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Abstract. The process of time averaging of greyscale images is expressed in the operator format. It is shown that the 
inverse problem of the reconstruction of the original image from its time averaged image is an ill-posed problem. 
Application of time averaging techniques is proposed for cryptographic applications especially when the density function 
of variable defining the dynamic deflection from the state of equilibrium is arcsine distribution. 
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1. Introduction 
 

Construction of time averaged images of objects when 
those objects or camera (or both) perform some type of 
motions is a classical research area with numerous 
applications in science and engineering. A typical 
application is the removal of blur caused by undesirable 
motions of object or camera [1].  

Inverse problems involving blur removal are 
characterized by the fact that the information of interest 
(the distribution of greyscale colour intensity on the 
surface of an analyzed body) is not directly available. The 
imaging device (the camera) provides measurements of a 
transformation of this information in the process of time 
averaging. In practice, these measurements are both 
incomplete (sampling) and inaccurate (statistical noise). 
This means that one must give up recovering the exact 
image. Indeed, aiming at full recovery of the information 
usually results in unstable solutions due to the fact that the 
reconstructed image is very sensitive to inevitable 
measurement errors. In other words, slightly different data 
would produce a significantly different image. In order to 
cope with these difficulties, the reconstructed image is 
usually defined as the solution of an optimization problem 
[2].  

Completely different are experimental optical time 
average techniques. The object of these techniques is not 
removal of blur caused by camera shake, but interpretation 
of digital images produced by oscillation of structures [3, 
4]. Particularly, such techniques find important 
applications when moiré fringe patterns are considered [5]. 

The object of this paper is the mathematical principles 
of the formation of time averaged images. We develop the 
necessary mathematical formulations and express the 
formation of digital averaged images in the operator 
format. That helps to interpret the inverse problems and to 

justify the applicability of arcsine distribution for 
cryptographic applications.  
 
2. Definitions of Time Averaging  
 
Definition 1. Function ( )xF  is a greyscale function if it is 

defined for all Rx∈  and satisfies the following 
conditions:  
 
a) ( ) 10 ≤≤ xF ;  

 
b) has only a finite number of discontinuity points;  
 

c) ( ) +∞<−∫
+∞

∞−

dxxF
2

1
; 

 
d) piecemeal continuous in any finite interval [ ]ll,− ; 

0>l ; 
 

e) limit ( )
2

1
lim =
±∞→

xF
x

 exists.  

 
If 0 corresponds to black colour and 1 corresponds to 

white colour, the “background” colour at infinity is grey.  
 

Definition 2. Time averaging operator sH  for harmonic 

oscillations is defined as [6]: 
 

( ) ( )∫
−

+=
2

2

sin
1

π

π
π

dttsxFxFH s ,                (1) 
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where s is the amplitude of harmonic oscillations; 0≥s ; 
Rx∈ . 

 
Definition 3. Arcsine density function of a random 
variable sζ  is: 

 

( ) ( ) ( )( )
22

1

xs
xssxxps

−
−−+=

π
11 , 0>s ,          (2) 

 

where ( )
⎩
⎨
⎧

<
≥

=
;0 when ,0

;0 when ,1

v

v
v1  is unitary Heaviside 

function. 
 
Explicitly,  
 

( )
⎪⎩

⎪
⎨
⎧

−

<<−
−=

elsewhere. 0

; when ,
1

22
sxs

xsxps π          (3) 

 
Lemma 1. If the density function of a random variable sζ  

is arcsine density, then 10 =sEζ ; 012 =−k
sEζ ;  

 
( )
( )

kk
s s

k

k
E 22

!!2

!!12 −
=ζ , …,2,1=k .  

 
Proof 
 

The first equality is trivial. The second one follows 
from the fact that distribution function of sζ  is symmetric 

with respect to y-axis. The third equality can be proved 
changing the variables tsx sin= : 
 

( )

( )
( )

( )
( ) ,

!!2

!!12

2!!2

!!122

cos
cos

sin1

1

22

2

2

22

22

2
2

kk

kk

s

s

k
k

s

s
k

k

k

k
s

tdts
ts

ts

dx
xs

x
E

−
=

−
=

==

=
−

=

∫

∫

−

−

π
π

π

π
ζ

π

π

               (4) 

 
where ( ) ( )1231!!12 −⋅⋅⋅=− jj … ;  

( ) ( )jj 242!!2 ⋅⋅⋅= … ; …,2,1=j . 

