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Abstract. The dynamic analysis is an important element of the mechanical design and control of parallel mechanisms. This 
paper presents a method for the dynamical modeling of the guided in three points parallel robots with six degrees of 
freedom having triangular platform, including the friction. The evaluation of the full generalized forces is performed in two 
stages. In the first stage, the drive generalized forces are established, based on the dynamical equations without friction. 
Using the Newton-Euler equations, the reactions from each joint are computed. In the second stage the additional drive 
generalized forces due to the frictions from the active and passive joints are computed by means of two approaches. The 
first approach considers the whole mechanism. The generalized additional forces which include the friction effect from the 
corresponding drive joints and the friction effect from all passive joints are calculated using principle of virtual power and 
the mechanism Jacobi matrices. The second approach treats the kinematic chains as independent. The generalized 
additional forces are evaluated using the virtual work principle. In both approaches the passive joints are approximated 
with compliant joints whose momentum are equal to the friction torques of these joints.  
Keywords: parallel robots, kinematics, dynamics, friction. 
 
Introduction 
 
 Dynamics effects and analysis are the basis of design 
specification and advanced control of parallel mechanical 
systems. To establish the equations of motion, there exist 
essentially four methods: Newton-Euler equations; 
Lagrange equations of first kinds with so-called 
LAGRANGE multipliers; Lagrange equations of 
second kind with a minimum number of system 
coordinates; Virtual work formulation. 
 In [1] different solutions for solving the dynamical 
model for the guided in three points parallel robots are 
presented. 
 Until now, in the most existing papers, the experimental 
identification of dynamics for the parallel robots is 
restricted to simple models in combination with adaptive 
control algorithms. The most important force source which 
is not included is the friction. Few authors have also 
approached the dynamic model considering the friction 
forces too. This gap was closed by a new approach 
presented in [2], where Grotjahn develops a complex 
dynamic model including friction, which uses Jourdain's 
principle of virtual power and is suited for the parallel 
robot control of the innovative hexapod PaLiDA. The 
friction model includes friction in both active joints as well 
in passive joints. Poignet et al. [3] deal with the application 
of the interval analysis to estimate the 4-degrees of 
freedom parallel robot dynamic parameters. Yiu et al [4] 

developed the dynamic modeling including friction for a 
planar 2-dof redundant parallel robot.  
 Riebe et al. [5] present a dynamic model for a Stewart 
platform with six DOF, based on Newton-Euler equations 
including the frictional behaviour. The parameters 
describing the friction model are identified and optimized. 
Chen et al. [6] present a dynamic model of a Cartesian 
guided tripod including the nonlinear compliance and 
mechanical friction. Quantitative analysis and comparison 
of the variation friction sources from the actuated joints 
and passive joints have been conducted. 
 It is estimated that the forces due to the friction 
represent about 25% from the forces/torques which are 
necessary for the manipulator movement in typical 
situations. Thus it is necessary to model these friction 
forces in order to reflect in the dynamic equations the 
physical reality.  
 For the friction forces approximation two models could 
be applied: the model of the viscous friction in which the 
force/torque ( fvQ ) due to the friction is in proportion to the 

joint movement speed and the model of Coulomb friction 
in which the force/torque ( fcQ ) due to the friction is in 

proportion to the normal reaction on the joint axis. 

  qcQ fv = ; )qsgn(N
2

d
Q rfc µ= - in rotational joint; 

 
  )qsgn(NQ fc µ= - in prismatic joint.                        (1) 
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  These two models together lead to a more reasonable 
approximation of the effects due to the friction:  
 

  fcfvf QQQ += .                                                        (2) 
 

 The parallel mechanisms contain also passive joints. 
The forces/torques which must be applied in the 
kinematical axes should be supplemented with the friction 
effect from these passive joints. 
  In the paper is proposed a method for the additional 
forces evaluation from the drive joints due to the friction 
from the drive and passive joints. The proposed method for 
the supplementary forces evaluation considers the friction 
effect from the all driving and passive joints of the 
mechanism. The passive joints are approximated with 
compliant joints which have the momentum equal with the 
friction torques from these joints. 
  The evaluation of the generalized forces is performed in 
two stages. In the first stage the drive generalized forces 
are established which are based on the dynamical equations 
without friction. 
  Based on Newton-Euler the reactions from each joint 
are computed. In the second stage are computed the 
additional drive generalized forces due to the frictions from 
the active and passive joints. 

