (a _ a+a" ) @) The oscillations of the angular velocity of the
Jpd +da —mgl(y—g)sina =0 unbalance influence, naturally, the oscillations thé
J.p—mr(y—g)sing=M; carrying body. From the first ezquation of (8) itidovs
with m=m,+m,+m. - total mass of the whole y=mrgsing+ge cos<p)/m. (14)

Since sing = sinwt and substituting the series (13) in
(14) we obtain the expression of the carrying body
acceleration:

§ = mr (g, coswt + gz oS3t + g COSSewt +...)/m.
(15)
where coefficientsq,, g, 0s,... are combinations of the

system., wherey is displacement of the main body from

the static equilibrium along the downwards directi2y,
a, ¢ - unbalance and pendulum angular co-ordinates.

The system (7) describes the non-linear oscillatioin
the autoparametric system with three degrees etlm.
Let us consider the particular cases following frim o
analysis of this system. coefficients ay, a,,.. [2].

Therefore, the oscillations of the carrying body
The Rotor rotation irregularity, vibrational sustaining  contain not only the fundamental frequency but also
of rotation, self-synchronization infinite set of odd harmonics.

It would be interesting to notice that the irregitjaof

Irregularity of the unbalance rotation caused by the  rotation of the unbalance may also be caused by the
rotation axis oscillations. For the sake of simplicity, variation of the moment of gravity forces if thebatance
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rotates about a horizontal axis. For the sake afitgl the pendulum oscillations on the main body motion.
assume that the carrying body is motionless and itsrder to simplify the analysis, this influence cae
displacement ig =0. This case corresponds to the freeneglected as well as the dynamical reactions okthgs
rotation of the unbalance about a fixed axis. Aktge  Of the main body. Thus, pendulum axis motion can be
we consider the steady state when the moment in ttf@nsidered as periodig = Acosct .

undamped system is null. The second equation of the Then the second equation of (19) becomes the

system (14) gives then: following:
Jrp+mrgsing =0; (16) Jpét + dhar + myl(g — Aw® cosmt)sing =0.  (20)
or d@+Q%sina =0, In the simplest case the pendulum rotates with a
(17)  steady angular velocity , i.e.
with Q=,/mrg/J, - natural frequency of small a=ot+y(t), (21)
oscillations of the unbalance around its staticildmium ~ Where y(t) stands for an additional periodic component
position. of the rotation angle, the average value of whigbra

By integrating (17) with initial conditions period is null.
corresponding to the lower position of the unbadéanc  The function (21) is not an exact solution of (20)

gravity centert =0, ¢ = 0, ¢ = ¢y, We obtain: because the latter will not be satisfied at arbjtra
_ = 5 However, if one takes an average of the equati@) (2
‘p:\/ﬂl’ o~ 2Q% (1~ cosp). (18) over a period27/w with (21) taken into account, it

Whence it follows that the angular velocity is notcomes out that the pendulum rotation is possibléeun
constant, but varies betweefpy,,, =@, at ¢=2mand the condition that the periodic component of it&ation
angle can be described by the following expressions
Ormin :(/‘)mll—ﬁ at ¢ =(2n+1~x ; with n=0,1,2, ... ; [4 g]: y g =5p
A=20Q/¢y <1. siny = 2d,/(mlA®) or 2d;/(mylAw)<1 . (22)
Usually the magnitudes of the harmonic components Self-synchronization.
of the angular velocity of the unbalance causeddsxis

oscillationg appears to be greater t.hen the oiois due 1o pendulum and the unbalance fixed on the maity bo
to the gravity forces moment variation. _ . (Fig. 1), with equal angular velocities while their paltia
Therefore, the unbalance angular velocity oscilate 5 iar velocities are different [4,6]. In other ra® the

about its mean position which is constant (or V&Yi 456 s to find the conditions of existence antikifia of
slowly). The rotation irregularity results in thdditional  ¢|utions of the system (7) as following:

harmonic components in the spectrum of the exoitati

A, P P y=y(01), a =0yt +e+p(01)),
Usually these oscillations of the angular veloatg (/’=0'2(60t+52 +72(60t))-

relatively small, but in some cases they can have a Here w is the absolute value of the synchronous

pronounced effect on system dynamics. On the othe{ngular velocity of the pendulum and the unbalange,

hand, provided the appropriate choice of SYSteMyre initial rotation phases of the pendulum and the