 
End of Proof.  
 

Let Φ  denote Fourier transform, and 1−Φ  - inverse 
Fourier transform. Then: 
 

( ) ( ) ( ) ( )vfdxxfivxxf ˆexp =−=Φ ∫
+∞

∞−

; 

( ) ( ) ( ) ( )xfdvvfivxvf ==Φ ∫
+∞

∞−

− ˆexp
2

1ˆ1

π
.             (5) 

It can be noted that when ( )xf  is a symmetric real 

function, its Fourier transform is a real function.  
 
Lemma 2. If ( )xps  is arcsine distribution, its Fourier 

transformation is ( ) ( )svJvps 0ˆ = , where ( )zJ 0  is zero 

order Bessel function of the first kind. 
 
Proof 

( ) ( )

( ) ( )

( )
( )

( )
( )

( ) ( )
( )

( )

( ),
2!

1
1

!!2
1
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ˆ

0

0

2

0
2

2

0

2
2

0

svJ

vs

kk

vs

s
k

k

k

v

dxxp
k

ixv

dxexpvp
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∑
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=
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∞+

=

∞+

∞−

+∞

∞−

−

π
π

 

 

where ( ) !2!!2 kk k= ; ( ) ( ) !!!2!!12 kkk =− .  

 
End of proof. 
 

Thus, the characteristic function of the arcsine 
distribution is zero order Bessel function of the first kind 
(the characteristic function is Fourier transformation of the 
density function of the random variable defining the 
deflection from the state of equilibrium).  
 
 
3. Main Theorems  
 
Theorem 1. ( ) ( )ss xEFxFH ζ+= .             (6) 

 
Proof 
 

Change of variables yts =sin  is exploited in the 

proof.  
 

Then, 
22 ys

dy
dt

−
= , and: 
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( ) ( )

( ).

1
sin

1
22

2

2

s

s

s

xEF

ys

dy
yxFdttsxF

ζ

ππ

π

π

+=

=
−

+=+ ∫∫
−−

      (7) 

 
End of proof. 
 
Corollary 1. Equality ( ) ( )ss xFxF ζζ −=+  holds true 

because the arcsine density function ( )xps  is a symmetric 

function and therefore satisfies equality ( ) ( )xpxp ss −= .  

Theorem 2. Let ( ) ∑
+∞

=

=
0

!
k

k

k k

x
axF ; for all x  and given 

Rak ∈ . Then,  

( ) ( )( )∑
∞+

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

0

2

2

2!

1

j

j
j

xs
s

j
xFDxFH ,             (8) 

where n
xD  is the operator of differentiation (x is the 

variable of differentiation, n is the order of differentiation); 
0≥s .  

 
Proof 
 

The following identities are exploited in this proof: 

a) ∑ ∑
+∞

=

+∞

=
+ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

0 0

2
2 !!

l l

l

l
j

x

l

jl l

x
aD

l

x
a , 

b) ( ) 0
!

1
=

− n
 for …,2,1=n . 

 

( ) ( )

( )
( )

( ) ( )
( )
( )( )

( ) ( )

( )( ) .
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1

2!

1
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!2!2

!!2
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!!2
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2

0 2

2
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−
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=
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=
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⎟

⎠
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⎜
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⎠
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⎜

⎝

⎛
⎟
⎠
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⎠
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⎜
⎝

⎛
=

=⎟
⎟

⎠

⎞
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⎜

⎝

⎛

−
=

=
−

=

=
−

⎟⎟
⎠

⎞
⎜⎜
⎝
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j
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j

l

l
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j
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k
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k
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k

k

j

s

s
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s
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s
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x
a
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s
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a

x
j

sj
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k
a

s
j

j
x

k

a

j

k
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ys

y
x

j

k

k

a

dy
ys

yx

k

a
dttxF

π

ππ

π
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End of proof.  
 
