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Abstract. Vibration applied to relaxed muscle or tendon causes tonic reflex contraction in a 
muscle. Furthermore, when vibration is applied to a muscle, involuntary enhancement of EMG 
and contraction is induced. Regarding this finding, many studies on the influence of vibration on 
a muscle and static posture have been performed. However, precedent studies have limitations in 
applying single characteristic-vibration without any consideration on personal difference on 
vibration. And studies have been performed to research the change in dynamic state according to 
the intensity of sensing vibration, but no analysis has been performed on the biomechanical aspect 
of the lower-limb joints. Nor any consideration was given on the effect of vibration frequency. 
Therefore, the purpose of this study was to analyze the biomechanical variation in the lower-limb 
joints according to the characteristics of the mechanical vibration stimulation flowing into 
Achilles tendon and tibialis anterior tendon during gait, in consideration of the vibration 
perception threshold and vibration frequency. For this purpose, this study measures the vibration 
perception threshold according to vibration frequency at each tendon exposed to the stimulation. 
According to the result, vibration perception threshold varies according to vibrating tendon and 
vibration frequency. Based on the measurement result of vibration perception threshold, vibration 
is applied to an Achilles tendon and tibialis anterior tendon during gait. In order to analyze the 
biomechanical variation in the lower-limb joints according to the characteristics of vibration 
stimulation applied to each tendon during gait, the angle, moment and power of the lower-limb 
joints is analyzed using 3D motion analysis system. As a result, biomechanical variation, when 
vibration lower than a perception threshold is applied, is similar to the variation when vibration at 
perception threshold is applied. This result implies that vibration stimulation may cause 
biomechanical variation of lower-limb joints. Furthermore, this means that its biomechanical 
variation may vary according to the characteristics of the vibration applied. 
Keywords: somatosensory, vibration, biomechanics, gait, perception threshold, postural control. 

1. Introduction 

Sustained vibration applied to initially relaxed skeletal muscle or its tendon induces tonic 
reflex contraction in a muscle [1]. Moreover, when vibration is applied to a muscle engaged in a 
weak or moderate voluntary contraction, involuntary enhancement of electromyogram (EMG) and 
contraction strength is induced [2, 3]. Based on this finding, a number of studies on the influence 
of vibration on a muscle have been performed. 

Burke et al. researched what response occurs when vibration is applied to muscle in 
non-contracting, isometric contraction condition [4, 5]. Bongiovanni et al. found that EMG 
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develops when vibration is applied to a muscle in initially relaxed condition, and also that EMG 
and Force develops as vibration is applied when constant effort is maintained [6]. And it is also 
found that EMG and Force increases momentarily and then abruptly decreases when vibration is 
applied during maximal voluntary contraction (MVC) of muscle in a fatigued condition, and EMG 
and Force shows post-vibratory recovery again when inpouring of vibration is stopped [6]. Based 
on this result, they revealed that prolonged muscle vibration reduces MVC output [7]. As such, a 
number of studies have been performed on the influence of vibration on the muscle. 

There are many studies on the effect of vibration on posture within a different category from 
muscles. Eklund et al. reveals, based on their study, that the muscle activation induced by vibration 
influences postural stability [8]. Subsequently, many studies have been performed on the influence 
of vibration on posture. Recently applying them, studies have been performed reporting that 
postural stability is increased or postural sway is reduced when vibration is applied to upright 
posture, stable posture, and unstable posture [9-12]. As is the case on the studies on postural 
stability, many studies are reported by applying to muscle performance [12]. Among the related 
studies, Curry et al. demonstrates that maximal voluntary contraction of muscle increases when 
vibration stimulation is applied. [14]. Kihlberg et al. demonstrates that intergraded EMG (IEMG) 
increases [15]. Based on these studies, vibration is often applied to physical training [16].  
However, precedent studies have limitations in applying single characteristic-vibration without 
any consideration on personal difference on vibration. In other words, precedent studies failed to 
reflect the sensitivity to vibration, i.e. the degree of sensing vibration. Thereafter, studies have 
been performed to research the change in dynamic state according to the intensity of sensing 
vibration [17, 18], but no analysis has been performed on the biomechanical aspect of the 
lower-limb. Nor any consideration was given on the effect of vibration frequency. Therefore, the 
purpose of this study is to analyze the biomechanical variation in the lower-limb according to the 
characteristics of vibration stimulation applied during gait, in consideration of vibration 
perception threshold and vibration frequency. 