?o?rzg]rifr;atst?cszj gélpél(lgt\llggs :zn i?\eo?(;?aehtf(;eegajt; “al unbalance (constant)y; = t+1characterizes the direction

The phenomenon of self-
synchronization consists in the existence of rotatbf

(23)

super harmonic drive of a vibrational machine [2]. of rotation, y(wt), y;(@t) are 2z -periodic functions of
Vibrational sustaining of rotation. Assume that under wt.
the effect of given external momelt the unbalance of The laws of motion (23) suppose that the pendulum

the vibration exciter spins with a constant rotatio znd the unbalance rotation have a phase lag wsipecs
speedv = w, = const . Then the rotation angle i®=wt  to the carrying body oscillations. As in the case o
and its derivatives are = w, ¢ = 0. As a result, the first Vvibrational rotation sustaining, the solution (28puld
and the second equations of (7) may be rewrittethén not s_atisfy (7) for every. However, when the process is
following form: considered as an average over the pefiedw, i.e. one
rotation of the pendulum or of the unbalance, the
solutions (23) can be considered as approximaté;hwh
+ mp| (0'5 sina + a2 cosa); (19) provide the expressions of the synchronous rotased

o and of the phase lag= ¢, — ¢, [2,4,5].

my +dy+cy=mre?cost +

Jpa +dia —mpl(y—g)sina =0;
and the third one will determine the value of thevel Dynamic stability under parametric excitation
torque, necessary to sustain the carrying body an@lynamic stability of the inverse pendulum)
pendulum oscillations, i.e-m.r(y—g)sinot =M .

The right-hand term of the first equation of (19)
includes a nonlinear component due to the influesice

From the equation (20) under small angular dewvigtio
of the pendulum Kig. 2,a) from the vertical (for
sina = « ) it follows [1]:
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Jpad +dha+myl(g- Aw? cosat)a =0. The time scaleT, and linear displacement sca¥

After adimensionalizing the equations we come dowF@n be taken respectively as the period of therahtu
to Mathieu's equation. The stability analysis shahat ©scillations of the main body on viscoelastic suspe
the upper position of the pendulum is attained uride while the pendulum is motionless and static deviaty,

condition @> /_Zgl /A. Notice that damping brings of the main body with the pendulum mass, i.e.:

about the appearance of a threshold of the emitati T.=4ynyc, Y, =mg/c. (26)
beyond which the stability is achieved. Then the adimensional time and displacement of the
- - main body are written as follows
T ) =T, E=y/Y, . 27)
1 » The normalization coefficient of linear damping for
R “ -~ the degree of freedong can be expressed [11] as
<! -~ - o /7 /\/
~ ¢ =d/(evem)<1 (28)
a) b) (¢ =1 corresponds to critical damping).

After introducing an adimensional pendulum length
A=1/Y,, (30)
: , . one can express the normalized natural frequendheof
P.L. Kapitsa was one of the first to observe this xp N 1z .u quendi
. S . pendulum small oscillationssina = « ):
phenomenon experimentally and to provide its thizake .
interpretation [7]. In numerous works that followether B=T.Jo/l orviewof (3)and (7): 5=1V2 . (31)
researchers have shown that vertical vibrations can The normalization coefficient of linear damping for

Fig. 2. Kpitsa’'s pendulum aj multipendular system (b)

Stat;“izi chain Pind_mﬂghz t:j) [71. | stability of th the degree of freedom ca be written as:

urther insight into the dynamical stability of the

chain pendula allowed to explain the effect of @pace 61= dl/ (Zmpl \/a)<1 (32)

of stability of vertical axis of flexible rods angtrings (¢, =1corresponds to critical damping).