Theorem 3. If a periodic ( )xF  with a period 2l can be 

expanded into a Fourier series: 
 

( ) ∑
+∞

=

⎟
⎠
⎞

⎜
⎝
⎛ ++=

1

0 sincos
2

n
nn l

xn
b

l

xn
a

a
xF

ππ
,             (9) 

 
then its time average can be expressed in the following 
form: 
 

( )

.sincos
2 0

1

0 ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ++=

=

∑
∞+

= l

sn
J

l

xn
b

l

xn
a

a

xFH

n
nn

s

πππ (10) 

 
Proof 

It is clear that ( ) xxD jj
x sin1sin2 −=  and 

( ) xxD jj
x cos1cos2 −= . But zero order Bessel function of 

the first kind can be expressed in the following form [2]:  
 

( ) ( )∑
∞+

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

0

2

0 2!

1
1

j

j
j s

j
sJ .            (11) 

 
Then, Theorem 2 yields: 
 

( )
( ) .coscos

;sinsin

0

0

xsJxH

xsJxH

s

s

=
=

             (12) 

 
Analogously,  
 

( )
( ) ,coscos

;sinsin

0

0

xsJxH

xsJxH

s

s

ωωω
ωωω

=
=

            (13) 

 

because ( ) xxD jjj
x ωωω sin1sin 22 −= . Also, it is clear 

that constconstH s =  and ( ) 100 =J . Finally,  

 
( )

.sincos
2

sincos
2

0
1

0

1

0

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ++=

=⎟
⎠
⎞

⎜
⎝
⎛ ++=

=

∑

∑
∞+

=

∞+

=

l

sn
J

l

xn
b

l

xn
a

a

l

xn
Hb

l

xn
Ha

a
H

xFH

n
nn

n
snsns

s

πππ

ππ
 (14) 

 
End of proof.  
 
Corollary 2. The following equality holds true: 
 

( ) ( ) ( )sJixixH s 0expexp −=− .            (15) 

 
Theorem 4. Let ( )xF  be a greyscale function. Then,  
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( ) ( ) ( )( )
2

1~
0

1 +ΦΦ= − xFsvJxFH s ,            (16) 

 
where Hs is generalised time average operator; 

( ) ( )
2

1
:

~
−= xFxF . 

 
Proof 
 

Function ( )xF
~

 can be expressed in a Fourier series in 

a complex form [7]: ( ) ∑
+∞

−∞=

⎟
⎠
⎞

⎜
⎝
⎛=

n
n x

l

n
icxF
π

exp
~

 where 

0>l  is fixed; lxl ≤≤−  and 

( )∫
−

⎟
⎠
⎞

⎜
⎝
⎛−=

l

l

n duu
l

n
iuF

l
c

π
exp

~

2

1
. 

 
We construct an auxiliary function  
 

( ) ∑
+∞

−∞=

⎟
⎠
⎞

⎜
⎝
⎛=

n
nl x

l

n
icxG
π

exp: .  

 

It can be noted that ( ) ( )xGxF l=
~

 at lxl <<− . Thus,  

 

( ) ( )

( )

( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )
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~

2

1
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~

2

1
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~1

2

1
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exp
~

2

1
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~

0
1

0

0
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0
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x
l

n
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l

n
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n
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l
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⎟
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⎜
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⎟
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∑
∫
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π
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As ( ) ( )
2

1~
+= xFxF , the statement of the Theorem holds 

true.  
 
End of proof. 
 

Corollary 3. If two greyscale functions ( )xF1  and ( )xF2  

are different at least at one interval ( )ba, , where ba < , 

(i.e. ( ) ( )xFxF 21 ≠  for ( )bax ,∈ ), then for all 0≥s  exist 

such intervals of x values where ( ) ( )xFHxFH ss 21 ≠ .  

 
4. Discussion on the Complexity of the Inverse Problem 
 

Definition 1 limits the set of functions which can be 
used for time averaging. Moreover, Theorem 4 operates 
even on a smaller set of functions. Nevertheless, some 
results (particularly the proposition of Theorem 4) can be 
replicated for a wider class of functions. We will use the 
function ( )xexp  (which is clearly not a greyscale function) 

to illustrate this fact.  
 

It is clear that ( ) ( )xxDn
x expexp = . Then, Theorem 2 

yields: 
 

( ) ( ) ( ) ( )sJx
s

j
xxH

j

j

s 0
0

2

exp
2!

1
expexp ≠

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛= ∑

∞+

=

. 