Kinematic modeling of guided in three points parallel 
structures 

  The structural scheme of a guided in three points 
parallel mechanisms with 6 DOF is presented in the figure 
1 [7]. The circles surrounding the joints, which are located 
in the proximity of the fixed base suggest that these joints 
are actuated, each of them having 1 DOF. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Each kinematic chain, which connects the fixed base  

with the mobile platform, contains also a passive joint with 
1 DOF and a passive spherical joint with 3 DOF (guiding 
point). Each of them is moving with respect to the fixed 
base on a mobile 2-DOF curve. 
      As application it was chosen the 3-PPRS parallel 
manipulator (figure 2). 
 

 
 
 
 

The points iB  (i=1,2,3) and iE  (i=1,2,3) represent 

active prismatic joints, whereas the revolute joints and ball 
joints are located in iC  (i=1,2,3) respectively in iA  

(i=1,2,3). The six prismatic joints are actuated, the rest of 
them being passive. The geometric parameters R , r  and l  
represent: radius of fixed base, radius of the working 
platform (WP) and length of the guiding rods ii AC , and 

0
33

0
22

0
11 240;120;0 ==′==′==′ δδδδδδ  represent 

the angles between kinematic chains from the WP and the 
fixed base level.  

To solve the geometric problems, Itul and Pisla [2] use 
the method of input-output (I-O) equations. The I-O 
equations are the relations between the joint coordinates 
( iq  and 3iq + ; i=1,2,3) and the world coordinates of the 

working platform (WP), X,Y, Z, α, β, γ : 
 
 ( ) ( ) 321i00l iCi

22

Ci ii
,,;nPP;PP ==⋅−=−− .           (3) 

 
where: )(Pi iii Z,Y,X  is radius vector from the base frame 

center O to the guiding point Ai; )(P
iiii CCCC

Z,Y,X  is 

radius vector from the point O to joint iC  center; in  is the 

unit vector of iC  joint axis. In this case the inverse 

geometrical model has an analytical solution, which 
involves a second degree algebraic equation solving and 

Fig. 2. The 3-PPRS parallel structure 
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the geometrical direct model can be only numerically 
solved by using the Newton-Raphson method. 
 To find the kinematic model (KM), the I-O equations 
are derived with respect to time yielding to: 

 

 [ ] [ ]Xq BA =                                                             (4) 

 
where: )q,q,q,q,q,q( 654321q  is the driving velocity vector, 

),,,Z,Y,X( ZYX ωωωX  is the end-effector velocity vector, 

[ ]A  and [ ]B  are Jacobi matrices, )Z,Y,X(P  is the radius 

vector from the point O to the o mobile platform center.  

 While the inverse kinematic model ( [ ] [ ]Xq BA 1−= ) has 

an analytical solution, the direct kinematic model 

( [ ] [ ]qX 1 AB −= ) can be only numerically solved, that 

means it requires the discrete definition of the matrix [ ]B  
for the mobile platform pose parameters and then its 
numerical inversion. 

Dynamics without friction 

 The proposed algorithm for the inverse dynamic model 
without friction consists from four steps, as following: 
 
Step 1. The guiding bar iiAC  of the kinematic chain “i” is 

separated from the system (figure 3). 
 
 The theorem of the angular momentum with respect to 
the mobile axis of the rotation joint iC allows the deriving 

of the iW  component of the reacting force from the 

spherical joint, which is normal on the plane defined by the 
rotation joint axis and the guiding bar: 
 

 ibi3ibi ulm
3

1
cu)qg(m

2

1
W ++= +        (5) 

 
Step 2. The mobile platform is separated from the rest of 
the mechanism (figure 4). 
 The Newton-Euler equations, which model the moving 
of the mobile platform, are the following: 
 

 ∑
=

++++=+
3

1i
iiio mMmM ;)WV(Hg)(a)(

 [ ] [ ] ∑
=

++×=×+
3

1i
iiiiII )WV(HoAωωε          (6) 

where: 