2. Methods 

2.1. Subjects 

A total of 15 healthy subjects (Age: 26.4±1.5, Height: 171.6±2.7 Weight: 66.1±5.7) 
participated in this study. All subjects to the experiment have no diseases in their nervous system 
and musculoskeletal system, capable of gait independently without any assisting device. This 
study was approved by the IRB of Chonbuk National University (IRB File  
No. JBNU 2015-06-012). 

2.2. Equipment 

A Linear actuator (0934, Samsung electro-mechanics, Korea) was used to apply the vibration 
stimulation on the Achilles tendon and the tibialis anterior tendon. Function generator  
(8202-2 MHz Generator, Dagatron corp., Korea) was used to moderate the frequency and intensity 
of the vibration to be applied on these tendons. 

To capture the movement in gait, a total of 21 active infrared emitting diode markers were 
attached to each major joint part according to a whole-body marker set. To collect the infrared 
light from the markers, a total of 3 Position Sensors (Optotrak Certus, Northern Digital Inc, 
Canada) were used. To measure the ground reaction force during gait, a total of 4 force plates 
(Bertec Co., Ltd, U.S.A) were used. 

2.3. Vibration application 

The Achilles tendon (ACT) and Tibialis anterior tendon (TAT) which could affect the 
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lower-limb muscle through vibration stimulation, were selected as the targeted part for applying. 
To investigate the biomechanical variation in the lower-limb according to the characteristics of 
the applied vibration, intensity of vibration was adjusted and vibration perception threshold was 
measured on the vibration frequency per each tendon exposed to stimulation (Fig. 1). Based on 
measurement result (Fig. 1) and previously study [19], vibration is applied to tendon during gait. 

 
Fig. 1. Vibration perception threshold on Achilles and tibialis anterior tendon  

(No anyone felt 100 Hz and 120 Hz frequency)  

2.4. Vibration stimulation condition 

By combining the stimulating part of vibration inpouring and vibration perception threshold, 
vibration condition is set. In case of no vibration applied, non-stimulation appeared. In case of 
vibration at perception threshold level (threshold vibration) is applied to Achilles tendon, 
ACT_100 % appeared. In case vibration at 80 % of perception threshold (sub-threshold) is applied 
to Achilles tendon, ACT_80 % appeared. In case of applying to tibialis anterior tendon,  
TAT_100 % and TAT_80 % appeared, respectively. Thus, a total of 13 different vibration 
stimulation condition were set. 

2.5. Protocol 

The subjects walked at least 10 m at self-selected speed. The vibration stimulation were 
randomly applied. The subjects performed gaits 3 times per each stimulation condition. And, they 
take a break of 3 minutes after finishing each vibration stimulation condition. 

2.6. Analysis 

To investigate the biomechanical variation in the lower-limb according to the characteristics 
of vibration applied during gait, a 3-dimensional human musculoskeletal system modeling and 
analysis software (SIMM, MusculoGraphics Inc., USA) was used. The stance phase during gait 
was set as the range for analysis. The angle, moment and power of a lower-limb during a stance 
phase were taken as the analysis parameter. Using the mean angle, moment and power of each 
joint at three gaits on flat ground, the mean variation at each vibration stimulation condition are 
presented as the result. Using this, comparative analysis was performed on the comparison 
between average variations in non-stimulation condition and vibration stimulation conditions, the 
comparison in average variation according to vibration perception threshold. 
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3. Results 

3.1. Ankle joint biomechanics according to vibration perception threshold 

The angle, moment and power of ankle joint are analyzed according to vibration perception 
threshold, and the result was presented by each part exposed to stimulation (Table 1-2). 