 
Well, one cannot expect a result analogous to the one 

produced by Theorem 3 for a non-greyscale function. 
On the other hand, not all greyscale functions can be 

expanded into a Fourier series. Typical example could be a 
sum of two harmonics with incommensurate frequencies: 

( ) xxxF 3sin
4

1
cos

4

1

2

1
++= . The greyscale function 

( ) xxxF 3sin
4

1
cos

4

1~
+=  is not modulus integrable in an 

infinite interval, but the following equality holds true: 
 

( ) ( ) .3sin3
4

1
cos

4

1

2

1

3sin
4

1
cos

4

1

2

1

00 xsJxsJ

xxH s

++=

=⎟
⎠
⎞

⎜
⎝
⎛ ++

 

 
Time averaging of a greyscale function ( )xF  (one-

dimensional image which oscillates harmonically in time) 
produces greyscale blur. That blur can be characterised as 
a convolution between the original image (function ( )xF ) 

and the point spread function [2] which characterises the 
distribution of deflections from the state of equilibrium in 
time. The point spread function in our notation is 
represented as function ( )xp  which determines the 

distribution of the random variable which defines the 
displacements from the state of equilibrium during the 
process of time averaging (Theorem 4). 

Eq. (16) is an important result explaining the fact that  
time averaged greyscale images of harmonically oscillating 
objects can be expressed in operator format. We will show 
that the kernel of the integral transformation in Eq. (16) is 
irregular and therefore the inverse problem is ill-posed.   
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The formulation of the inverse problem follows from 
Eq. (16). Unfortunately, this problem is ill-posed as it 
involves calculation of the following expression: 
 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −Φ

2

11

0

xFH
svJ s .                       (17) 

 
Zero order Bessel function of the first kind ( )sJ 0  has 

multiple roots (Fig. 1). Therefore there exist multiple 
divisions by zero in Eq. 17 what makes this inverse 
problem ill-posed. This property is illustrated by Fig. 2 
where a number of interference fringes can be observed at 
increasing amplitude s.   
 

 
Fig. 1. Zero order Bessel function of the first type 

 

 
Fig. 2. Interference fringes produced by time averaging of a 

harmonic grating at increasing amplitudes s 
 

 
Classical, harmonic moiré grating 

( ) ⎟
⎠
⎞

⎜
⎝
⎛+= xxF
λ
π2

cos
2

1

2

1
 is used for construction of time 

averaged image in Fig. 2 ( 20=λ ; the background colour 
is white).  This is an elegant illustration of the formation of 
time averaged fringes: 
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x
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λ
π

π

π

π

   (18) 

 
The intensity of illumination becomes equal to 0.5 when 

s
λ
π2

 coincides with a root of zero order Bessel function 

of the first type, and a time averaged fringe is formed 
around this value of s.  

It is clear that many other different greyscale functions 
can be used for time averaging applications. Some 
examples are presented in Fig. 3 and Fig. 4 where time 
averaged images of a step function and a moiré grating 
with variable pitch illustrate the complexity of the fringe 
formation.  
 

 
Fig. 3. Time average image of a step function 

 

 
Fig. 4. Time average image of a grating with variable pitch 
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5. Generalisations for Gaussian and Uniform 
Distributions 
 

So far, we have analysed harmonic oscillations around 
the state of equilibrium. Derived analytical relationships 
describing the process of time averaging for arcsine 
distribution (harmonic oscillations) can be generalised for 
Gaussian or uniform distributions. In fact, Lemma 3 allows 
construction of relationships for different distributions.  
 

For arcsine distribution 012 =+k
sEζ ; 

( )
( )

kk
s s

k

k
E 22

!!2

!!12 −
=ζ  (Lemma 1). Then, it was shown that 

( ) ( ) ( )( )xFsvJxFH s
~~

0
1 ΦΦ= −  (Theorem 4). It is well 

known [8] that time averaged image can be interpreted as a 
convolution between the original greyscale function and 
the point spread function describing the motion of the 
registered object (or camera) – Theorem 1 illustrates this 
fact. We go even further and express the process of time 
averaging in operator format which enables clear 
interpretation of the inverse problem. 