0a  is the acceleration of the point o; g  is the gravity 

acceleration vector; iH  is the vector component of the iA  

spherical joint reacting force, which is parallel to the iC  

joint axis; iV  is the vector component of the iA  spherical 

joint reacting force, which lies along the iiAC  guiding rod; 

iii W wW =  is the vector component of the iA  spherical 

joint reacting force, which is normal on the plane defined 

by the joint rotation axis iC  and the rod iiAC ; [ ]I  is the 

inertia matrix of the mobile platform. The equations (6) 
allow obtaining the reaction components iH  and iV  from 

the spherical joints with respect to the kinematic 
parameters of the mobile platform. 
 
 

 
 

 
Fig. 3. Dynamic equilibrium of the iiCA  guiding rod 

 
 

 

 
 

Fig. 4. Step 2 
 
 

 
Step 3. The iii ACE kinematic chain is separated and all 

the forces are introduced similarly to the steps 2 and 3 
(figure 5). By projecting the moving equations of the mass 
centre on the iB , the generalized force 3iQ +  is derived: 

 

 

iiii

i
2
iiib3ib3i3i

cuWsuV

suucuu
2
l

mgqmmQ

−+

+−+++= +++ )())((
 (7) 

 
The “i” element mass was noted with “ im ”, the “i+3” with 

“ 3im + ” and the guiding rod mass with “ bm ”. 
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Fig. 5. Step 3 
 

 
Step 4. The iiii ACEB  kinematic chain is also separated 

(figure 6). The moving equation of the mass center with 
respect to the joint axis iE  yields the generalized actuating 

force iQ : 

 
 iib3iii Hq)mmm(Q +++= +                     (8) 

 

 
 

Fig. 6. The BiEiCiAi kinematic chain 

Dynamics with computation of the additional drive 
generalized forces due to the frictions 

 A friction torque in a passive joint is a vector, which is 
situated along the relative rotational speed of the 
considered link with respect to the neighboring links and it 
has opposite direction to this relative speed (fig. 3) [8]: 
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 The following notations were made: iii W,V,H  - the 

reaction force components from the spherical joint 
considering the model without friction; siM  - the friction 

moment from the spherical joint iA ; sc - the viscous 

friction coefficient from the spherical joint; sµ - the 

Coulomb friction coefficient from the spherical joint; sd  - 

the diameter of the spherical joint ball; ωuω −= iri  - the 

relative angular speed of the guiding bar iiCA  with 

respect to the mobile plate; 
iii u nu =  - the absolute 

angular speed of the guiding bar iiCA ; ω  - the absolute 

angular speed of the mobile plate; riM  - the friction 

moment from the passive rotation joint iC ; rc  - the viscous 

friction coefficient from the rotational joint iC ; rµ  - the 

Coulomb friction coefficient from the joint iC ; rd  - the 

diameter of the rotational joint spindle; bm  - the guiding 

bar mass, g  - gravity acceleration, c  - cosine; s - sine. 
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Fig. 7. The “i” kinematic chain 
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 The first approach assumes the propagation of the 
virtual displacements, applied to the drive joints to all 
passive joints of the mechanism, respectively that a 
displacement of an active joint involves displacements in 
all passive joints of the mechanism. 
 Through the differentiation of the closure equations for 
the direct geometrical model is obtained the relation 
between the drive joint speeds and the passive joint speeds: 

 [ ] [ ] [ ] [ ] [ ] [ ]u

1

uuuuu ABJJBA −=== ;qu;uq ;  
 

 [ ] [ ]T321

T

621 uuuqqq ,,u,,...,,q == .                          (10) 

 
The direct kinematical model has the form: 

  [ ] [ ] [ ] [ ]AB
J

J
JJ 1X ⋅=⎥

⎦

⎤
⎢
⎣

⎡
== −

ω
;qX ; 

  [ ]TZYXZYX ωωω ,,,,,X = .                                      (11) 

 
In order to get the generalized drive forces which are 
necessary to overcome the frictions from the passive joints 
is applied the principle of the virtual power. Finally it 
yields: 
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                  (12) 

where: tc  is the viscous friction vector from the active 

prismatic joint; µ  is the sliding friction coefficient from 

the same joint. 
 