When an Achilles tendon is exposed to stimulation, the dorsiflexion increased more than in 
condition of non-stimulation, at all perception threshold intensity and perception sub-threshold 
intensity condition (Table 1). Similarly, when tibialis anterior tendon is exposed to stimulation, 
the dorsiflexion increased more than in condition of non-stimulation, at all perception threshold 
intensity and perception sub-threshold intensity condition (Table 2). There are increased and 
decreased pattern in moment. And positive power decreased more than non-stimulation condition, 
at all vibration stimulation condition. 

Table 1. Ankle joint biomechanical variation according to vibration perception threshold in ACT 
stimulation ACT: Achilles Tendon, TAT: Tibialis Anterior Tendon 

Ankle joint Non-stimulation ACT_100 % ACT_80 % 

180 Hz 
Angle 12.13±3.44 12.44±3.48 12.72±3.38 

Moment –0.718±0.229 –0.719±0.232 –0.730±0.231 
Power 0.132±0.497 0.106±0.498 0.130±0.489 

190 Hz 
Angle 12.13±3.44 12.26±3.36 12.67±3.36 

Moment –0.718±0.229 –0.717±0.228 –0.711±0.228 
Power 0.132±0.497 0.142±0.493 0.112±0.482 

250 Hz 
Angle 12.13±3.44 12.32±3.26 12.29±3.53 

Moment –0.718±0.229 –0.727±0.226 –0.708±0.235 
Power 0.132±0.497 0.115±0.486 0.117±0.508 

Table 2. Ankle joint biomechanical variation according to vibration perception threshold in TAT 
stimulation ACT: Achilles Tendon, TAT: Tibialis Anterior Tendon 

Ankle joint Non-stimulation TAT_100 % TAT_80 % 

180 Hz 
Angle 11.87±3.54 12.36±3.65 12.53±3.62 

Moment –0.718±0.229 –0.731±0.231 –0.718±0.234 
Power 0.132±0.497 0.131±0.531 0.100±0.497 

190 Hz 
Angle 11.87±3.54 12.14±3.61 12.24±3.55 

Moment –0.718±0.229 –0.716±0.230 –0.724±0.228 
Power 0.132±0.497 0.105±0.500 0.113±0.474 

250 Hz 
Angle 11.87±3.54 12.15±3.63 12.13±3.61 

Moment –0.718±0.229 –0.721±0.228 –0.711±0.232 
Power 0.132±0.497 0.112±0.505 0.127±0.496 

In condition of vibration stimulation on the Achilles and tibialis anterior tendon, the 
dorsiflexion increase when threshold intensity vibration was applied. This tendency appears at 
sub-threshold intensity vibration stimulation condition as well. The center of mass (COM) was 
lowered due to increased dorsiflexion during the stance phase, and this would contribute to the 
body stability during gait. The movement of the COM is the variable that actually causes the sway 
of the whole body [20]. The maintenance of stability during gait is dependent on the ability to 
control COM motion [21]. High stability is characterized by a large base of support, a low center 
of mass, a centralized center of gravity projection within the base of support, a large body mass 
[22]. When threshold intensity vibration was applied, positive power decreased in condition of 
stimulation on the Achilles and tibialis anterior tendon. And this result, appears at perception 
sub-threshold intensity vibration stimulation condition as well. This means that gradually increase 
of negative power by plantar flexor. Through this result, it can be assumed that vibration 
contributed to the absorption of shocks from the ground, support of human body and enhanced 
stabilization of the joints. Therefore, vibration is found as contributing positively to the stability 
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of ankle joints during gait. And as this tendency appears at sub-threshold, sub-threshold vibration 
may be assumed as contributing to the stability and function of ankle joints. 

Consistent patterns are disappeared according to vibration stimulation in moment of 
stimulation on tibialis anterior. But, peak of plantar flexor moment increased than non-stimulation 
condition (Table 3). Thus, tibialis anterior vibration stimulation would contribute to increase of 
support-moment. 