Keeping in mind that camera motion is a common 
factor in experimental optical analysis of dynamical 
systems, similar results for uniform distribution would be 
of a high interest.  
 

Uniform density function for a random variable uζ  is: 

 

( ) ( ) ( )( )
u

uxuxxpu 2

1
: −−+= 11 ,            (19) 

 
where the measured system is initially displaced by u−  
from the state of equilibrium and then continuously moves 
with constant velocity until the displacement from the 

equilibrium is u. Now, 012 =+k
uEζ ; kk

u u
k

E 22

12

1

+
=ζ ; 

( )
vu

vu
xpu

sin
=Φ ; 

 

( ) ( )( )( )∑
+∞

= +
=

0

2
2

!12

~~

k

k
k

xu k

u
xFDxFH ,            (20) 

 
where 
 

( ) ( )( )∫ −+=
1

0

12
~

:
~

dyyuxFxFHu .            (21) 

 
Finally,  
 

( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ ΦΦ= − xF

vu

vu
xFHu

~sin~ 1 .            (22) 

 
It can be noted that the kernel of the operator transform in 
eq. (21) is also ill posed because the roots of sine function 

prevent exact reconstruction of the original image ( )xF
~

. In 

general, the necessity to calculate ( ) ( )xFH
svp s

~
ˆ

1
Φ  

impedes the solution of the inverse problem. 
Analogous relationships can be derived for Gaussian 

distribution which characterises the background noise as a 
common factor in experimental optical analysis of 
dynamical systems. 

Gaussian density function of a random variable 2σζ  is: 

 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

2

2

2
exp

2

1
:2

σσπσ
x

xp ,            (23) 

 

where 2σ  is dispersion; ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=Φ

2
exp

22

2

σ
σ

v
xp , because 

( ) kk kE 22 !!122 σζσ −= . 

    
It can be noted that time averaging operator is now 

defined slightly different compared to Definition 2: 
 

( ) ( )( )∫ −

+∞→
+=

T

T
dttGxF

T
xFH

0

1
22

~1
lim:

~
σσ ,            (24) 

 

where ( )tG 1
2

−
σ  is the inverse of Gaussian distribution 

function ( ) du
u

xG
x

∫
∞−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

2

2

2
exp

2

1
2

σσπσ . 

 
Finally,  

 

( ) ( )⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Φ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−Φ= − xF

v
xFH

~

2
exp

~ 22
1

2

σ
σ .           (25) 

 
It can be noted that eq. (25) is also ill-posed because 

+∞=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∞→ 2

explim
22 xv

x
.  

 
Such considerations can be formally generalised for 

general distributions.  
 
6. Two Properties of Greyscale Averaging 
 

If the displacement from the state of equilibrium is 
governed by a random variable mζ  density function  of 

which is ( )xpm  ( ( )xpm  is a symmetric real function), 

time average operator can be denoted as: 

( ) ( )( )xpxFH m
~

.              (26) 

 
Then, from Theorem 4 it follows that: 
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( ) ( )( ) ( ) ( )

( ) ( )( ),~
ˆ

~~

1 xFsvp

dyypyxFxpxFH

m

mm

ΦΦ=

=+=

−

+∞

∞−
∫            (27) 

 
where ( )zpmˆ  is the Fourier transform of ( )xpm . Then the 

following equalities hold true: 
 
(i) Sequential time averaging. 
 

( ) ( )( ) ( )

( ) ( ) ( )( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )
( )( ).~

~

~

~
ˆˆ

~
ˆˆ

~

21

21

21

12

12

21

12
1

1
1

2
1

mm

mm

mm

mm

mm

mm

xFE

xpxpxFH

dyypypyxF

xFvmpvmp

xFvmpvmp

xpxpxFHH

ζζ ++=

=∗=

=∗+=

=ΦΦ=

=ΦΦΦΦ=

=⎟
⎠
⎞⎜

⎝
⎛

∫
∞+

∞−

−

−−

           (28) 

 
(ii) Composite averaging.  
 