 The second approach assumes that the virtual 
displacements applied to the drive joints are propagating 
only to the mobile platform level. The generalized drive 
forces which are necessary to overcome the frictions from 
the passive joints are obtained by using the virtual work 
principle: 
 

 
i

irisip

3i

i

0p

i cul

n)MM(
Q;

cul

kM
Q

⋅+
−=

⋅
−= +∆∆ .            (13) 

 
In both approaches the necessary drive generalized forces 
for the specified displacement performance have the form: 

 
;QQQQ p

i
m
ii

m
i ∆∆ ++=

3,2,1i,QQQQ p
3i

m
3i3i

m
3i =++= ++++ ∆∆ .                  (14) 

 
where )3,2,1i(Q,Q 3ii =+  are the generalized drive forces, 

which have been obtained with the inverse dynamical 
model without friction and m

iQ∆  and m
3iQ +∆  are the 

additional forces due to the frictions from the active joints: 
 

[ ]
),sgn(

)()(
2

333
*2*

i

iiiiii

it
m
i

q

qmgmmVW

qcQ

⋅

⋅+++++

+=∆

+++µ                             

(15) 

( ) ( ) ).sgn( 3
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it
m
i

qWqmH

qcQ

µ
           (16) 

 
 
Some simulation results 
 

The new dynamic algorithms including friction effects 
based on the above presented approaches have been 
implemented in a simulation program for the 3-PPRS 
parallel robots with the fixed base at the bottom. For more 
accurate approximation of the dry friction, in the developed 
program was taken into account the modulus of the relative 
velocity.  

The chosen input data for the parallel robot are: R 
=0,15 m, l =0,30 m, r =0,10 m, δ1 = δ1' =0o, δ2 = δ2' =120o, 
δ3 = δ3' =240o, M =1 kg, the manipulated object mass  m =1 
kg, the actuators masses:  m1 =  m2 = m3 = m4 =  m5 = m6 = 
0,5 kg, the guiding bars masses mb=0,2 kg. 

The selected displacement of the working platform is a 
helical translation:  
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In the figure 8 are represented the generalized drive forces 

n1Q  and m
n1Q  for the motor 1 considering the simplified 

model without friction respectively the new model 
considering the friction forces. 
 

The following input data have been considered: 
 

;m/sN0015.0ct ⋅= ;rad/smN02.0cr ⋅⋅=  

;rad/smN02.0cs ⋅⋅= ;05.0=µ ;m01.0d r =  

;m016.0ds = ;1.0p =µ ;m00005.0s =  
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;1/
d

s2 2
p

r

pr µµµ ++= ps 3

1 µµ = . 

 
In the figure 9 are represented the motor 1 additional forces 
due to the friction (global force n1Q∆ , forces due to the 

friction from the active and passive joints nm1Q∆  

respectively np1Q∆ ). For the imposed mobile platform 

displacement, both approaches have lead to the same 
values of additional forces due to the frictions from the 
passive joints in the base robot driving joints. 

Generally, if the mobile platform displacement is a 
translational one, the results obtained through these two 
approaches are alike or identical. 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 9. The additional forces 

Conclusions 

The dynamic modeling of 6 DOF parallel robots 
considering the friction effects is a difficult problem. The 
integration of the friction results in the mathematical model 
will lead to better results close to the real behavior of the 
robot. The used method in this paper considers either the 
whole mechanism or imaginary independence of the 
kinematics chains. 

The obtained numerical results have shown that the 
frictions from the drive joints have substantial effect in the 
additional drive forces components. Although the second 
approach is more simple and faster (the Jacobi matrices 
computation is not involved), in the additional force 
evaluation are introduced significant errors in such 
configurations, in which the ui angles are nearby from the 
right angles (the connection kinematic chains are straight or 
almost straight). Generally, the numerical results have 
shown that the friction coefficient from the passive joints 
do not significantly influence the additional drive forces.  

The proposed algorithms are relatively simple, clear 
and compact. The work presented in this paper is important 
because the developed dynamical algorithms including 
friction, based on kinematical algorithms offer the 
possibility of a more complex dynamic study of these 
parallel robots in order to evaluate their dynamic 
capabilities and to generate efficient control algorithms.  
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