A ankle extensor moment (plantar flexor moment), for example, means that the ankle extensors 
(soleus, gastrocnemius) are dominant at the ankle joint and the ankle extensors are creating a 
greater moment than the ankle flexors (tibialis anterior). Collapse of the lower-limb requires a 
flexion at all three joints (knee, ankle and hip), thus support of the body requires net extensor 
activity at these joints [23]. The support-moment is the sum of the extensor moments of the three 
joints of the lower-limb [24]. The sum of the extensor muscles moments of the lower-limb joints 
must be positive to support the body [25]. When the support-moment is positive, it supports the 
lower-limbs and prevents their collapse [23]. It also means that when on joint opposes or does not 
contribute to lower limb support, one or both of the other joints will compensate or the 
non-contributing joints [23]. Therefore, tibialis anterior stimulation of perception threshold 
intensity and perception sub-threshold intensity would contribute to lower-limb support and 
prevents their collapse. Although plantar flexor moment decreased in 190 Hz and 250 Hz_80 % 
of Achilles tendon stimulation, knee and hip joints will compensate plantar flexor moment. 

Table 3. Ankle peak plantar flexor moment biomechanical variation according to vibration perception 
threshold in TAT stimulation ACT: Achilles Tendon, TAT: Tibialis Anterior Tendon 

Ankle joint Non-stimulation TAT_100 % TAT_80 % 
180 Hz 

Peak plantar flexor moment –1.397 
–1.424 –1.416 

190 Hz –1.406 –1.400 
250 Hz –1.402 –1.410 

3.2. Knee joint biomechanics according to vibration perception threshold 

The angle, moment and power of knee joint are analyzed according to vibration perception 
threshold, and the result was presented by each part exposed to stimulation (Table 4-5). 

Table 4. Knee joint biomechanical variation according to vibration perception threshold in ACT 
stimulation ACT: Achilles Tendon, TAT: Tibialis Anterior Tendon 

Knee Joint Non-stimulation ACT_100 % ACT_80 % 

180 Hz 
Angle 17.50±3.72 17.46±3.71 17.68±3.69 

Moment –0.264±0.079 –0.271±0.079 –0.270±0.074 
Power –0.266±0.080 –0.259±0.087 –0.270±0.092 

190 Hz 
Angle 17.50±3.72 17.67±3.73 17.23±3.64 

Moment –0.264±0.079 –0.271±0.079 –0.266±0.074 
Power –0.266±0.080 –0.282±0.091 –0.252±0.081 

250 Hz 
Angle 17.50±3.72 17.24±3.76 17.61±3.80 

Moment –0.264±0.079 –0.267±0.076 –0.284±0.078 
Power –0.266±0.080 –0.286±0.085 –0.286±0.089 

When an Achilles tendon is exposed to stimulation, an increase of flexion and negative power 
was more prevalent than in condition of non-stimulation, and knee extensor moment of all 
increased at all vibration stimulation condition (Table 4). When tibialis anterior tendon is exposed 
to stimulation, the flexion, extensor moment and negative power increased more than in condition 
of non-stimulation, at all perception threshold intensity and perception sub-threshold intensity 
vibration condition (Table 5). 

When vibration stimulation of perception threshold intensity and sub-threshold intensity 
applied to tibialis anterior tendon, knee extensor moment and negative power increased more than 
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in non-stimulation condition, at all perception threshold intensity and perception sub-threshold 
intensity vibration stimulation condition. This means that TAT vibration stimulation of perception 
threshold intensity and sub-threshold intensity will contribute to decrease of height of center of 
mass (COM) and to lower-limb support and prevents their collapse.  

In ACT stimulation condition, extensor moment increased more than non-stimulation 
condition and increase of flexion and negative power appeared prevalent. It seems that ACT 
stimulation positively contribute to body support and prevent lower-limb collapse. And 
particularly increased knee extensor moment will compensate decreased ankle plantar flexor 
moment of ACT_190 Hz and 250 Hz_80 %. 