( ) ( ) ( )( )
( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( ).~~

~~

~
ˆ

~
ˆ

~ˆˆ

~

21

21

21

21

21

11

1

mm

mm

mm

mm

mm

xFbExFaE

xpxFbHxpxFaH

xFxpbxFxpa

xFxpbxpa

xbpxapxFH

ζζ +++=

=+=

=ΦΦ+ΦΦ=

=Φ+Φ=

=+

−−

−

        (29) 

 
Particularly for Gaussian distribution, sequential time 
averaging can be expressed by single averaging (this 
property does not hold true neither for arcsine, nor uniform 

distributions). Really, if ( )2
1,0~2

1
σζσ N ; 

( )2
2,0~2

2
σζσ N , then: 

 

( )

( )( ) ,0
12

12

0

12

12

0

1212

2
2

2
1

2
2

2
1

2
2

2
1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=+

∑

∑
∞+

=

−+

+

=

−++

j

jkj

k

j

jkjk

EE
j

k

j

k
EE

σσ

σσσσ

ζζ

ζζζζ
 

  (30) 
 

as j or jk −+12  is odd and thus either jE 2
1σ

ζ  or 

jkE −+12
2

2σ
ζ  is equal to zero. 

On the other hand,  
 

( )
( ) ( )

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

( ) ( )
( )

( )
( )( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) .!!12

!!2

!2

!!

!

!2

!2

!!2!!2
!2

!2!2

!!12!!12!2

!!122!!12
2

2

2
2

2
1

0

2
2

2
1

2
2

2
1

0

0

2
2

2
1

0

2
2

2
1

0

222
1

2
2

2
2

1

k

j

jkj

jkj

j
k

k

j

jkj

k

j

jkj

k

j

jk
s

j

k

k

j

k

k

k

jkj

k

k

k

jkj
k

jkj

jkjk

jkj
j

k

E

σσ

σσ

σσ

σσ

σσ

σσ

ζζ σσ

+−=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=
−

=

=
−

=

=
−

−−−
=

=−−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=+

∑

∑

∑

∑

∑

∞+

=

−

−
∞+

=

=

−

=

−

=

−

  (31) 

 

Thus, a Gaussian distribution ( )2
2

2
1,0 σσ +N  is produced: 

 

( ) ( )( ) ( )

( ) ( )( ).~

~

2
2

2
1

2
2

2
1

xpxFH

xpxpxFHH

σσ

σσ

+
=

=⎟
⎠
⎞⎜

⎝
⎛

            (32) 

 
 
 
7. Computational Examples 
 

We will use several computational examples to 
illustrate sequential averaging for different distributions.  
 
 
 
 

 
Fig. 5. Sequential averaging of a step function; arcsine 

distribution; s = 2 
 



 
311. REPRESENTATION OF TIME AVERAGED VIBRATING IMAGES IN THE OPERATOR FORMAT.  Z. NAVICKAS, M. RAGULSKIS 

 

 
© VIBROMECHANIKA.  JOURNAL OF  VIBROENGINEERING.  2007 OCTOBER/DECEMBER,   VOLUME  9,  ISSUE  4,  ISSN 1392-8716 

 
8 

 
Fig. 6. Sequential averaging of a step function; uniform 

distribution; σ = 1  
 

 
Fig. 7. Sequential averaging of a step function; Gaussian 

distribution; u = 0.5 
 

 
Fig. 8. Illustration of hash algorithm based on time averaging of 

greyscale images 

Figure 5 is a clear illustration that sequential averaging 
with arcsine distribution cannot be expressed in a single 
averaging with arcsine distribution. This property can be 
exploited in cryptographic applications as additional 
information security factor [6]. The same property holds 
also for Figure 6, but the kernel of averaging operator with 
arcsine distribution has an infinite number of singular 
points and therefore is better applicable for the generation 
of hash functions [6].  

Fig. 8 illustrates the applicability of time averaging 
techniques (two-dimensional averaging) for construction of 
one-way hash functions. The original data (left top image 
in Fig. 8) is blurred by arcsine and Gaussian distribution 
(right top image). Then, averaged greyscale intensities are 
reconstructed at the centres of appropriate pixels (left 
bottom image) and finally stretched to min-max levels 
(right bottom image) what constitutes the hash value of the 
illustrated function.  

 
8. Conclusions 
 

Digital image formation during the process of time 
averaging is expressed in the operator format. Such 
interpretation helps to explain the complexity of the 
inverse problem and enables the justification of 
applicability of arcsine distribution for cryptographic 
applications. 
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