under vibration. We provided a detailed presentaté In order to adimensionalize the equations (24), the
this f'e:d Wh"fe ]:[Ihe LGI‘St conference [8].hThere| HEEIOUS  following dimensionless groups will also be introdd:
examples of flexible structures with a close-toezer —m/m O o _ my 33
transverse stiffness (antennae, hoses, ropes)n adtai ﬂ_ p/™ @her Q mr/( *) (33)
straight vertical axis under vibrations. The independent analysis of the influence of the

exciter massm,, radiusr and of the pendulum mass

Autoparametric vibration suppression m,, another normalization carried out via another

b
All the above mentioned examples (except theormalization and other dimensionless groups, e.g.:
dynamical stabilization of a flexible rod) correspoto ¢, :d/(z\/ﬁ), fp =My /M,y =t/Y., p=t/Y, . (34)
non-resonant vibration excitation. It is of partau
interest to consider the case of resonance exuitaif
main body vibrations while the natural frequencytlé  resonance in the autoparametric system : o, =1:2.
pendulum oscillations is tuned to the frequencytt®  Moreover, if the frequency of the external forcieguals

principal parametric resonance (i.e. in the rat® tb the  the natural frequency of the natural systén=1, the
main resonance). Then the model given by Fig. 1b&n external resonance takes place.

taken as an autoparametric system with a dynamic
vibration dampener realized by the pendulum [9,T0]s  Results
system dynamics are also described by the equdfipns
In order to simplify the analysis, the variancetio¢ The results of numerical computations of non-
unbalance rotation velocity will be neglectedp = wt dimensional magnitudes of oscillations of the miadaly
with @ =const, which allow us not to consider the A? and the pendulum angl@ﬁ as functions of the
interaction of the main body with the exciter. Tefere, it  excitation frequency (FRF) are given Biy. 3 andFig. 4
can be inferred from (7): by solid lines. As a comparison, the FRF with the
my+dy+cy= pendulum switched off is given by the dashed lime o
Fig. 3. All the computations are conducted with the
i ) i o following values of the parameters:
Jpa +d16‘(+ mpgl Sina = mplysma. B =05 Uy = 0!04;lup = 015 p = 05; 4/0 = 002 é/l =001
For further computations we will use scales andrhe tuning of the pendulum on the internal resosanc
adimensional parameters, issued from partial stés¥s 5 _ 05 in the vicinity of the external resonan€@~1

consideration. provokes a substantial reduction of magnitude (ntoae

The ratio 28=1 corresponds to the internal

=ml (&sina +a? cosa)+ mro’sinot;  (24)
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ten fold) of oscillation of the main body (soliché) as Conclusions
compared to the resonant response, traced for the

motionless pendulum (dashed line). It is importémt The revealed properties of autoparametric vibration
notice that the pendulum damper is efficient omiythe  dampener show that its application is more efficign
neighborhood of the resonance peak. comparison with a linear dampener which is a tumeds

Depending on whether the frequency increases (damper [11]. The use of the pendulum dampener is
decreases, different segments of the response takee particularly efficient in systems subject to brdzahd
place. As the frequency) increases, the segments excitations, when it is important to reduce the nitagle
ABCDEF are realized, and the segments FGHJA as of the specific resonant oscillations. The autapaatric
decreases (onFig. 3 and Fig.4 arrows show the damper operates only in the vicinity of the tuned
magnitude on the response curve branches that &frequency and does not imply any resonant osaleti
realized under respective frequengy variation trend). on other frequencies, in contrast to classical darars,

As may be inferred frorfrig. 4, the pendulum triggering the efficient performance is accompanied by ocawoee

occurs in a jump-like manner. of resonances on other frequencies (dashed linEign

7 3). Notice that other conditions being equal (aditen

A° structural particularities and strength consideres) the
: -4 classical damper might be somewhat more efficient.

However, the presence of additional resonance peaks
makes this type of dampeners less suitable, edlyeitia
case of brad-band excitation.
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