Table 5. Knee joint biomechanical variation according to vibration perception threshold in TAT 
stimulation ACT: Achilles Tendon, TAT: Tibialis Anterior Tendon 

Knee Joint Non-stimulation TAT_100 % TAT_80 % 

180 Hz 
Angle 17.50±3.72 18.21±3.74 18.16±3.68 

Moment –0.264±0.079 –0.267±0.081 –0.277±0.080 
Power –0.266±0.080 –0.282±0.091 –0.312±0.086 

190 Hz 
Angle 17.50±3.72 17.74±3.75 17.59±3.65 

Moment –0.264±0.079 –0.278±0.083 –0.280±0.080 
Power –0.266±0.080 –0.305±0.096 –0.300±0.092 

250 Hz 
Angle 17.50±3.72 17.58±3.77 17.97±3.70 

Moment –0.264±0.079 –0.279±0.083 –0.271±0.077 
Power –0.266±0.080 –0.283±0.089 –0.275±0.081 

3.3. Hip joint biomechanics according to vibration perception threshold 

The angle, moment and power of hip joint are analyzed according to vibration perception 
threshold, and the result was presented by each part exposed to stimulation (Tables 6-7). 

Table 6. Hip joint biomechanical variation according to vibration perception threshold  
in ACT stimulation ACT: Achilles Tendon, TAT: Tibialis Anterior Tendon 

Hip joint Non-stimulation ACT_100 % ACT_80 % 

180 Hz 
Angle 6.77±7.67 6.92±7.46 7.71±7.55 

Moment –0.112±0.192 –0.115±0.183 –0.130±0.190 
Power 0.442±0.146 0.406±0.136 0.431±0.143 

190 Hz 
Angle 6.77±7.67 7.33±7.70 7.54±7.57 

Moment –0.112±0.192 –0.130±0.191 –0.148±0.191 
Power 0.442±0.146 0.446±0.139 0.438±0.135 

250 Hz 
Angle 6.77±7.67 7.45±7.58 7.63±7.63 

Moment –0.112±0.192 –0.123±0.191 –0.127±0.194 
Power 0.442±0.146 0.429±0.136 0.434±0.143 

Table 7. Hip joint biomechanical variation according to vibration perception threshold  
in TAT stimulation ACT: Achilles Tendon, TAT: Tibialis Anterior Tendon 

Hip joint Non-stimulation TAT_100 % TAT_80 % 

180 Hz 
Angle 6.77±7.67 7.89±7.66 8.21±7.68 

Moment –0.112±0.192 –0.140±0.193 –0.165±0.191 
Power 0.442±0.146 0.446±0.140 0.439±0.136 

190 Hz 
Angle 6.77±7.67 7.97±7.70 7.88±7.65 

Moment –0.112±0.192 –129±0.186 –0.132±0.192 
Power 0.442±0.146 0.432±0.138 0.426±0.137 

250 Hz 
Angle 6.77±7.67 7.90±7.58 8.16±7.66 

Moment –0.112±0.192 –0.122±0.189 –0.148±0.189 
Power 0.442±0.146 0.413±0.136 0.427±0.140 
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Flexion and Extensor moment increased in vibration stimulation condition of all. And decrease 
of positive power appeared prevalent (Tables 6-7). This result indicate that vibration stimulation 
of perception threshold intensity and sub-threshold intensity is contribute positively to hip joint 
function about stability during gait. Also, increased hip extensor moment will compensate 
decreased ankle plantar flexor moment of ACT_190 Hz and 250 Hz_80 %. And from decreased 
of positive power, it can be assumed that vibration contributed to the absorption of shocks from 
the ground, support of human body and enhanced stabilization of the joints. 

4. Conclusions 

This study investigated the biomechanical variation in the lower-limb according to vibration 
perception threshold during stance phase, and derives the conclusion as follows. 

When vibration is applied to a tendon, the angle, moment and power of the lower-limb is 
affected to cause variation. And the variation that occurred at threshold vibration stimulation also 
occurred upon sub-threshold vibration stimulation as well. As a result, increase of flexion and 
extensor moment and decrease of positive power appeared prevalent in vibration stimulation 
condition.  

Through this result, it can be assumed that vibration stimulation contributed to decrease of 
height of COM and to lower-limb support and prevents their collapse. Consequently, joint function 
about absorption of shocks from the ground, support of human body and stabilization of the joints 
are enhanced. 
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